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Plan of the talk

Unlabeled VS Increasing quadrangulations...

A bijection, with Cayley type trees!

More evidences from higher genus maps...

Why increasing quadrangulations?

Hurwitz numbers and branched covers

as a conclusion



Planar maps

Planar maps are graphs embedded on the sphere

and considered up to homeomorphisms of the sphere

Two quadrangulations

A triangulation



Quadrangulations and their number

• n faces with degree 4

A rooted planar quadrangulation of size n is
a rooted planar map with:

• n+ 2 vertices (that are bicolored, with black root)

• 2n edges (multiple edges allowed)



Quadrangulations and their number

and let Q(t) = 1 +
∑

q∈Q t
|q| be the generating function where |q| = #faces of q.

Theorem (Tutte, 1963):

Then Q(t) is the unique formal power series solution of the system{
Q(t) = R(t)− tR(t)3

R(t) = 1 + 3tR(t)2

Let Q = {rooted planar quadrangulations }

Q(t) = 1 + 2t+ 9t2 + . . .

so that Q(t) =
(1−12t)3/2−1+18t

54t2
and |Qn| = 2

n+2
3n

n+1
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)
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• n faces with degree 4

A rooted planar quadrangulation of size n is
a rooted planar map with:

• n+ 2 vertices (that are bicolored, with black root)
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Limits for uniform random quadrangulations

maybe the best understood discrete model of 2d pure quantum gravity.

Uniform random rooted quadrangulations:

Pr(Qn = q) =
1

|Qn|
=

1
2·3n(2n)!
(n+2)!n!

for all q ∈ Qn

have attracted a lot of attention in the last few years...
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Limits for uniform random quadrangulations

– scaling limit: up to rescaling distances by the typical factor n1/4

– infinite discrete limit

⇒ the Brownian map

⇒ the uniform infinite planar quadrangulation (UIPQ)

A lot of recent works also consider 2d quantum gravity coupled with matter

and especially to relations with Liouville gravity, SLE...

I will stick with pure gravity, where there is still lots of work to do...

maybe the best understood discrete model of 2d pure quantum gravity.

Uniform random rooted quadrangulations:

Pr(Qn = q) =
1

|Qn|
=

1
2·3n(2n)!
(n+2)!n!

for all q ∈ Qn

have attracted a lot of attention in the last few years...

In particular I want to discuss an alternative discrete model of 2d pure quantum gravity.



Increasing quadrangulations

• n black vertices and n white vertices

– around black vertices, face labels increase
in ccw order

– around white vertices, face labels increase
in cw order
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An increasing quadrangulation of size n is a bicolored planar map with:

• 2n− 2 faces of degree 4 having distinct labels
such that
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Increasing quadrangulations

• n black vertices and n white vertices

– around black vertices, face labels increase
in ccw order

– around white vertices, face labels increase
in cw order
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An increasing quadrangulation of size n is a bicolored planar map with:

• 2n− 2 faces of degree 4 having distinct labels
such that

and let Q+(t) =
∑

q∈Q+
t|q|

|q|! be the exponential gf where |q| = #faces of q.

Theorem (Hurwitz 1891 / Strehl 1997, Goulden-Jackson 1997):

Then Q+(t) is solution of the system

{
Q+(t) = T (t)− 1

2
T (t)2

T (t) = t2 exp(T (t))

Let Q+ = {increasing planar quadrangulations }

so that the nb of increasing planar quadrangulations of size n is

|Q+
n | = nn−3 (2n−2)!

(n−1)!
.



Uniform random increasing quadrangulations?

Uniform random rooted increasing quadrangulations:

Pr(Q+
n = q) =

1

|Q+
n |

=
1

nn−3 (2n−2)!
(n−1)!

for all q ∈ Q+
n

Main conjecture.
The typical graph distances in a uniform random increasing quadrangulations
with size n are of order n1/4 and the scaling limit is the Brownian map.



Uniform random increasing quadrangulations?

Uniform random rooted increasing quadrangulations:

Pr(Q+
n = q) =

1

|Q+
n |

=
1

nn−3 (2n−2)!
(n−1)!

for all q ∈ Q+
n

Main conjecture.
The typical graph distances in a uniform random increasing quadrangulations
with size n are of order n1/4 and the scaling limit is the Brownian map.

In this talk:

• Where do these increasing quadrangulations come from?

• Some supporting evidences...

• Some available combinatorial tools...
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Branched covers and Hurwitz numbers

A mapping f : S→ S is a branched cover of
degree n of the sphere by itself if there is a finite
set X of values on the image sphere such that

f• each value z in S \X is regular:
z has n preimages z1, . . . , zn, and
f is homeomorphic to y 7→ y around zi.

points

values

n = 4

The type of a critical value is the partition whose parts are the order of its preimages

λ× = 3 1

λ• = 14
• each value z in X is critical:
z has p < n preimages z1, . . . , zp, and
f is homeomorphic to y 7→ yki around zi,
where the orders ki are positive integers
such that

∑
ki = n.

A critical value is simple if it has n− 1 preimages, or equivalently if its type is 2 1n−2



Branched covers and Hurwitz numbers

More generally Hurwitz considered branched covers
of the sphere by a connected surface of genus g and
raised in the 90’s the question of counting these objects
up to rooted homeomorphisms of the domain surface.

h

f g

This enumerative study of branched covers was revitalized by the connections with
moduli spaces of complex curves and Kontsevich theorem (Witten conjecture), that
were raised by Okounkov in the 90’s (1990’s, while Hurwitz’ 90’s above were 1890’s...)

In that context it was argued that branched covers with simple critical values should
give an alternative model of 2d quantum gravity (Zvonkine 2004)

Amusingly an equivalent random sampling problem for rational functions
was raised independantly by W. Thurston in the early 2000s.

Gg
m,n = #

{
(equiv. classes of) branched covers of S by Sg

with degree n and m critical values

}
Hg

n = #

{
(equiv. classes of) branched covers of S by Sg

with degree n and 2n+ 2g − 2 simple critical values

}
Typically the question is to compute
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Covers with 3 critical values and bipartite maps

3 critical values λ• = 2312 λ◦ = 322

1

2

1 2

1

1

2

1 regular value with a marked preimage

2

1

λ� = 62

1

On the image sphere, draw an edge
between • and ◦ via the basepoint

The pullback is a bipartite map:

we should check that faces are
simply connected.

Proof. A loop around the edge in the image
sphere can be deformed to a loop around �

Proposition (Folklore). This is a bijection
between bipartite planar maps and

branched covers of S by S with 3 critical values.

The partitions λ•, λ◦ and 2λ� gives respectively
degrees of black and white vertices and faces

in particular for λ� = 2n/2 all faces have degree 4 and
we recover ordinary quadrangulations



Simple branched covers, increasing quadrangulations
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draw on the image S a fan of multiple edges
separating the critical values, and take pullback,

1 • n black and n white vertices of degree m

• n(m− 2) + 2 labelled faces of arbitrary
(even) degree such that

– around black vertices, face labels
form the cycle (1, 2, . . . ,m) in ccw order
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form the cycle (1, 2, . . . ,m) in cw order
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ie a bipartite map with
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Simple branched covers, increasing quadrangulations

1

3

2

1

2
3

The degrees of faces correspond to the orders of
ramifications of the corresponding points.

draw on the image S a fan of multiple edges
separating the critical values, and take pullback,

1

Corollary. There is a bijection between:

• branched covers of the sphere by itself with degree n and m simple critical values

• planar m-Eulerian maps with n black and m white vertices

• n black and n white vertices of degree m

• n(m− 2) + 2 labelled faces of arbitrary
(even) degree such that

– around black vertices, face labels
form the cycle (1, 2, . . . ,m) in ccw order

– around white vertices, face labels
form the cycle (1, 2, . . . ,m) in cw order

2

1 1

In general the general case of m critical points:

this gives a m-Eulerian map,
ie a bipartite map with



Simple branched covers, increasing quadrangulations

1

3
2

1

2
3

4

Only simple critical values
⇒ only 1 quadrangle per label

Recall that a critical value is simple if it has type 21d−2.6
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an increasing quadrangulation
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Simple branched covers, increasing quadrangulations

1

3
2

1

2
3

4

Only simple critical values
⇒ only 1 quadrangle per label

Recall that a critical value is simple if it has type 21d−2.6

5

4

5
6

1

Corollary. There is a bijection between:

• branched covers of the sphere by itself
with 2n− 2 simple critical values

• increasing planar quadrangulations
with 2n− 2 faces

⇒ after contraction of multiple edges,
an increasing quadrangulation



Enumerative results

Theorem (Hurwitz 1891 / Strehl 1997, Goulden and Jackson 97)

The original statement of Hurwitz is about simple branched covers:

H0
n = #

{
(equiv. classes of) branched covers of S by itself

with degree n and 2n− 2 simple critical values

}
= # {increasing planar quadrangulations with 2n− 2 faces}

= nn−3 (2n−2)!
(n−1)!



Enumerative results

Theorem (Hurwitz 1891 / Strehl 1997, Goulden and Jackson 97)

Theorem (Bousquet-Mélou and S. 00)

There is a companion statement for general branched covers

The original statement of Hurwitz is about simple branched covers:

G0
m,n = #

{
(equiv. classes of) branched covers of S by itself

with degree n and m critical values

}

H0
n = #

{
(equiv. classes of) branched covers of S by itself

with degree n and 2n− 2 simple critical values

}
= # {increasing planar quadrangulations with 2n− 2 faces}

= nn−3 (2n−2)!
(n−1)!

= # {m-eulerian planar maps with n faces}

= m(m− 1)n−1 ((m−1)n)!
(mn−2n+2)!n!



Plan of the talk

Unlabeled VS Increasing quadrangulations...

A bijection with Cayley type trees!

More evidences from higher genus maps...

Why increasing quadrangulations?

a conjecture

Hurwitz numbers and branched covers

(on ne se refait pas...)

as a conclusion



A general strategy for encoding maps by trees

A tree-rooted map can be decomposed along a
contour of its spanning tree:

– into two mating trees, a la Mullin

– into a blossoming tree: the spanning
tree decorated with the start- and
end-halves of the remaining edges

or

In order to use this approach we need to select
a canonical spanning tree.
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Orient the tree edges away from the root.

Spanning trees can be replaced by orientations:
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Orient the tree edges away from the root.

Orient the other edges couterclockwise
around the tree.

The resulting orientation is a
minimal orientation: no
clockwise circuit.

Theorem (Bernardi 2005) This is a bijection between tree-rooted maps with n edges
and minimum accessible oriented maps with n edges

It is also accessible: every vertex can be
reach by an oriented path from the root.

Spanning trees can be replaced by orientations:



A general strategy for encoding maps by trees

Orient the tree edges away from the root.

Orient the other edges couterclockwise
around the tree.

The tree is recovered by reconstructing its contour .

The resulting orientation is a
minimal orientation: no
clockwise circuit.

Theorem (Bernardi 2005) This is a bijection between tree-rooted maps with n edges
and minimum accessible oriented maps with n edges

It is also accessible: every vertex can be
reach by an oriented path from the root.

Spanning trees can be replaced by orientations:

The general blossoming strategy to design bijection with trees: find a natural
accessible orientation, make it minimal, and use the associated spanning as
blossoming tree. Formalized by Albenque-Poulalhon (2015)



Application to m-Eulerian map: orientation?

Bipartite map with black and white vertices of degree m such that:

– faces with labels in {1, . . . ,m}

– around black vertices, face labels
read 1, . . . ,m in cw order

– around white vertices, face labels
read 1, . . . ,m in ccw order
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Application to m-Eulerian map: orientation?

Bipartite map with black and white vertices of degree m such that:

Orient each edge so that the minimum incident label is on the left

– faces with labels in {1, . . . ,m}

– around black vertices, face labels
read 1, . . . ,m in cw order

– around white vertices, face labels
read 1, . . . ,m in ccw order

Then black vertices have outdegree 1, white vertices have indegree 1

and this orientation is accessible, in fact strongly connected.

1

1

3
2

2

3

We can apply our strategy!
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m-Eulerian maps and their blossoming trees

m-Eulerian trees: plane (ordered) trees such that:

– black vertices carry m− 2 half-edges
and a white child.

– white vertices carry m− 1 children
(black vertices or half-edges)



m-Eulerian maps and their blossoming trees

m-Eulerian trees: plane (ordered) trees such that:

– black vertices carry m− 2 half-edges
and a white child.

– white vertices carry m− 1 children
(black vertices or half-edges)

Counting rooted m-Eulerian trees: using a recursive decomposition

A�(t) = m(1 +A•(t))m−1, A•(t) = (m− 1) ·A�(t)

or observe directly that they are (m−1)-ary trees with (m−1) types of edges

⇒ 1
(m−2)n+1

((m−1)n
n

)
· (m− 1)n−1



m-Eulerian maps and their blossoming trees

m-Eulerian trees: plane (ordered) trees such that:

– black vertices carry m− 2 half-edges
and a white child.

– white vertices carry m− 1 children
(black vertices or half-edges)

Proposition. The opening of an m-eulerian map is an m-eulerian tree
with same vertex degree distributions.

Counting rooted m-Eulerian trees: using a recursive decomposition

A�(t) = m(1 +A•(t))m−1, A•(t) = (m− 1) ·A�(t)

or observe directly that they are (m−1)-ary trees with (m−1) types of edges

⇒ 1
(m−2)n+1

((m−1)n
n

)
· (m− 1)n−1



The closure of a m-Eulerian tree



The closure of a m-Eulerian tree

Theorem (BMS 00) Opening and closing are inverse bijections between
well-rooted m-Eulerian trees and m-Eulerian maps with same number of nodes.

Here, well-rooted means that the root remains unmatched.



The closure of a m-Eulerian tree

Corollary (BMS 2000) The number of m-eulerian maps with n black and n white
vertices is m

(m−2)n+2
1

(m−2)n+1

((m−1)n
n

)
· (m− 1)n−1

Theorem (BMS 00) Opening and closing are inverse bijections between
well-rooted m-Eulerian trees and m-Eulerian maps with same number of nodes.

Up to rerooting, being well rooted occurs for m out of the mn− 2(n− 1) possible
root of an unrooted tree...

Here, well-rooted means that the root remains unmatched.
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Corollary. There is a bijection between:

• increasing quadrangulations with 2n− 2 faces

• (2n− 2)-eulerian trees with inner edges having disjoint labels {1, . . . , 2n− 2}
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Half edge can be
recovered from labels

• edge-labeled bipartite Cayley trees with n white vertices,
and n− 1 black vertices with degree 2

3 ways to count: m→∞ / weight for faces / direct counting

Hurwitz trees



Counting Hurwitz trees

Theorem (Duchi-Poulalhon-S. 2014) Increasing quadrangulations of size n are in
bijection with simple Hurwitz trees having n white vertices, n− 1 black vertices of
degree 2, 2n− 2 labeled edges.
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From simple Hurwitz trees to increasing quadrangulations

i k

k

j
i

kj
Cas 1:

i k
j

i

i

kjCas 2:

ou

k m
`

k
i

k

j

A local rule to create increasing half edges

Two half-edges with same label ⇒ edge and face of degree 4

Iterate the local rules as long as possible...
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From simple Hurwitz trees to increasing quadrangulations
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Lemma. When it stops, there are only white half-edges left.
We connect them to a new black vertex.
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From simple Hurwitz trees to factorizations
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Theorem. Labelled closure is a bijection between
– simple Hurwitz trees of size n, and
– increasing quadrangulations of size n.



Plan of the talk

Unlabeled VS Increasing quadrangulations...

A bijection with Cayley type trees!

More evidences from higher genus maps...

Why increasing quadrangulations?

a conjecture

Hurwitz numbers and branched covers

as a conclusion



Pandharipande/Zagier’s recurrence

Theorem (Carrell-Chapuy 14) The numbers Qn
g of rooted bipartite quadrangulations

of genus g with n faces satisfy the simple quadratic recurrence:
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Theorem (Carrell-Chapuy 14) The numbers Qn
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Theorem (Zagier 17) The reduced Hurwitz numbers hng = Hn
g /(2n− 2 + 2g)!

satisfy the simple quadratic recurrence formula:
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Theorem (Zagier 17) The reduced Hurwitz numbers hng = Hn
g /(2n− 2 + 2g)!

satisfy the simple quadratic recurrence formula:

n− 1

2
hng =

∑
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∑
i+j+g′=g
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Both results arise similarly from the fact that the generating series satisfies a set of
differential equations, called KP hierarchy

see surveys of Kazarian and Lando 2015 and Chapuy 2018 (habilitation)

for quadrangulations: pre2000 physics + Goulden-Jackson 2006

for Hurwitz: Pandharipande 2000, Okounkov 2000

A similar quadratic recurrence exists for m-Eulerian maps (B. Louf 2018++)



Corollary of PZ recurrence for gf

Corollary (Bressis-Itzykson-Zuber 80, Bender-Canfield 91) The fixed genus gf Qg(z)
of quadrangulations is a rational function of the planar gf Q(z).

The Carrell-Chapuy recurrence allows to recover Tutte’s expression for the gf Q(z)
of planar quadrangulations, and to rederive directly the following corollary:

See Lepoutre 2018 for a bijective proof.



Corollary of PZ recurrence for gf

Corollary (Bressis-Itzykson-Zuber 80, Bender-Canfield 91) The fixed genus gf Qg(z)
of quadrangulations is a rational function of the planar gf Q(z).

The Carrell-Chapuy recurrence allows to recover Tutte’s expression for the gf Q(z)
of planar quadrangulations, and to rederive directly the following corollary:

Similarly the Pandharipande-Zagier recurrence allows to recover Hurwitz’s expression
for the gf H(z) of increasing planar quadrangulations, and to rederive directly the
following corollary:

Corollary (Goulden-Jackson-Vakil 2001) The fixed genus gf Hg(z) of increasing
quadrangulations is a rational function of the planar gf H(z).

See Lepoutre 2018 for a bijective proof.

No bijective proof is known.

⇒ adapt Lepoutre, or use BDG bijection?



Corollary of PZ recurrence for asymptotic

The Carrell-Chapuy recurrence also allows to recover the asymptotic behavior of Qg
n:

Qg
n ∼

n→∞
tg · n(5g−1)/2 · 12n

where τg = tg · 25g−2 · Γ( 5g−1
2

) satisfies simple a quadratic recurrence related to a
Painlevé I equation.
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Corollary of PZ recurrence for asymptotic

The Carrell-Chapuy recurrence also allows to recover the asymptotic behavior of Qg
n:

Qg
n ∼

n→∞
tg · n(5g−1)/2 · 12n

where τg = tg · 25g−2 · Γ( 5g−1
2

) satisfies simple a quadratic recurrence related to a
Painlevé I equation.

Similarly the Pandharipande-Zagier recurrence allows to recover the asymptotic
behavior of hgn:

hgn ∼
n→∞

t′g · n(5g−1)/2 · en with t′g = 2
3
2
(g−1)+1tg .

These two similar behaviors are characteristic of 2d pure quantum gravity models
and form the main supporting evidence for our conjecture.



Conclusion

This is just the tip of the Iceberg...

I have been concentrating in the talk on simple Hurwitz numbers

- explicit formulas and bijective proofs extends to single Hurwitz numbers H0(λ)
and partially to double Hurwitz numbers H0(λ, µ)

- the BDFG bijection can be used instead of blossoming trees

⇒ leads to Hurwitz mobiles instead of Hurwitz trees
⇒ extends to higher genus but not clear how to get explicit counting results

- in both cases one can track an ”oriented pseudo distance”
but it has Θ(n) increments!

- the results can be rephrased in terms of transitive
factorizations of permutations in products of transpositions

⇒ leads to a cut and join equation that plays the role of Tutte’s equations

but it is not clear how to use this for peeling

- analog questions arise for inequivalent or monotone factorizations, and
for the weighted Hurwitz numbers that generalize them.



Thank you for your attention!
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