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Uniform random generation, what for?

Experimental companion to average case analysis of algorithms

In silico combinatorics, statistical physics and biology

Statistical test in model checking

Flajolet, Zimmermann

Gaudel, Gouraud, Denise

Average drawing size analysis for planar drawing algorithms

Fusy, S.

too many people involved... Denise, Ponty



Random sampling paradigms

Markov chain simulations: venerable topic → perfect sampling

Recursive sampling: requires a ”combinatorial” recurrence

⇒ versatile but slow in general (polynomial is good)

⇒ ok for all ”decomposable” structures (quadratic is good)

⇒ optimal when nice bijections are available (linear is good)

Boltzmann sampling: replace exact counting by GF evaluation

⇒ efficient for decomposable structures and more (linear/quad)

We concentrate on Boltzmann sampling...



Boltzmann models, Boltzmann sampling
A combinatorial class A = (An)n≥0

Its generating function A(x) =
∑

a∈A x|a| =
∑

n |An|xn.

Let x0 > 0 be such that A(x0) is finite (e.g. x0 < ρA)
Γ[A](x0) is a Boltzmann generator of parameter x0 for A if

Pr(Γ[A](x0) = a) = x|a|

A(x) for all x ∈ A.

Boltzmann generators are compatible with the sum, product
and composition of combinatorial classes.

Γ[A+ B](x) := if Bern( A(x)
A(x)+B(x) ) thenΓ[A](x) elseΓ[B](x)

Γ[A× B](x) := (Γ[A(x)],Γ[B(x)])

Γ[A ◦ B](x) := let a = Γ[A](B(x)) in (a; (Γ[B](x))|a|)



Composition in Boltzmann sampling

Γ[A ◦ B](x) := let a = Γ[A](B(x)) in (a; (Γ[B](x))|a|)

Theorem: if Γ[A] and Γ[B] are Boltzmann so is Γ[A ◦ B].

Then Pr
(
Γ[A ◦ B](x) = γ

)
Proof: Let γ ∈ A ◦ B with γ = (a; b1, . . . , bk) where a ∈ A,
k = |a|, bi ∈ B for i = 1, . . . , k, and |γ| = |b1|+ . . . + |bk|.

= Pr
(
Γ[A] = a

)
·
∏|a|

i=1 Pr
(
Γ[B](x) = bi

)
= B(x)|a|

A(B(x)) ·
Q

i x|bi|

B(x)|a| = x|b1|+···+|bk|

A(B(x)) = x|γ|

(A◦B)(x) . 2

Theorem: if Γ[A ◦ B] is Boltzmann then so are Core(Γ[A ◦ B])
and First(Γ[A ◦ B]), where Core(γ) = a and First(γ) = b1.



An example: Boltzmann for trees

Recall that A is the familly of ordered trees: a tree decomposes into
a root and a sequence of subtrees attached by edges:

A = {root} × Seq({edge} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
root; ({edge} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).
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An example: Boltzmann for trees

Recall that A is the familly of ordered trees: a tree decomposes into
a root and a sequence of subtrees attached by edges:

A = {root} × Seq({edge} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
root; ({edge} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

The generation finishes with proba 1.

Pr (|Γ[A](xn))| = n) = |An|·xn

A(x)
≈ 4nn−3/2

`
1
4
(1− 1

n
)
´n ≈ n−3/2

The expected size of a Boltzmann tree of parameter xn = 1
4
(1− 1

n
)

is E(|Γ[A](xn)|) = A(xn)′

A(xn)
≈ (1− 4xn)−1/2 =

√
n

The probability to get size n depends on the choice
of x, increasing near the singularity: if xn = 1

4
(1− 1

n
)



Uniform sampling via Boltzmann

The probability to get Γ[A](x) = a depends only on the size of a.

Hence the uniform random generator:

U[A(n)] := do let a = Γ[A](x) until |a| = n; return a;



Boltzmann in progress

Unlabelled structures and Polya theory

Initial model: Labelled and rigid unlabelled structures
Duchon, Flajolet, Louchard, Schaeffer (2002)

Flajolet, Fusy, Pivoteau (2007) and Bodirsky, Fusy, Kang and Vigerske (2007)

Complex structures: plane partitions, colored objects
Bodini, Fusy, Pivoteau (2006), Bodini, Jacquot (2008)

Complex structures: planar graphs
Fusy (2006)

Efficient oracles for the evaluation of generating series
Pivoteau, Salvy, Soria (2008)

Complex structures: deterministic automata
Bassino, NIcaud (2006), Bassino, David, Nicaud (2008)

Complex structures: Apollonian structures, XML documents
Darasse, Soria (2007), Darasse (2008)

Bernasconi, Panagiotou, Steger, Weißt (2006)

Graphs properties via Boltzmann models
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Planar graphs, planar maps, and surfaces

A planar graph: there exists an embedding in the plane

A planar map: the (combinatorial) embedding in the plane is fixed

sphere

sphere

A map of genus g: an embedding of a graph on Sg (faces must be
simply connected): Euler’s formula: v + f = e + 2− 2g.

Surfaces: let Sg be the compact orientable surface of genus g: S0 is
the sphere, S1 the torus; in general Sg is a ”sphere” with g handles.

A graph of genus g: g is the minimum genus of a surface on which
the graph can be embedded.



Random planar maps

Maps are somewhat easier to deal with.

Start with maps

3-c planar maps = Core(2-c planar maps) = Closure (binary trees)

2-c planar maps = Core(1-c planar maps)

1-c planar maps = Closure(well labelled ordered trees)

3Core(2Core(Closure(Γ[A3](x)))) is Boltzmann



Random planar graphs (rough idea of Eric Fusy’s algorithm)

10 steps to planar graphs (title from Liskovets and Walsh, 87)
Decomposition for planar graphs have been available from decades:
the equations were partially written several times until the
asymptotic was done by Gimenez and Noy, and efficient random
generation by Fusy

labelled planar graphs = sets of 1-connected planar graphs

rooted 1-c planar graphs = (2-c planar graphs)◦(1-c planar graphs)

rooted 2-c planar graphs = (3-c planar graphs)◦(2-c planar graphs)

3-c planar graphs = 3-c planar maps



Random planar graphs (rough idea of Eric Fusy’s algorithm)

10 steps to planar graphs (title from Liskovets and Walsh, 87)
Decomposition for planar graphs have been available from decades:
the equations were partially written several times until the
asymptotic was done by Gimenez and Noy, and efficient random
generation by Fusy

labelled planar graphs = sets of 1-connected planar graphs
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Illustration:



Random planar graphs and maps: some remarkable properties

the decomposition tree: iterate the decomposition

the decomposition is ”symmetric”: the starting point does not matter

there is a unique giant node in the tree
Bender-Richmond-Wormald, Gao-Wormald, Banderier-Flajolet-Schaeffer-Soria, Gimenez-Noy, Panagiotou-Stenger

the distance between two vertices is of order n1/4

the graph/map/giant component converge to the continuum brownian map

Recall that emphasised statements are conjectures



Random graphs on surfaces

the same picture remains true ”almost surely”:

the genus is a.s. concentrated in the giant component
proved for maps (Chapuy, Kang, Schaeffer), not yet for graphs

Uniform on the set of graphs that can be embedded in Sg:

have a.s. minimum genus g, concentrated in one 3-connected
component with unique embedding

The problem (should) boils down to sampling maps of genus g

at fixed genus g, distances are of order n1/4 and the limit is the
continuum random map of genus g.

Recall that emphasised statements are conjectures



Random graphs on surfaces

Recall that emphasised statements are conjectures
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= discrete abstractions of fundamental structures
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My idea of combinatorics

Elucidate the properties of those fundamental discrete structures that
are common to various scientific fields (CS/math/physics/bio).

and, more specifically of ”algorithmic combinatorics”

concentrate on constructive properties and on the algorithmic point of
view on structures

The example of trees...

mathematical pt of view: connected graphs without cycle

algorithmic pt of view: recursive description (root; subtrees)
⇒ concept of breadth first or depth first search,

links with context free languages

Algorithmic combinatorics

(... Schützenberger’s methodology...)
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Tree exploration

breadth first

⇒ the prefix code of a tree

Statement. The set of code
words is easy to describe.

but the set of ”coding” trees
is not easy to describe
(for classic families of graphs
like planar, 3-connected,...)

for instance to encode trees

fundamental tools

More precisely: the language of
prefix codes of ordered trees is
context-free.

3 1 0 0 2 0 0 (depth first)

3 1 0 2 0 0 0 (breadth first)

Graph exploration

breadth first

construct a tree along the exploration

No good analog of the
previous ”statement”.

depth first depth first

⇒ encode graphs by tree-like structures

+ extra info for external edges



Exploration algorithms

Exploration of a map and surface surgery



Exploration algorithms

Exploration of a map and surface surgery



Exploration algorithms

Exploration of a map and surface surgery

Exploration + cut ⇒ a ”net” of the map



Exploration algorithms

Exploration of a map and surface surgery

Exploration + cut ⇒ a ”net” of the map

in order to reconstruct the surface, the
orientation of cuts is enough: merge adjacent
converging sides + iterate



Exploration algorithms

Exploration of a map and surface surgery

Exploration + cut ⇒ a ”net” of the map

in order to reconstruct the surface, the
orientation of cuts is enough: merge adjacent
converging sides + iterate



Exploration algorithms

Exploration of a map and surface surgery

Exploration + cut ⇒ a ”net” of the map

in order to reconstruct the surface, the
orientation of cuts is enough: merge adjacent
converging sides + iterate

Nets are always trees of polygons

(as long as the surface has no handle)
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Exploration algorithms

To a map are associated
many different nets

...

but a given exploration algorithm associates a canonical net to each map

Each exploration algo ⇒ a bijection, but what is the set of valid nets?

Represent again a map by
a tree like structure!

Valid nets are easier to describe than exploration trees!
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Statement
To many natural families of maps is associated a standard exploration
algorithms (breadth first, depth first, Schnyder,...) such that the cut
yields context-free nets.

this statment covers a series of ”coherent” theorems

• Cori-Vauquelin 1984, S. 1997, Marcus-S. 1998,
Bousquet-Mélou-S. 1999, Poulalhon-S. 2003, Bouttier-di
Francesco-Guitter 2004, Fusy-Poulalhon-S. 2005, Bernardi 2006

with various types of applications

• optimal encodings and compact data structures for meshes
• random sampling and automatic drawing of graph and map
• enumeration: maps, ramified coverings, alternating knots...
• random discrete surfaces

Exploration algorithms
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Application to discrete random surfaces

Planar quadrangulations (quads) as a
model of discretized spheres

Let |Qn| be the set of quads with n faces
and Xn be a uniform random quad of Qn:

Pr(Xn = q) = 1
|Qn| , ∀q ∈ Qn

This model of random geometries is called
2d discrete quantum gravity in statistical ϕ.

Lots of results via the celebrated method of
topological expansion of matrix integrals
(Brezin, Itzykson, Parisi, Zuber, 72).

But this approach does not allow to study
the intrinsec geometry of these surface!
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Quadrangulations via breadth first search

Consider a planar quadrangulation

Apply bfs with the rotatoria rule
and cut along the flow

Join these 2 rotatoria!

Each face sees exactly two rotatoria
Theorem. This is a bijection.

Xn: pointed quads, n faces

Label vertices by the round at
which they were visited by bfs.

The result is a well labeled tree.

1

1 1

1
2

2
2

2

2

2 2

3

3

3
33

4 3

Tn: well labeled trees, n vtx

≈
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use breadth first search to study the geometry

Theorem (Chassaing-S, 2004).
The distance between 2 random vertices of Xn is of order n1/4.

⇒ breadth first search computes distances:

distance between 2 pts = nb of edges on a path

Quadrangulations via breadth first search

• labels of the tree record distances from the basepoint

• the height of a random tree of size n is n1/2

• the random walk of labels on a branch of length `
has max about `1/2

⇒ typical labels are of order n1/4.

1
2

2 2

3
1

1

1

distance from basepoint

= round of exploration by bfs
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Some properties of random discrete surfaces

This approach was pursued by Chassaing-Durhuus (2005), Marckert-
Mokkadem (2004), Miermond (2005), Weill (2006)... culminating with

Theorem (Le Gall, 2006). Rescaled planar
quadrangulations converge in the large size
limit to a random continuum planar map
that has spherical topology.

In particular there exists no
separating cycle of size � n1/4.

The bfs exploration works also for higer genus surfaces:
Theorem (Chapuy-Marcus-S. 2006) The distance between 2 ran-
dom vertices of a random quad Xg

n of genus g is of order n1/4.

Conjectures.
There is no non-contractible cycles with size � n1/4.
The rescaled continuum limit exists and has genus g.

Sphere!
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A conjecture on random graphs with low genus

Let Y g
n be a uniform random connected labelled graphs with

n vertices that can be embedded on a surface of genus g.

For instance Y 0
n is a random connected planar graph with n vertices.

Conjecture. The graph Y g
n is a.s. composed of a 3-connected

graph Core(Y ) of size Θ(n) with edges replaced by small
planar networks and with small pending planar components.

Moreover Core(Y ) a.s. has minimal genus g and has a unique
minimal embedding. The small parts have size O(n2/3).

In the rescaled limit, Y g
n converge to the same continuum

random map of genus g as Xg
n.

Cf. McDiarmid, Noy, Steger’s talks for proofs...



Many thanks for your attention !

Many thanks to my collaborators!




