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and considered up to homeomorphisms (deformations) of the sphere

It is easier to make pictures in the plane...

For counting purpose planar maps
are rooted: a corner is marked

a quadrangulation
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Planar maps

The most famous map is the skeleton of the cube...

The faces of the polyhedra net form a tree like structure

f faces ⇒ f − 1 gluing edges

The cut-tree joins all vertices

Theorem. For any planar map: v + f = e+ 2

Explore the map along a spanning tree

and cut the surface to obtain a polygonal net

(Euler, 1752)

v vertices ⇒ v − 1 cut-edges

(Dürer, 1525)



Planar maps

To allow reconstruction of the surface, the polygonal net must record
the orientations of cuts: to reconstruct, glue together successive edges
that form a sink and iterate.

With these decorations, the polygonal net encodes the original map.

The boundary of the polygonal net is a cycle.

The most famous map is the skeleton of the cube...



Planar maps

With these decorations, the polygonal net encodes the original map.

The boundary of the polygonal net is a cycle.

Flatland versionThe most famous map is the skeleton of the cube...

To allow reconstruction of the surface, the polygonal net must record
the orientations of cuts: to reconstruct, glue together successive edges
that form a sink and iterate.



The enumeration of planar maps

Tutte et al. (1962→ 2014, decompositions and functionnal equations for OGF)



The enumeration of planar maps

Tutte et al. (1962→ 2014, decompositions and functionnal equations for OGF)

and let Q(t) =
∑
q∈Qn t

|q| be the gf where |q| = #faces of q.

Theorem (Tutte, 1963):

Then Q(t) is solution of the system

{
Q(t) = R(t)− tR(t)3

R(t) = 1 + 3tR(t)2

Let Qn = {rooted quadrangulations with n faces}

Q(t) = 1 + 2t+ 9t2 + . . .

so that Q(t) =
(1−12t)3/2−1+18t

54t2
and |Qn| = 2

n+2
3n

n+1

(2n
n

)
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The enumeration of planar maps

Tutte et al. (1962→ 2014, decompositions and functionnal equations for OGF)

A lot of analogous results for other families of maps F :

- several nice counting formulas for the |Fn|

- many more results of algebraicness of gfs

Cori, Vauquelin et al. (70/80’s → 2014, bijections with trees)

to explain the nice formulas and algebraicness

Brezin-Itzykson-Parisi-Zuber et al. (1972→ 2014: via matrix integrals)



The bijective approach



A strategy to prove counting formulas?

To a map are associated several polyhedral nets.

...

But a given algorithm associate one net to every map.

Tutte’s formula suggests to look for an algorithm whose set of
valid nets is clearly counted by 3n 1

n+1

(2n
n

)

To each exploration algorithms
corresponds a set of valid

polyhedral nets
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since we have seen that random planar have

Hausdorf dimension 4.



Some nice pictures

G. Chapuy

mine

J.F. Marckert

Pictures of uniform random quadrangulations
and triangulations by various people...

N. Curien currently has the nicest ones...

These 3d pictures are bound to be ”spiky”
since we have seen that random planar have

Hausdorf dimension 4.
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To study distances exactly, first thing to do is count trees with minimum label < k.

The OGF of trees with min label < k satisfies

Tk = 1 + z(Tk−1 + Tk + Tk+1)Tk for k ≥ 1.

T0 = 0 and

Surprisingly Bouttier, Di Francesco and Guitter have shown that this system of
equations has a beautiful explicit solution:

Ti = T
(1− Y i)(1− Y i+3)

(1− Y i+1)(1− Y i+2)
where T = 1 + zT 2 and Y = zT 2(1 + Y + Y 2).

Recently it was observed by Bouttier and Eynard that there is a systematic
way to find such solutions using ”Lax pairs” and ”Plucker/Hirota equations”...

No direct combinatorial interpretation on trees, but some interpretations via
maps and continuous fractions (Bouttier-Guitter, Albenque-Bouttier)
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A pattern in enumeration and random structures

The previous bijection is only the tip of the iceberg:

Dozens of bijections between families of maps and trees have since been found...
D. Arquès, M. Marcus, M. Bousquet-Mélou, D. Poulalhon, O. Bernardi, E. Fusy, J. Bouttier, P. Di Francesco,
E. Guitter, G. Chapuy, E. Vassilieva, G. Miermont, V. Feray, J. Ambjørn, T. Budd, G. Collet...

They have started to merge into Master bijections:

- Using minimal accessible orientations and blossoming trees.

- Or left-accessible orientations and mobiles

- Or geodesic orientations and pizza slices

M. Albenque and D. Poulalhon (2013)

O. Bernardi, G. Chapuy and É. Fusy (2011-2014)

J. Bouttier and E. Guitter (2014)
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Asympt
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Branched covers and Hurwitz numbers

Consider a rational function, f : S→ S,

At a point z0, if f ′(z0) 6= 0 then locally f(z) ≈ f(z0) + f ′(z0)(z − z0)

If instead f ′(z0) = f ′′(z0) = . . . = f (k−1)(z0) = 0 and f (k)(z0) 6= 0, then
locally f(z) ≈ f(z0) + 1

k!
f (k)(z0)(z − z0)k

in other terms, f is locally homeorphic to the map y → y

in other terms, f is locally homeorphic to the map y → yk

f

A value is regular if it has d preimages, where d = degree of denominator.

This is the case for all preimages of regular values.

points values

If there are n− 1 preimages (and one has k = 2), the critical value is called simple

it is critical otherwise.



Branched covers and Hurwitz numbers

Rational functions f and g are equivalent if g = f ◦ h with h homeomorphism.

h

f

g

Hurwitz counting problem is to count branched covers with respect to
the number and type of critical values and in particular those with
almost only simple critical values.

Since the global complex structure is lost we are in fact talking about
equivalence classes of branched covers instead of rational function.



Branched covers and maps

Consider a branched cover, f : S→ S with m+ 2 critical points.

draw a halving circle through the first m critical values, labeled 1, . . . ,m
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and label 0 a regular value on the circle.
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Then take its preimage (pullback)



Branched covers and maps

Consider a branched cover, f : S→ S with m+ 2 critical points.
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The preimage of the circle forms a bicolored map, called a galaxy.



Branched covers and maps

Consider a branched cover, f : S→ S with m+ 2 critical points.
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draw a halving circle through the first m critical values, labeled 1, . . . ,m

Then take its preimage (pullback)
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and label 0 a regular value on the circle.

The preimage of the circle forms a bicolored map, called a galaxy.

Claim. Galaxies are in correspondence with equivalence classes of branched covers.



Branched covers and maps

Through the pullback, Hurwitz problem is rephrased as a counting problem for
planar galaxies: more precisely

a planar m-galaxies is a bicolored map with black and white faces of degree
multiple of m+ 1. Its vertices can be labeled 0, 1, . . . ,m in counterclockwise
order around black faces.
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it is simple if exactly one vertex of color i has out degree 2, all other out degree 1.

Let G(λ, µ) be the number of simple planar m-galaxies of type (λ, µ).

The type (λ, µ) of a galaxy is the degree
distribution of black and white faces.

The h(λ, µ) = G(λ, µ)/(m+ 1) are called double Hurwitz numbers.



Branched covers and maps

Hurwitz (1892) proved:

For 0 non-simple critical points, and 2n− 2 simple ones: h(1n, 1n) = nn−3(2n− 2)!

For 1 non-simple critical point of type λ = 1`1 . . . n`n and m = n+ `− 2 simple ones:

h(λ, 1n) = n`−3 ·m! · n! ·
∏
i≥1

1

`i!

(
ii

i!

)`i

For 2 non-simple critical point of type λ and µ and `(λ) + `(µ)− 2 simple ones:

for h(λ, µ) Hurwitz had no formulas...

But several polynomiality properties have been observed in the last 15 years.

(= Galaxies with all faces of degree m = 2n− 2)

(= Galaxies with all black faces of degree m = 2n− 2, and white degrees given by λ)



The bijective approach for branched covers



Let’s apply the decomposition to galaxies

The geodesic cutting strategy on bipartite maps: BDFG bijection.
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The polygonal net has bicolored faces
of degree multiple of m, keeping
track of the original face degrees.



Let’s apply the decomposition to galaxies

The geodesic cutting strategy on bipartite maps: BDFG bijection.

0

2

0 5 4 3
2

2

3

0 4

1

0

5

0

153

2

3

4

4

1

0

5
4

3

215 1|1 2|2

4|4

5|5
5|5

0|6

1|7

0|6

1|7

2|8

3|9

3|9

0|6

1|7

4|10

4|10

5|11

5|11

0|12

2|14

2|14

3|15

3|15

4|16

2|8

4|4
5|11

0|12

11|131|13

3|3

0

0

2

0 5 4 3
2

2

3

0 4

1

0

5
0

153
2

3

4

4

1

0

54

3

215 1|1 2|2

4|4
5|5

5|5

0|6

1|7

0|6
1|7

2|8

3|9

3|9

0|6

1|7

4|10

4|10

5|11

5|11

0|12

2|14

2|14

3|15

3|15

4|16

2|8

4|4
5|11

0|12

11|131|13

3|3

0

11|131|13

33|3

1
1

3

4

5

0
2

1

1

1

1

1

2
2

2 2

22

2

2
3

3
4

4

4

4

4
4

4
4

4

5

5

5

5

5

5

5

0

0

0

0
0

0
0

0

0
5

3
3

3

3

5

2

0
1

3

1

1

2

3
3

11

3

The polygonal net has bicolored faces
of degree multiple of m, keeping
track of the original face degrees.

The only new trick is to find a way to
record the simplicity condition.
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The polygonal net has bicolored faces
of degree multiple of m, keeping
track of the original face degrees.

Lemma: Vertices of degree 2 of galaxy
correspond to cut points and inner
edges of the net.

The only new trick is to find a way to
record the simplicity condition.



Let’s apply the decomposition to galaxies

0

2

0 5 4 3
2

2

3

0 4

1

0

5

0

153

2

3

4

4

1

0

5
4

3

215 1|1 2|2

4|4

5|5
5|5

0|6

1|7

0|6

1|7

2|8

3|9

3|9

0|6

1|7

4|10

4|10

5|11

5|11

0|12

2|14

2|14

3|15

3|15

4|16

2|8

4|4
5|11

0|12

11|131|13

3|3

0

2

5

4

0

1

3

Again the local configurations in polygons can be classified and the polygonal net
can be encoded by some labeled cactus.



Hurwitz mobile

Double Hurwitz numbers h(λ, µ) are thus numbers of Hurwitz mobile of type λ.µ:

λ oriented cycles of white vertices (the white polygons)

µ oriented cycles of black vertices (the black polygons)

`(λ) + `(µ)− 1 edges with labels {0, 1, . . . ,m}

– edges with weight 0 connect white nodes

and non negative weights (bars)

such that:

– edges with positive weight connect
a black to a white nodes

– the sum of weights of edges incident
to a i-gon equals i.

A Hurwitz cactus is a graph (not map) made of:
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Hurwitz mobile

Double Hurwitz numbers h(λ, µ) are thus numbers of Hurwitz mobile of type λ.µ:
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In the special case of simple critical points

In the case λ = µ = 1n, the Hurwitz mobiles simplify:
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Black faces of galaxy have degree m+ 1 ⇒ Black polygons are 1-gons.

White faces of galaxy have degree m+ 1 ⇒ white polygons are 1-gons

Sum of weight of edges at each vertex is 1

⇒ black 1-gons are leaves.

⇒ each white 1-gons is incident to one leaf.



In the special case of simple critical points

In the case λ = µ = 1n, the Hurwitz mobiles simplify:
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Black faces of galaxy have degree m+ 1 ⇒ Black polygons are 1-gons.

White faces of galaxy have degree m+ 1 ⇒ white polygons are 1-gons

Sum of weight of edges at each vertex is 1

⇒ black 1-gons are leaves.

⇒ each white 1-gons is incident to one leaf.

So in the end we get:

Trees with 2n− 1 labeled edges

such that each inner vertex is
incident to one leaf.

G(z) = z exp(zG(z))

Their EGF with respect to edges is

from which we recover hn = nn−3(2n− 2)!





Distances in galaxies and branched covers

It is possible to keep track on the Hurwitz mobile of distances in the initial galaxy.

But planar galaxies of type (1n, 1n) are made of 2n labelled (2n− 1)-gons, glued by
1 vertex of degree 2 for each color.

⇒ distance have to be at least of order n.

In fact a rougth analysis of the labels of trees show that n5/4 should be right order.



Distances in galaxies and branched covers

However these galaxies also have a nice dual representation:

An increasing quadrangulation is a quadrangulation
with n black and n white vertices and faces
with labels 1, . . . , n that are

1
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– ”clockwise increasing” around white vertices

– ”counterclockwise ”increasing” around black ones

It is possible to keep track on the Hurwitz mobile of distances in the initial galaxy.

But planar galaxies of type (1n, 1n) are made of 2n labelled (2n− 1)-gons, glued by
1 vertex of degree 2 for each color.

⇒ distance have to be at least of order n.

In fact a rougth analysis of the labels of trees show that n5/4 should be right order.

We expect distances in this representation to be of order n1/4.



Distances in galaxies and branched covers

Recall that the number of quadrangulations with n faces is 2
n+2

3n

n+1

(2n
n

)
Theorem [Le Gall, Miermont] (informal statement): Let Qn be a uniform random
rooted planar quadrangulation:

Pr(Qn = q) =
1

2
n+2

3n

n+1

(2n
n

) for all q ∈ Qn,

then Qn with distances rescaled by n−1/4 converges to the Brownian map.

Conjecture (informal statement): Let Q`n be a uniform random increasing planar
quadrangulation:

Pr(Q`n = q) =
1

nn−3(2n− 2)!
for q ∈ Q`n,

then Q`n with distances rescaled by n−1/4 converges to the Brownian map.



A pattern in enumeration and random structures

{−1,+1}-Walks OGF = 1
1−2x

Brownian motion

Plane trees P = 1 + zP 2 Continuum Random Trees (CRT)

Well labeled trees T = 1 + 3zT 2 Brownian snake (ISE)

What Type of GF Rescaled continuum limit

Planar maps (OGF)′ = T Brownian map

Simple walks N-rational OGF Universality (proved)

Simple trees N-algebraic OGF Universality (proved)

Decorated plane trees N-algebraic OGF

Planar maps with
degree constraints

N-algebraic (OGF)’ Universality (many examples)

Universality (proved)

Variants of
Cayley trees

EGF: C = zf(C)

Decorated Cayley trees

Simple branched covers

EGF: H = zg(H)

EGF’ = H Universality (to be proved)

Universality (proved)

Universality (proved)

Asympt

2n

ρn

4n

n3/2

12n

n3/2

12n

n5/2

ρn

n3/2

ρn

n3/2

ρn

n5/2

n!ρn

n3/2

n!ρn

n3/2

n!ρn

n5/2



Conclusion



Conclusion and open problems

We claim that random increasing quadrangulations are like random map:
what about standard map parameters? Start with the degree of a random
vertex?

Some open problems:

Prove convergence to the Brownian map of galaxies or increasing
quadrangulations..

Compute exactly the GF of a galaxy with marked point at distance k.

Equivalently, compute the GF of embedded Hurwitz mobiles with a vertex
at position k.

Bijections for planar maps have labelled analogs in the context of simple
branched covers.

The bijection allow to obtain new (complicated) formulas about double
Hurwitz numbers



Thank you



Plane trees and Catalan numbers

Some like Catalan trees and OGF (chapter 1 of The Book of Analytic Combinatorics)

Some prefer Cayley trees and EGF (chapter 2 of The Book of Analytic Combinatorics)

Spec of m-ary trees: (·+ ∆) · · · (·+ ∆)︸ ︷︷ ︸
m

∆ =

But everyone here knows the symbolic method (I hope...):

Let m→∞ with n fixed and conclude that the EGF C(y) of rooted Cayley trees
satisfies C(y) = y exp(C(y))

Exercice (Chapuy). Consider the example of m-ary trees:



Plane trees and Catalan numbers

Acyclic connected graph
with n labeled vertices.

Recall that Cayley tree with n vertices are:

or equivalently
Acyclic connected graphs
with n− 1 labeled edges

and a marked vertex

Proof (Chapuy): We have T = z(1 + T )M .

When m→∞ with n fixed, a random m-ary tree almost surely does not have
two edges with same index:

Tm,n ∼
n→∞

( m

n− 1

)
Cay(n) ∼

n→∞

mn−1

(n− 1)!
Cay(n)

Hence C(y) = mT (y/m) +O( 1
m

)

And C(y) = z(1 + 1
m
C(y))m = z exp(C(y)) +O( 1

m
)



Plane trees and Catalan numbers

(·+ ∆) · · · (·+ ∆)︸ ︷︷ ︸
m

∆ =

Translate to OGF: T = (1 + x1T ) · · · (1 + xmT )

where xi keeps track of the number of edges of type i

Now T = zΦ(T ) so [zn]T = 1
n

[yn−1]Φ(z)n, by Lagrange Inversion (Chapitre 1)

Hence we want the coefficient of x1 · · ·xn−1 in 1
n

((1 + x1) · · · (1 + xn−1))n

Now return to m-ary trees:

That is: Cay(n) = 1
n
nn−1 = nn−2

Then the number Cay(n) of Cayley trees with n vertices is [x1 · · ·xn−1]T .

We will use a variant of the previous derivation.


