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Summary of the talk

A simple case study: Bicolored binary trees

Equations with one catalytic variable and one small unknown

& systematic algebraic decompositions

Cori-Vauquelin’s bijection, reloaded

Examples and applications



Extrait 2: talk in honor of Robert Cori, 2009

Extrait 1: talk at Séminaire Hypathie 2001

from Cori-Vauquelin’s ”éclatement” to the local rule

distances in quadrangulations and local rules, applications to random maps

Extrait 3: talk at AofA 2014

local rules, Miermont’s roundup rule and ’patrons’

These various reformulations aim at explaining why we get well labeled trees from maps

Moreover the reformulation explain how one could deduce the local rules from the ’éclatement’

not really how we could have found the éclatement without Bernard and Robert...

Currently the best explanation is given by the slice decompositions, as explained by Grégory.



So, how could we have found the éclatement without Bernard and Robert... ?

Before that, Robert had obtained various encodings of rooted planar maps with
words in differences of algebraic languages... even more mysterious to me...

Even before W.T. Tutte had given recursive decompositions using catalytic parameters:

It is now well understood why Tutte’s decomposition ”easily” imply the final algebraic
equations, thanks to Bousquet-Melou–Jehanne theorem (more later)

Could we have deduced the bijection with trees, or at least some direct algebraic
decompositions from Tutte’s equation?



A simple case study: Bicolored binary trees



Dyck- Lukasiewicz trees

D = {Dyck- Lukasiewicz trees} : one more red vertex than blue

and no more red vertices than blue in each strict subtree

1, 4, 48, 832, 17408, 408576, 10362880, 277954560, 7777026048, 224908017664

B = {Bicolored trees} : rooted binary trees with blue and red inner vertices.

4×

4×

16×

8×

16×

8×

(fun game if you are tired of listening: guess formula... you have 10 min before I give it)



Reformulation as edge-bicolored trees

1, 4, 48, 832, 17408, 408576, 10362880, 277954560, 7777026048, 224908017664

B = {blue/red binary trees} : planted binary tree with blue and red edges

P = {Positive bicolored trees} : no more red than blue in each planted subtree

D = {Dyck- Lukasiewicz trees} : positive + one more red edge than blue

4×

4×

16×

16×

8×

16×

8×



A catalytic decomposition for positive bicolored trees

Let F (u) ≡ F (u, t) =
∑
T∈P

uw(T )t|T |,

so that f ≡ f(t) = [u0]F (u) =
∑
T∈D

t|T | is the gf of Dyck trees

with w(T ) = blue(T )− red(T ) + 1

and more generally Fm = [um]F (u) is the gf of positive tree
with root vertex weight m.



A catalytic decomposition for positive bicolored trees

Let F (u) ≡ F (u, t) =
∑
T∈P

uw(T )t|T |,

F (u) = tX(u)2 with X(u) = 1 + u · F (u) + F (u)− f
u

Then:

so that f ≡ f(t) = [u0]F (u) =
∑
T∈D

t|T | is the gf of Dyck trees

with w(T ) = blue(T )− red(T ) + 1

and more generally Fm = [um]F (u) is the gf of positive tree
with root vertex weight m.



One variable / one function catalytic equations are easy

Bousquet-Mélou–Jehanne’s trick gives an algebraic system

F (u) = t

(
1 + uF (u) +

F (u)− f
u

)2

∂
∂u

applied to

∂
∂u
F (u) = ∂

∂u
F (u) · 2t

(
u+ 1

u

) (
1 + uF (u) +

F (u)−f
u

)
+2

(
F (u)− 1

u
F (u)−f

u

)(
1 + uF (u) +

F (u)−f
u

)yields
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(
U2 + 1

) (
1 + U F (U) +

F (U)−f
U

)

cancels



One variable / one function catalytic equations are easy

Bousquet-Mélou–Jehanne’s trick gives an algebraic system

F (u) = t

(
1 + uF (u) +

F (u)− f
u

)2

∂
∂u

applied to

∂
∂u
F (u) = ∂

∂u
F (u) · 2t

(
u+ 1

u

) (
1 + uF (u) +

F (u)−f
u

)
+2

(
F (u)− 1

u
F (u)−f

u

)(
1 + uF (u) +

F (u)−f
u

)yields

Let U ≡ U(t) be the unique fps s.t. U = 2t
(
U2 + 1

) (
1 + U F (U) +

F (U)−f
U

)

cancels

U exists and has positive integer coeffs



One variable / one function catalytic equations are easy
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 U = 2t
(
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0 = U V −W
V = t (1 + U V +W )2

Let U ≡ U(t) be the unique fps s.t. U = 2t
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1 + U F (U) +

F (U)−f
U
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then the series U , V = F (U) and W =

F (U)−f
U

satisfy the system:

cancels

U exists and has positive integer coeffs
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One variable / one function catalytic equations are easy
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F (u) = t

(
1 + uF (u) +

F (u)− f
u

)2

∂
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applied to
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F (u) = ∂

∂u
F (u) · 2t

(
u+ 1

u

) (
1 + uF (u) +

F (u)−f
u

)
+2

(
F (u)− 1

u
F (u)−f

u

)(
1 + uF (u) +

F (u)−f
u

)yields

 U = 2t
(
U2 + 1

)
(1 + U V +W )

0 = U V −W
V = t (1 + U V +W )2

Let U ≡ U(t) be the unique fps s.t. U = 2t
(
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) (
1 + U F (U) +

F (U)−f
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then the series U , V = F (U) and W =
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and f = V − U ·W , by definition of U , V , W .

cancels

U exists and has positive integer coeffs

 U = 2t
(
U2 + 1

)
(1 + 2U V )

V = t (1 + 2U V )2

W = U V
⇒



Equations for Dyck trees are particularly simple!

{
U = 2t

(
U2 + 1

)
(1 + 2U V )

V = t (1 + 2U V )2

The system can be further simplified



Equations for Dyck trees are particularly simple!

{
U = 2t

(
U2 + 1

)
(1 + 2U V )

V = t (1 + 2U V )2

{
U = 2tU (1 + 2U V ) · U + 2t (1 + 2U V )
V = 2tU (1 + 2U V ) · V + t (1 + 2U V )

⇒

⇒

{
U =

2t (1+2U V )
1−2tU (1+2U V )

V =
t (1+2U V )

1−2tU (1+2U V )

⇒ U = 2V

The system can be further simplified



Equations for Dyck trees are particularly simple!

{
U = 2t

(
U2 + 1

)
(1 + 2U V )

V = t (1 + 2U V )2

{
U = 2tU (1 + 2U V ) · U + 2t (1 + 2U V )
V = 2tU (1 + 2U V ) · V + t (1 + 2U V )

⇒

⇒

f = V − 4V 3 where V = t(1 + 4V 2)2

{
U =

2t (1+2U V )
1−2tU (1+2U V )

V =
t (1+2U V )

1−2tU (1+2U V )

⇒ U = 2V

The system can be further simplified

Theorem: The gf f = f(t) of Dyck trees with n vertices satisfies:



Equations for Dyck trees are particularly simple!

f = V − 4V 3 where V = t(1 + 4V 2)2

Theorem: The gf f = f(t) of Dyck trees with n vertices satisfies:



Equations for Dyck trees are particularly simple!

f = V − 4V 3 where V = t(1 + 4V 2)2

[tn]V =
1

n
[xn−1](1 + 4x2)2n =

{
4m

2m+1

(
4m+2

m

)
if n = 2m+ 1,

0 otherwise

Theorem: The gf f = f(t) of Dyck trees with n vertices satisfies:

using Lagrange inversion theorem:



Equations for Dyck trees are particularly simple!

f = V − 4V 3 where V = t(1 + 4V 2)2

[tn]V =
1

n
[xn−1](1 + 4x2)2n =

{
4m

2m+1

(
4m+2

m

)
if n = 2m+ 1,

0 otherwise

[tn]f =
1

n
[xn−1](x− 4x3)′(1 + 4x2)2n =

{
4m

(m+1)(2m+1)

(
4m+2

m

)
if n = 2m+ 1,

0 otherwise

Theorem: The gf f = f(t) of Dyck trees with n vertices satisfies:

using Lagrange inversion theorem:

and



Marking and identification of V

f = V − 4V 3 where V = t(1 + 4V 2)2

[tn]V =
1

n
[xn−1](1 + 4x2)2n =

{
4m

2m+1

(
4m+2

m

)
if n = 2m+ 1,

0 otherwise

[tn]f =
1

n
[xn−1](x− 4x3)′(1 + 4x2)2n =

{
4m

(m+1)(2m+1)

(
4m+2

m

)
if n = 2m+ 1,

0 otherwise

Theorem: The gf f = f(t) of Dyck trees with n vertices satisfies:

using Lagrange inversion theorem:

and

Observe that [t2m+1]V = (m+ 1)[t2m+1]f = [t2m+1]f−•

⇒ V is the gf of (rooted) Dyck trees with a marked red edge



Last passage decomposition and identification of U

Now recall we defined V = F (U) =
∑
m≥0

Um[um]F (u)

Consider a  Lukasiewicz (or last passage) factorization of the weight sequence along the
branch toward the root.

U =
so that

⇒ our series U is the gf of Dyck trees with a marked leaf !

The series V is the gf of (rooted) Dyck trees with a marked red edge



The core of a balanced tree and identification of W

⇒ W is the gf of balanced positive trees with a marked blue
edge in their internally positive core.

The series V is the gf of (rooted) Dyck trees with a marked red edge
The series U is the gf of Dyck trees with a marked leaf



Decomposing marked Dyck- Lukasiewicz trees

We would like a direct quaternary decomposition of these marked rooted trees
to reprove directly that V = t(1 + 4V 2)2.

• V denote the gf of (rooted) Dyck trees with a
marked red edge

• U denote the gf of Dyck trees with a marked leaf

• W denote the gf of balanced positive trees with a
marked red edge in their internally positive core.
W is also the gf of balanced positive trees with a
marked blue edge in their internally positive core.

Let’s now restart from the combinatorial interpretations: let

V =

U =

W =

=



Combinatorial derivation of U = 2V and W = U V

U =V = W =



Combinatorial derivation of U = 2V and W = U V

Immediate since a Dyck tree with 2n+ 1 vertices has n+ 1 red edges and 2n+ 2 leaves.

U =

Claim: There is a 2-to-1 correspondance between Dyck trees with a
marked leaf and Dyck trees with a marked red edge with the same size

V = W =
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⇒ U = 2V

W =
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Combinatorial derivation of U = 2V and W = U V

Immediate since a Dyck tree with 2n+ 1 vertices has n+ 1 red edges and 2n+ 2 leaves.

U =

Claim: There is a 2-to-1 correspondance between Dyck trees with a
marked leaf and Dyck trees with a marked red edge with the same size

V =

⇒ U = 2V

W =

⇒W = U V

W =



Finally, a quaternary decomposition of marked Dyck trees

Theorem: The class of marked Dyck trees admit the following decomposition:

where
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Finally, a quaternary decomposition of marked Dyck trees

Theorem: The class of marked Dyck trees admit the following decomposition:
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Finally, a quaternary decomposition of marked Dyck trees

Theorem: The class of marked Dyck trees admit the following decomposition:

where

⇒ V = t (1 + U V +W )2



Finally, a quaternary decomposition of marked Dyck trees

Theorem: The class of marked Dyck trees admit the following decomposition:

where

⇒ V = t (1 + U V +W )2 ⇒ V = t (1 + 2 · 2V · V )2



Generic equations with 1 catalytic variable and 1 small function.



The general case

F (u) ≡ F (u, a, b, t) the unique fps∗ solution of

Q(v, w, u) =
∑

i,j,k≥0

qijkv
iwjuk a formal power series

F (u) = tQ

(
F (u),

b

u
(F (u)− f), a u

)



The general case

F (u) ≡ F (u, a, b, t) the unique fps∗ solution of

Q(v, w, u) =
∑

i,j,k≥0

qijkv
iwjuk a formal power series

F (u) = tQ

(
F (u),

b

u
(F (u)− f), a u

)
(assume Q(v, v, 1) non linear and Q(1, 1, u) non constant)



The general case: Bousquet-Mélou–Jehanne’s trick

∂
∂u

applied to F (u) = tQ

(
F (u),

b

u
(F (u)− f), a u

)
F ′u(u) = F ′u(u) · t

(
Q′v(. . .) +

b
u
Q′w(. . .)

)
− t b

u
F (u)−f

u
Q′w(. . .) + t aQ′u(. . .)

Let U ≡ U(t) be the unique fps s.t. U = t U Q′v

(
F (U), b

F (U)−f
U

, aU
)
+ t bQ′w

(
F (U), b

F (U)−f
U

, aU
)

Then U , V = F (U), W =
F (U)−f

U
and f satisfy the system

U = t U Q′v(V, bW, aU) + t bQ′w(V, bW, aU)

0 = −t b
U
W Q′w(V, bW, aU) + t aQ′u(V, bW, aU)

V = tQ(V, bW, aU)
f = V − U W



The general case: Bousquet-Mélou–Jehanne’s trick

∂
∂u

applied to F (u) = tQ

(
F (u),

b

u
(F (u)− f), a u

)
F ′u(u) = F ′u(u) · t

(
Q′v(. . .) +

b
u
Q′w(. . .)

)
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Let U ≡ U(t) be the unique fps s.t. U = t U Q′v

(
F (U), b

F (U)−f
U

, aU
)
+ t bQ′w

(
F (U), b

F (U)−f
U

, aU
)

Then U , V = F (U), W =
F (U)−f

U
and f satisfy the system

U = t U Q′v(V, bW, aU) + t bQ′w(V, bW, aU)

0 = −t b
U
W Q′w(V, bW, aU) + t aQ′u(V, bW, aU)

V = tQ(V, bW, aU)
f = V − U W

Used by Chapuy in his M1 to derive singular behavior of f when Q has positive coefficients and is linear in w:

and delicate computations show that there is a cancellation in f = V − U W

Drmota-Lalley-Woods give square root singular behavior for U , V , W

so that f systematically has (1− t/ρ)3/2 as singular behavior for proper polynomial Q



The general case: Drmota, Noy, Yu’s trick∗

Then U , V = F (U), W =
F (U)−f

U
and f are the unique fps satisfying the system


U = t U Q′v(V, bW, aU) + t bQ′w(V, bW, aU)

0 = −t b
U
W Q′w(V, bW, aU) + t aQ′u(V, bW, aU)

V = tQ(V, bW, aU)
f = V − U W


U = t U Q′v(V, bW, aU) + t bQ′w(V, bW, aU)
W = tW Q′v(V, bW, aU) + t aQ′u(V, bW, aU)
V = tQ(V, bW, aU)
f = V − U W

U , V = F (U), W =
F (U)−f

U
and f satisfy the system

Use Line 1 to replace Q′w by Q′v in Line 2:
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Used by DNY to generalize Chapuy’s result on the singular behavior of f to arbitrary polynomial positive Q:

f = V − U W still requires delicate 2nd order computations to check square root cancellation.



The general case: Drmota, Noy, Yu’s trick∗

Then U , V = F (U), W =
F (U)−f

U
and f are the unique fps satisfying the system


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W = tW Q′v(V, bW, aU) + t aQ′u(V, bW, aU)
V = tQ(V, bW, aU)
f = V − U W

U , V = F (U), W =
F (U)−f

U
and f satisfy the system

Use Line 1 to replace Q′w by Q′v in Line 2:

The system for U , V , W is N-algebraic if Q has N coeffs but a priori no clear combinatorial
relation to F and f .

Used by DNY to generalize Chapuy’s result on the singular behavior of f to arbitrary polynomial positive Q:

f = V − U W still requires delicate 2nd order computations to check square root cancellation.



The general case: singular behavior via marking
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The general case: singular behavior via marking

F (u) = tQ

(
F (u),
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(F (u)− f), a u
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Q′w(. . .)

)
− t b

u
F (u)−f

u
Q′w(. . .) + t aQ′u(. . .)

∂
∂u

:

∂
∂t

: F ′t (u) = F ′t (u) · t
(
Q′v(. . .) +

b
u
Q′w(. . .)

)
− t b

u
f ′t Q

′
w(. . .) +Q(. . .)

⇒ tf ′t =
U
b

Q(...)
Q′

w(...)



The general case: singular behavior via marking

F (u) = tQ

(
F (u),

b

u
(F (u)− f), a u

)
F ′u(u) = F ′u(u) · t

(
Q′v(. . .) +

b
u
Q′w(. . .)

)
− t b

u
F (u)−f

u
Q′w(. . .) + t aQ′u(. . .)

∂
∂u

:

∂
∂t

: F ′t (u) = F ′t (u) · t
(
Q′v(. . .) +

b
u
Q′w(. . .)

)
− t b

u
f ′t Q

′
w(. . .) +Q(. . .)

⇒ tf ′t =
U
b

Q(...)
Q′

w(...)



The general case: singular behavior via marking

F (u) = tQ

(
F (u),

b

u
(F (u)− f), a u

)
F ′u(u) = F ′u(u) · t

(
Q′v(. . .) +

b
u
Q′w(. . .)

)
− t b

u
F (u)−f

u
Q′w(. . .) + t aQ′u(. . .)

∂
∂u

:

∂
∂t

: F ′t (u) = F ′t (u) · t
(
Q′v(. . .) +

b
u
Q′w(. . .)

)
− t b

u
f ′t Q

′
w(. . .) +Q(. . .)

⇒ tf ′t =
U
b

Q(...)
Q′

w(...)

⇒ tf ′t =
tQ(...)

1−tQ′
v(...)

= V
1−tQ′

v(V,bW,aU)

Immediately implies without computations that tf ′f has generic square root singularity,

and thus that ft has (1− t/ρ)3/2 singularity.
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Systematic combinatorial interpretation of V as marked trees!
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Application of the general result

Random sampling:

⇒ the system is an irreducible algebraic decomposition in the terminology of
[Drmota-Lalley-Woods] hence amenable to Sportiello’s Bolzman sampling algorithm
(linearity depends on the specific decomposition operations)

Special cases: this yields algebraic decompositions for
• Linxiao Chen’s fully parked trees (2021)
• Duchi et al.’s fighting fish and variants (2016)
• Various families of permutations (West’s two-stack sortable) (1990)
• Tutte’s map decomposition (60’s)

Works as well with exponential series: Dyck Cayley trees.

However in most of the cases combinatorial intuition is still needed to simplify the
resulting decompositions, and express it in terms of the original structures.



Thanks you !

and long life to bijective combinatorics!




