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Summary of the talk

Fighting fish, a new combinatorial model
of discrete branching surfaces

Exact counting formulas for fighting fish
with a glipse of the proof

Fighting fish VS classical combinatorial structures

a bijective challenge...



Fighting fish, definition

Ce"S upper left edge upper right edge
45° tilted unit square
lower left edge lower right edge

(of thin paper or cloth)

Build surface by gluing cells along edges in glued edges
a coherent way: upper left with lower right
or lower left with upper right.
free edges

A A%

These objects do not necessarily fit in the plane so my pictures are projections
of the actual surfaces: Apparently overlapping cells are in fact independant.



Fighting fish, definition

Directed cell aggregation. Restrict to only three legal ways to add cells:

by lower right gluing, upper right gluing, or simultaneous lower
and upper right gluings from adjacent free edges.

simultaneous right gluing




Fighting fish, definition

Lemma. Single cell + aggregations
= a simply connected surface

Proposition. Such surfaces can be recovered from their boundary walk.

(not used later)



Fighting fish, definition

Fighting fish
A fighting fish is a surface that can be obtained from a single
cell by a sequence of directed cell agregations.

KD L Lo L
948G

We are interested only in the resulting surface, not in the
aggregation order (but type of aggregation matters)

R

8 free edges 10 free edges
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Fighting fish versus polyominoes

Polyomino = edge-connected set of
cells of the planar square lattice

Directed polyominoes: there is a
cell, the head, from which all cells can
be reached by a left-to-right path.

Proposition. “‘
A fighting fish is a directed polyomino
iff its projection in the plane is injective. ®
= fighting fish do not all fit in the plane,
ie they are not all polyominoes. @

Conversely there are polyominoes that are not fighting fish:
Proposition. A directed polyomino is a fighting fish
iff its interior is simply connected.

In particular all directed convex polyominoes are fighting fish.



Parameters of fighting fish

nose —i
- tails
P
f'
in ‘\\\
Area = # cells ™~

_ _ _ branch points
Size = semi-perimeter

= #{upper free edges}
= #{upper left free edges} + #{upper right free edges}

The fin length = #{ lower free edges from head to first tail }



Parameters of fighting fish

nose —i
- tails
P
f'
in ‘\\\
Area = # cells N

branch points
Size = semi-perimeter

= #{upper free edges}
= #{upper left free edges} + #{upper right free edges}
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Fighting fish with exactly 1 tail



Parameters of fighting fish

( nose —i
< tails )

/
A\ X

A_rea = # C_e”S _ \branch points
Size = semi-perimeter

= #{upper free edges}
= #{upper left free edges} + #{upper right free edges}

The fin length = #{ lower free edges from head to first tail }

Fighting fish with exactly 1 tail

= parallelogram polyominoes
aka staircase polygons

In this case, fin length = semi-perimeter
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Fighting fish as random branching surfaces

Let F, be a fighting fish taken uniformly at random among all
fighting fish of size n. ([}, is called a URF of size n)

Theorem (Duchi, Guerrini, Rinaldi, S., J. Physics A, 2016)
The expected area of F), is of order n°/4

Compare to the known expected area n3/2 of
random parallelogram polyominoes of size n

The Uniform Random fighting Fish of size n (URF) yields a
new model of random branching surfaces with original features.
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Enumerative results

Theorem (folklore)
#{ parallelogram polyominos }

g

with semi-perimeter n + 1

parallelogram polyominos with
1 top left and j top right edges

1
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Enumerative results

Theorem (folklore) /

#{ parallelogram polyominos }_ 1 (2n)

fighting fish with 1 tail

with semi-perimeter n + 1 MmM+1\n
4 parallelogram polyominos with _ 1 (i—|—j—1) (i—|—j.—1)
1 top left and 5 top right edges ity—1 A J

Theorem (Duchi, Guerrini, Rinaldi, S. 2016)

fighting fish 2 In
# . . —
with semi-perimeter n + 1 (m+1)2n+1)\ n

# flghtlng fish with _ 1 (Zi—l—j—l
1 top left and j top right edges (27+7—1)(2j+i—1) i

)(

2j+i—1
J

)



A glipse of the proof

Extend the wasp-waist decomposition of parallelogram polyominoes:

remove one cell at the bottom of each diagonal, from left to right
along the fin, until this creates a cut

(A) B1) (B2)

(C1)



A glipse of the proof

Extend the wasp-waist decomposition of parallelogram polyominoes:

remove one cell at the bottom of each diagonal, from left to right
along the fin, until this creates a cut

(A)

(C1)

Two more cases must be considered for fighting fish...
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A glipse of the proof

Let P(u) =Yty i) be the GF of fighting fish
according to the size, fin length and number of extra tails.
Then

P(1) — P(u)

P(u) = tu(l + P(u))* + ytuP(u) ———

Case y = 0. Fish with one tail, je parallelogram polyominoes:
boils down to the algebraic equation for the GF of Catalan numbers.

General case. A polynomial equation with one catalytic variable:
easily solved using Bousquet-Mélou-Jehanne approach.

= an algebraic equation that generalizes the equation for
parallelogram polyominoes to an arbitrary number of tails.

Corollary (DGRS 2016). The gf of fighting fish with k tails for
any fixed k is a rational function of the Catalan GF.



Bijections and parameter
equidistributions?



Sloane's OEIS...

fighting fish 2 3N
+# . S —
with semi-perimeter n + 1 (n+1)2n+1)\ n
1, 2, 6, 91, 408, 1938...

This integer sequence was already in Sloane's !

The number of fighting fish of size n + 1 (with ¢ left and j down top edges)
Is equal to the number of:

e Two-stack sortable permutations of {1,...,n} (¢ ascending and j descending runs)
(West, Zeilberger, Bona, 90's)

e Rooted non separable planar maps with n edges (i 4+ 1 vertices, j 4+ 1 faces)
(Tutte, Mullin and Schellenberg, 60’s)

e Left ternary trees with n edges (i + 1 even, j odd vertices)
(Del Lungo, Del Ristoro, Penaud, late XXth century)



Left ternary trees and further equidistributions

Natural embedding of a ternary tree:

e root vertex has label 0
e vertex with label 7 = left child 7 — 1,
central child ¢, right child 2 4 1.
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Left ternary trees and further equidistributions

Natural embedding of a ternary tree:

e root vertex has label 0
e vertex with label 7 = left child 7 — 1,
central child ¢, right child 2 4 1.

Left ternary tree = ternary tree
without negative labels.

Core = binary subtree of the root

after pruning all right edges

Theorem (DGRS 2016): The number of fighting fish with size
n + 1 and fin length k£ equals the number of left ternary trees
with n nodes and core size k.
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Left ternary trees and further equidistributions

Core = binary subtree of the root
.1  after pruning all right edges

Theorem (DGRS 16)
#{ fighting fish, size n + 1, fin length k£ }
= #{ left ternary trees, n nodes, core size k}

Proof by an explicit guess and check a /a Di Francesco for the tree GF:

Theorem (Di Francesco 05, Kuba 11) The size GF of ternary trees
with label at least —i Is

_YJ+5 _vJt2 T
Tj = 78_§j+4§ 8_;‘%; where { X

1—|—t7'3
(1+X—|—X2)TT_1 '

Case 5§ = 0 of this thm gives formula for left ternary trees of size n

Theorem (DGRS16) The bivariate size and core size GF of ternary trees
with label at least —¢ is

Hj(u) 1-x9+2
T(u) = T(u) 57, 0y =

H,— 1 (u) 1= X773 Hj(u) = (1 — X9 XT(u)

—(14+ X)(1 — X7+2)

T(u) =1+ tuT(u)3T
where



Left ternary trees and further equidistributions

Core = binary subtree of the root
.1  after pruning all right edges

Theorem (DGRS 16)
#{ fighting fish, size n + 1, fin length k£ }
= #{ left ternary trees, n nodes, core size k}

Conjecture (DGRS 2016): The previous computation can be refined
to prove joined equidistribution of:

fin length <> core size

number of tails <+ number of right branches

number of left/right free edges <> number of even/odd labels
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today’s talk direct enumeration?
P

pet?
Fang (2017) fighting fish "direct bijection?  girect enumeration
(isomorphic recursive decompositions) "",' /S
‘ .
2SS-permutations left ternary trees

_ —
THANK YOU

Goulden-West
(isomorphic recursive decompositions) ns p | anar ma pS

fTutte

recursive decomposition + GF

Del Lungo et al

(isomorphic recursive decompositions)

S

(direct bijection)



