
.

Coding, counting, and sampling triangulations
and other planar graphs

Gilles SCHAEFFER

CNRS, École Polytechnique

AN OVERVIEW OF THE TALK

I. 3-c planar graphs

II. Binary trees and a combinatorial

approach

III. From trees to dissections,

counting and sampling.

IV. Minimal α-orientations, coding.

V. Trees and orientations everywhere.

.

Part 1. Some combinatorial structures.

CASTING for this part :

3-connected planar graphs
polyhedral graphs, irreducible dissections
lion, triceratops

3-CONNECTED PLANAR GRAPHS

A planar graph is 3-connected if there is no 2-separator.

Whitney : 3-connected planar graphs have a unique embedding up to
homeomorphisms of the non-oriented sphere, i.e. a unique planar map.

2-separators give raise to different maps for the same graph

Steinitz : They are the 2-skeletons of 3d convex polyhedra.

3-CONNECTED PLANAR GRAPHS

A planar graph is 3-connected if there is no 2-separator.

Whitney : 3-connected planar graphs have a unique embedding up to
homeomorphisms of the non-oriented sphere, i.e. a unique planar map.

2-separators give raise to different maps for the same graph

Steinitz : They are the 2-skeletons of 3d convex polyhedra.

3-CONNECTED PLANAR GRAPHS

A planar graph is 3-connected if there is no 2-separator.

Whitney : 3-connected planar graphs have a unique embedding up to
homeomorphisms of the non-oriented sphere, i.e. a unique planar map.

2-separators give raise to different maps for the same graph

Steinitz : They are the 2-skeletons of 3d convex polyhedra.

3-CONNECTED PLANAR GRAPHS

A planar graph is 3-connected if there is no 2-separator.

Whitney : 3-connected planar graphs have a unique embedding up to
homeomorphisms of the non-oriented sphere, i.e. a unique planar map.

2-separators give raise to different maps for the same graph

Steinitz : They are the 2-skeletons of 3d convex polyhedra.

3-CONNECTED PLANAR GRAPHS

A planar graph is 3-connected if there is no 2-separator.

Whitney : 3-connected planar graphs have a unique embedding up to
homeomorphisms of the non-oriented sphere, i.e. a unique planar map.

2-separators give raise to different maps for the same graph

Steinitz : They are the 2-skeletons of 3d convex polyhedra.

3-CONNECTED PLANAR GRAPHS

A planar graph is 3-connected if there is no 2-separator.

Whitney : 3-connected planar graphs have a unique embedding up to
homeomorphisms of the non-oriented sphere, i.e. a unique planar map.

2-separators give raise to different maps for the same graph

Steinitz : They are the 2-skeletons of 3d convex polyhedra.

WHAT DO WE DO WITH 3-CONNECTED PLANAR GRAPHS ?

We want to count them : Tutte counted rooted 3-c planar maps in the 60’s,
according to their number of edges, Mullin and Schellenberg according to
the numbers of faces and vertices.

We want to generate them uniformly at random :
⇒ random triangulations and random combinatorial planar maps in
general are popular models of discrete random surfaces in physics :
random sampler are used to make “experiments” about “2d quantum
gravity” (Ambjorn et al. 94,...).
⇒ random graphs are sometimes used to test graph drawing algorithms.
⇒ uniform 3-connected planar graphs are needed to sample labelled
planar graphs uniformly (Bodirsky–Gröpl–Kang 03)

We want to encode them compactly.

WHAT DO WE DO WITH 3-CONNECTED PLANAR GRAPHS ?

3-connected planar maps = the standard abstraction of the combinatorial part
of polygonal meshes with spherical topology (half-edge representations...)

⇒ a number of compression algorithms improving compression rates

Rossignac’s Edgebreaker (98), Touma-Gotsman valency coder (99)...

PLANAR MAPS AND DISSECTIONS

Start from a planar map

Triangulate faces from new black vertices

Forget former edges⇒ quadrangles⇒ a quadrangular dissection

PLANAR MAPS AND DISSECTIONS

Start from a planar map

Triangulate faces from new black vertices

Forget former edges⇒ quadrangles⇒ a quadrangular dissection

PLANAR MAPS AND DISSECTIONS

Start from a planar map

Triangulate faces from new black vertices

Forget former edges⇒ quadrangles⇒ a quadrangular dissection

PLANAR MAPS AND DISSECTIONS

Start from a planar map

Triangulate faces from new black vertices

Forget former edges⇒ quadrangles⇒ a quadrangular dissection

PLANAR MAPS AND DISSECTIONS

Start from a planar map

Triangulate faces from new black vertices

Forget former edges⇒ quadrangles⇒ a quadrangular dissection

PLANAR MAPS AND DISSECTIONS

Proposition. This is one-to-one between :

3-connected planar maps with n edges,

irreducible dissections with n faces.

Irreducible = all 4-cycles are faces

PLANAR MAPS AND DISSECTIONS

Proposition. This is one-to-one between :

3-connected planar maps with n edges,

irreducible dissections with n faces.

Irreducible = all 4-cycles are faces

PLANAR MAPS AND DISSECTIONS

Proposition. This is one-to-one between :

3-connected planar maps with n edges,

irreducible dissections with n faces.

Irreducible = all 4-cycles are faces

.

Conclusion of Part 1.

Our aim : to code, count and sample 3-c planar graphs.

Equivalently we can consider irreducible dissections.

.

Part 2. A combinatorial approach to counting, coding

and sampling.

CASTING for this part :

binary trees
Catalan numbers

INSPIRATION for this part :

Rémi, Łukasiewicz, folklore...

BINARY TREES...

Let Bn be the set of binary trees
with n inner nodes.

A tree of Bn has n + 1 leaves.

A tree of Bn−1 has 2n− 1 edges.
(including the root edge)

Well known : |Bn| =
1

n + 1

(

2n

n

)

, the nth Catalan number.

Seek a constructive proof of this formula and use it for sampling.

BINARY TREES...

Let Bn be the set of binary trees
with n inner nodes.

A tree of Bn has n + 1 leaves.

A tree of Bn−1 has 2n− 1 edges.
(including the root edge)

Well known : |Bn| =
1

n + 1

(

2n

n

)

, the nth Catalan number.

In other terms : 2(2n− 1)|Bn−1| = (n + 1)|Bn|.

BINARY TREES...

Let Bn be the set of binary trees
with n inner nodes.

A tree of Bn has n + 1 leaves.

A tree of Bn−1 has 2n− 1 edges.
(including the root edge)

Well known : |Bn| =
1

n + 1

(

2n

n

)

, the nth Catalan number.

In other terms : 2(2n− 1)|Bn−1| = (n + 1)|Bn|.

BINARY TREES...

Let Bn be the set of binary trees
with n inner nodes.

A tree of Bn has n + 1 leaves.

A tree of Bn−1 has 2n− 1 edges.
(including the root edge)

Well known : |Bn| =
1

n + 1

(

2n

n

)

, the nth Catalan number.

In other terms : 2(2n− 1)|Bn−1| = |{leaves} ×Bn|.

BINARY TREES...

Let Bn be the set of binary trees
with n inner nodes.

A tree of Bn has n + 1 leaves.

A tree of Bn−1 has 2n− 1 edges.
(including the root edge)

Well known : |Bn| =
1

n + 1

(

2n

n

)

, the nth Catalan number.

In other terms : 2(2n− 1)|Bn−1| = |{leaves} ×Bn|.

BINARY TREES...

Let Bn be the set of binary trees
with n inner nodes.

A tree of Bn has n + 1 leaves.

A tree of Bn−1 has 2n− 1 edges.
(including the root edge)

Well known : |Bn| =
1

n + 1

(

2n

n

)

, the nth Catalan number.

In other terms : |{l, r} × {edges} ×Bn−1| = |{leaves} ×Bn|.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

A bijection : {l, r} × {edges} ×Bn−1 ↔ {leaves} ×Bn.

This yields :

A proof of the recurrence
⇒ constructive counting.

A random sampling algorithm :
Pick a side in {l, r} and an edge
uniformly at random and grow
⇒ the nth tree is uniform in Bn.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

BINARY TREES... CONSTRUCTIVE COUNTING

Another observation : |Bn| =
1

n + 1

(

2n

n

)

∼ 22n · cn−5/2.

⇒ It should be possible to encode trees of |Bn| by words of {0, 1}2n.

This can be done by prefix encoding.

– Write 1 for left edges, 0 for right ones
along a prefix traversal.

1110100011001100

This code has length 2n and is optimal in the sense that a code must use at
least 2n + o(n) bits in the worst case.

.

Conclusion of Part 2.

Bijections can help for counting, coding and sampling.

Binary trees are well known...

.

Part 3. The closure of a binary tree into a dissection

CASTING for this part :

binary trees (again)
irreducible dissections (stunt men return)
3-connected planar graphs (hors champs)

TUTTE’S RESULTS ABOUT 3-CONNECTED PLANAR GRAPHS

The number 3-connected planar graphs ?

Tutte (62) : a complicated formula for rooted 3-c planar maps.

However these numbers are “Catalan related” (their generating function lies in
the same algebraic extention).

⇒ explain this combinatorially...

We would like to find a simple one-to-one correspondence between 3c planar
graphs and binary trees.

THE CLOSURE OF A BINARY TREE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n + 1 edges.

Compare to :

3-c planar graphs : n edges, i vertices, j faces, with i + j = n + 2 (Euler).

THE CLOSURE OF A BINARY TREE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n + 1 edges.

Compare to :

Dissections : n faces, 2n edges and n + 2 vertices (by Euler).

THE CLOSURE OF A BINARY TREE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n + 1 edges.

Compare to :

Dissections : n faces, 2n edges and n + 2 vertices (by Euler).

Create faces of degree four, keeping the number of vertices and edges...

THE CLOSURE OF A BINARY TREE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n + 1 edges.

Compare to :

Dissections : n faces, 2n edges and n + 2 vertices (by Euler).

Create faces of degree four, keeping the number of vertices and edges...

Local closure : close an leaf followed in ccw order by 3 sides of inner edges.

THE CLOSURE OF A BINARY TREE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n + 1 edges.

Compare to :

Dissections : n faces, 2n edges and n + 2 vertices (by Euler).

Create faces of degree four, keeping the number of vertices and edges...

Local closure : close an leaf followed in ccw order by 3 sides of inner edges.

THE CLOSURE OF A BINARY TREE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n + 1 edges.

Compare to :

Dissections : n faces, 2n edges and n + 2 vertices (by Euler).

Create faces of degree four, keeping the number of vertices and edges...

Local closure : close an leaf followed in ccw order by 3 sides of inner edges.

THE CLOSURE OF A BINARY TREE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n + 1 edges.

Compare to :

Dissections : n faces, 2n edges and n + 2 vertices (by Euler).

Create faces of degree four, keeping the number of vertices and edges...

Local closure : close an leaf followed in ccw order by 3 sides of inner edges.

THE CLOSURE OF A BINARY TREE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n + 1 edges.

Compare to :

Dissections : n faces, 2n edges and n + 2 vertices (by Euler).

Create faces of degree four, keeping the number of vertices and edges...

Local closure : close an leaf followed in ccw order by 3 sides of inner edges.

Remark : local closures commute, the resulting partial closure is well defined.

BINARY TREES AND THE CLOSURE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n edges.

Partial closure : when all local closures are done the numbers k of remaining
leaves and ` of sides of inner edges in the infinite face satisfy 2k − ` = 6.

BINARY TREES AND THE CLOSURE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n edges.

Partial closure : when all local closures are done the numbers k of remaining
leaves and ` of sides of inner edges in the infinite face satisfy 2k − ` = 6.

Complete closure : The remaining leaves can be attached to the vertices of
hexagon so as to form faces of degree 4.

BINARY TREES AND THE CLOSURE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n edges.

Partial closure : when all local closures are done the numbers k of remaining
leaves and ` of sides of inner edges in the infinite face satisfy 2k − ` = 6.

Complete closure : The remaining leaves can be attached to the vertices of
hexagon so as to form faces of degree 4.

BINARY TREES AND THE CLOSURE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n edges.

Partial closure : when all local closures are done the numbers k of remaining
leaves and ` of sides of inner edges in the infinite face satisfy 2k − ` = 6.

Complete closure : The remaining leaves can be attached to the vertices of
hexagon so as to form faces of degree 4.

BINARY TREES AND THE CLOSURE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n edges.

Partial closure : when all local closures are done the numbers k of remaining
leaves and ` of sides of inner edges in the infinite face satisfy 2k − ` = 6.

Complete closure : The remaining leaves can be attached to the vertices of
hexagon so as to form faces of degree 4.

BINARY TREES AND THE CLOSURE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n edges.

Partial closure : when all local closures are done the numbers k of remaining
leaves and ` of sides of inner edges in the infinite face satisfy 2k − ` = 6.

Complete closure : The remaining leaves can be attached to the vertices of
hexagon so as to form faces of degree 4.

BINARY TREES AND THE CLOSURE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n edges.

Partial closure : when all local closures are done the numbers k of remaining
leaves and ` of sides of inner edges in the infinite face satisfy 2k − ` = 6.

Complete closure : The remaining leaves can be attached to the vertices of
hexagon so as to form faces of degree 4.

BINARY TREES AND THE CLOSURE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n edges.

Partial closure : when all local closures are done the numbers k of remaining
leaves and ` of sides of inner edges in the infinite face satisfy 2k − ` = 6.

Complete closure : The remaining leaves can be attached to the vertices of
hexagon so as to form faces of degree 4.

BINARY TREES AND THE CLOSURE

Consider a tree of |Bn| :
— n inner vertices,
— n− 1 inner edges,
— n + 2 leaves (root included),
— and 2n edges.

Partial closure : when all local closures are done the numbers k of remaining
leaves and ` of sides of inner edges in the infinite face satisfy 2k − ` = 6.

Complete closure : The remaining leaves can be attached to the vertices of
hexagon so as to form faces of degree 4.

Up to rotation of the hexagon there is a unique way to do this.

BINARY TREES AND DISSECTION OF A HEXAGON

Theorem (Fusy–Poulalhon–Schaeffer 04).

Closure is a bijection between

unrooted binary trees with n inner nodes
irreducible dissection of an hexagon with n internal vertices.

BINARY TREES AND DISSECTION OF A HEXAGON

Theorem (Fusy–Poulalhon–Schaeffer 04).

Closure is a bijection between

unrooted binary trees with n inner nodes
irreducible dissection of an hexagon with n internal vertices.

Impossibility of 4-cycle is checked by a counting argument.

BINARY TREES AND DISSECTION OF A HEXAGON

Theorem (Fusy–Poulalhon–Schaeffer 04).

Closure is a bijection between

unrooted binary trees with n inner nodes
irreducible dissection of an hexagon with n internal vertices.

Impossibility of 4-cycle is checked by a counting argument.

Orient half-edges of the tree away from a vertex v inside.

BINARY TREES AND DISSECTION OF A HEXAGON

Theorem (Fusy–Poulalhon–Schaeffer 04).

Closure is a bijection between

unrooted binary trees with n inner nodes

irreducible dissection of an hexagon with n internal vertices.

Impossibility of 4-cycle is checked by a counting argument.

Orient half-edges of the tree away from a vertex v inside.
Count outgoing half-edges inside the 4-cycle : 3 + 2k 6= 2(k + 1)

BINARY TREES AND DISSECTION OF A HEXAGON

Theorem (Fusy–Poulalhon–Schaeffer 04).

Closure is a bijection between

unrooted binary trees with n inner nodes
irreducible dissection of an hexagon with n internal vertices.

BINARY TREES AND DISSECTION OF A HEXAGON

Theorem (Fusy–Poulalhon–Schaeffer 04).

Closure is a bijection between

unrooted binary trees with n inner nodes
irreducible dissection of an hexagon with n internal vertices.

Corollaries : The number of rooted dissections of a hexagon with n inner
vertices is

6

n + 2

1

n + 1

(

2n

n

)

.

BINARY TREES AND DISSECTION OF A HEXAGON

Theorem (Fusy–Poulalhon–Schaeffer 04).

Closure is a bijection between

unrooted binary trees with n inner nodes

irreducible dissection of an hexagon with n internal vertices.

Corollaries : The number of rooted dissections of a hexagon with n inner
vertices is

6

n + 2

1

n + 1

(

2n

n

)

.

Encode a dissection of the hexagon by the 2n bits coding the tree.

BINARY TREES AND DISSECTION OF A HEXAGON

Theorem (Fusy–Poulalhon–Schaeffer 04).

Closure is a bijection between

unrooted binary trees with n inner nodes
irreducible dissection of an hexagon with n internal vertices.

Corollaries : The number of rooted dissections of a hexagon with n inner
vertices is

6

n + 2

1

n + 1

(

2n

n

)

.

Sample uniform random rooted dissections in linear time.

DISSECTION OF A HEXAGON OR OF A SQUARE

Consider an irreducible dissection
associated with a 3-c planar graph.

Removing one edge yields an
irreducible dissection of a hexagon.

⇒ our approach thus immediately yields a code for 3-c planar graphs.

this code is “optimal” again..

DISSECTION OF A HEXAGON OR OF A SQUARE

Consider an irreducible dissection
associated with a 3-c planar graph.

Removing one edge yields an
irreducible dissection of a hexagon.

⇒ our approach thus immediately yields a code for 3-c planar graphs.

this code is “optimal” again..

DISSECTION OF A HEXAGON OR OF A SQUARE

Consider an irreducible dissection
associated with a 3-c planar graph.

Removing one edge yields an
irreducible dissection of a hexagon.

⇒ our approach thus immediately yields a code for 3-c planar graphs.

this code is “optimal” again..

DISSECTION OF A HEXAGON OR OF A SQUARE

Consider an irreducible dissection
associated with a 3-c planar graph.

Removing one edge yields an
irreducible dissection of a hexagon.

⇒ our approach thus immediately yields a code for 3-c planar graphs.

this code is “optimal” again..

DISSECTION OF A HEXAGON OR OF A SQUARE

Consider an irreducible dissection
associated with a 3-c planar graph.

Removing one edge yields an
irreducible dissection of a hexagon.

⇒ our approach thus immediately yields a code for 3-c planar graphs.

this code is “optimal” again..

Conversely : an irreducible dissection of a hexagon⇒ an irreducible
dissection of a square iff there was not a diagonal of length 3.

DISSECTION OF A HEXAGON OR OF A SQUARE

Consider an irreducible dissection
associated with a 3-c planar graph.

Removing one edge yields an
irreducible dissection of a hexagon.

⇒ our approach thus immediately yields a code for 3-c planar graphs.

this code is “optimal” again..

Conversely : an irreducible dissection of a hexagon⇒ an irreducible
dissection of a square iff there was not a diagonal of length 3.

DISSECTION OF A HEXAGON OR OF A SQUARE

Consider an irreducible dissection
associated with a 3-c planar graph.

Removing one edge yields an
irreducible dissection of a hexagon.

⇒ our approach thus immediately yields a code for 3-c planar graphs.

this code is “optimal” again..

Conversely : an irreducible dissection of a hexagon⇒ an irreducible
dissection of a square iff there was not a diagonal of length 3.

⇒ sampling by rejection : try to add an edge, restart from scratch if not ok.

.

Conclusion of Part 3.

{ 3-connected planar graphs } ≈

{ Irreducible dissections of a hexagon } ≡ { binary trees }.

Corrollaries :

— a formula for rooted irreducible dissections,

— a linear time random sampler for 3-c planar graphs,
⇒ improvment for the generator for planar graphs of Bodirsky et al.

— and a compact code for polyhedral meshes with spherical topology.

but until now I did not show how to compute the code.

.

Conclusion of Part 3.

{ 3-connected planar graphs } ≈

{ Irreducible dissections of a hexagon } ≡ { binary trees }.

Corrollaries :

— a formula for rooted irreducible dissections,

— a linear time random sampler for 3-c planar graphs,
⇒ improvment for the generator for planar graphs of Bodirsky et al.

— and a compact code for polyhedral meshes with spherical topology.

but until now I did not show how to compute the code.

.

Part 4. Minimal α-orientations and coding.
(a glimpse of the machinery behind)

CASTING for this part :

orientations
derived map

INSPIRATION for this part

de Frayssex, Ossona de Mendez, Brehm, Felsner...

RETURN TO THE MAIN THEOREM...

Closure is a bijection between unrooted binary trees with n inner nodes
and irreducible dissection of an hexagon with n internal vertices.

Orient all half-edges of the binary tree⇒ an “orientation” of the dissection.

RETURN TO THE MAIN THEOREM...

Closure is a bijection between unrooted binary trees with n inner nodes
and irreducible dissection of an hexagon with n internal vertices.

Orient all half-edges of the binary tree⇒ an “orientation” of the dissection.

All internal vertices have out-degree 3.

RETURN TO THE MAIN THEOREM...

Closure is a bijection between unrooted binary trees with n inner nodes
and irreducible dissection of an hexagon with n internal vertices.

Orient all half-edges of the binary tree⇒ an “orientation” of the dissection.

All internal vertices have out-degree 3.

Proposition. By construction, there are no cw circuits.

RETURN TO THE MAIN THEOREM...

Closure is a bijection between unrooted binary trees with n inner nodes
and irreducible dissection of an hexagon with n internal vertices.

Orient all half-edges of the binary tree⇒ an “orientation” of the dissection.

All internal vertices have out-degree 3.

Proposition. By construction, there are no cw circuits.

Conversely, in a “3-orientation” without cw circuit, edges→← form a tree.

RETURN TO THE MAIN THEOREM...

Refined Theorem : Closure is a bijection between unrooted binary trees
and irreducible dissections of a hexagon without cw circuits.

Orient all half-edges of the binary tree⇒ an “orientation” of the dissection.

All internal vertices have out-degree 3.

Proposition. By construction, there are no cw circuits.

Conversely, in a “3-orientation” without cw circuit, edges→← form a tree.

α-ORIENTATIONS

Let α be an out-degree prescription for the vertices of a planar graph.

α-orientation = orientation of edges respecting α.

Theorem (Felsner 03, Ossona de Mendez 94)
If there exists an α-orientation, then the transformation

return a cw circuit

defines a distributive lattice on the set of α-orientation.

In particular :
the minimal α-orientation is the only α-orientation without cw circuits.

α-ORIENTATIONS AND DISSECTIONS

The theory does not directly
apply to us : we have doubly
oriented edges.

“3-oriented” dissection⇔ α-oriented derived map : α(◦) = 3, α(×) = 1.
prove : without cw circuits⇔ without cw circuits
apply Felsner’s theorem to the derived map.

⇒ this proves that the closure send bijectively trees on dissections.

α-ORIENTATIONS AND DISSECTIONS

The theory does not directly
apply to us : we have doubly
oriented edges.

“3-oriented” dissection⇔ α-oriented derived map : α(◦) = 3, α(×) = 1.
prove : without cw circuits⇔ without cw circuits
apply Felsner’s theorem to the derived map.

⇒ this proves that the closure send bijectively trees on dissections.

α-ORIENTATIONS AND DISSECTIONS

The theory does not directly
apply to us : we have doubly
oriented edges.

“3-oriented” dissection⇔ α-oriented derived map : α(◦) = 3, α(×) = 1.
prove : without cw circuits⇔ without cw circuits
apply Felsner’s theorem to the derived map.

⇒ this proves that the closure send bijectively trees on dissections.

CONSTRUCTING THE MINIMAL α-ORIENTATIONS

For coding, we still need to show that one can construct the minimal
orientation in linear time.

The construction is akin to
the construction for mini-
mal 3-orientations of trian-
gulations (Kant, Brehm).

The base line a2a3 is fixed.

The rightmost nonsepara-
ting active vertex on the
frontier is removed and in-
cident edges are oriented.

Theorem (FPS04). This
process constructs the
minimal α-orientation.

a3 a2

a1

CONSTRUCTING THE MINIMAL α-ORIENTATIONS

For coding, we still need to show that one can construct the minimal
orientation in linear time.

The construction is akin to
the construction for mini-
mal 3-orientations of trian-
gulations (Kant, Brehm).

The base line a2a3 is fixed.

The rightmost nonsepara-
ting active vertex on the
frontier is removed and in-
cident edges are oriented.

Theorem (FPS04). This
process constructs the
minimal α-orientation.

a1

a3 a2

CONSTRUCTING THE MINIMAL α-ORIENTATIONS

For coding, we still need to show that one can construct the minimal
orientation in linear time.

The construction is akin to
the construction for mini-
mal 3-orientations of trian-
gulations (Kant, Brehm).

The base line a2a3 is fixed.

The rightmost nonsepara-
ting active vertex on the
frontier is removed and in-
cident edges are oriented.

Theorem (FPS04). This
process constructs the
minimal α-orientation.

a1

a3 a2

CONSTRUCTING THE MINIMAL α-ORIENTATIONS

For coding, we still need to show that one can construct the minimal
orientation in linear time.

The construction is akin to
the construction for mini-
mal 3-orientations of trian-
gulations (Kant, Brehm).

The base line a2a3 is fixed.

The rightmost nonsepara-
ting active vertex on the
frontier is removed and in-
cident edges are oriented.

Theorem (FPS04). This
process constructs the
minimal α-orientation.

a1

a3 a2

CONSTRUCTING THE MINIMAL α-ORIENTATIONS

For coding, we still need to show that one can construct the minimal
orientation in linear time.

The construction is akin to
the construction for mini-
mal 3-orientations of trian-
gulations (Kant, Brehm).

The base line a2a3 is fixed.

The rightmost nonsepara-
ting active vertex on the
frontier is removed and in-
cident edges are oriented.

Theorem (FPS04). This
process constructs the
minimal α-orientation.

a1

a3 a2

CONSTRUCTING THE MINIMAL α-ORIENTATIONS

For coding, we still need to show that one can construct the minimal
orientation in linear time.

The construction is akin to
the construction for mini-
mal 3-orientations of trian-
gulations (Kant, Brehm).

The base line a2a3 is fixed.

The rightmost nonsepara-
ting active vertex on the
frontier is removed and in-
cident edges are oriented.

Theorem (FPS04). This
process constructs the
minimal α-orientation.

a1

a3 a2

THE COMPLETE ENCODING PROCEDURE

Complete the 3-c graph
to make it canonical.

Superimpose the dual.
Orient the derived map.
Transport orientation to
the dissection.
Detach simply oriented
edges.

THE COMPLETE ENCODING PROCEDURE

Complete the 3-c graph
to make it canonical.
Superimpose the dual.
Orient the derived map.

Transport orientation to
the dissection.
Detach simply oriented
edges.

a3 a2

a1

THE COMPLETE ENCODING PROCEDURE

Complete the 3-c graph
to make it canonical.
Superimpose the dual.
Orient the derived map.

Transport orientation to
the dissection.
Detach simply oriented
edges.

a3 a2

a1

THE COMPLETE ENCODING PROCEDURE

Complete the 3-c graph
to make it canonical.
Superimpose the dual.
Orient the derived map.

Transport orientation to
the dissection.
Detach simply oriented
edges.

a1

a3 a2

THE COMPLETE ENCODING PROCEDURE

Complete the 3-c graph
to make it canonical.
Superimpose the dual.
Orient the derived map.
Transport orientation to
the dissection.

Detach simply oriented
edges.

a1

a3 a2

THE COMPLETE ENCODING PROCEDURE

Complete the 3-c graph
to make it canonical.
Superimpose the dual.
Orient the derived map.
Transport orientation to
the dissection.
Detach simply oriented
edges.

THE COMPLETE ENCODING PROCEDURE

Complete the 3-c graph
to make it canonical.
Superimpose the dual.
Orient the derived map.

Transport orientation to
the dissection.
Detach simply oriented
edges.

.

Conclusion of Part 4.

α-orientations play a key role in proofs.

“optimal” encoding can be performed in linear time.

.

Part 5. Other instances.

CASTING for this part :

Triangulations and Schnyder trees [Poulalhon-Schaeffer]
Eulerian maps and their balanced orientations [Fusy]
Simple quadrangular dissections and 1-2-orientations [Fusy-Poulalhon]

TRIANGULATIONS

TRIANGULATIONS

TRIANGULATIONS

TRIANGULATIONS

TRIANGULATIONS

TRIANGULATIONS

TRIANGULATIONS

TRIANGULATIONS

TRIANGULATIONS

TRIANGULATIONS

TRIANGULATIONS

TRIANGULATIONS

TRIANGULATIONS

−→

Theorem (Poulalhon-Schaeffer 03). This is a bijection and its inverse is
based on the minimal 3-orientations of a triangulation.

.

Conclusion of Part 5.

Minimal α-orientations hide trees...

It remains to give a common explanation to these various results : a
theory of trees and minimal α-orientations.

.

A conclusion to bring home.

Nice counting formulas must have simple interpretations

Looking for these reveals hidden combinatorial structure

