
Gilles Schaeffer

Analysis of Algorithms, 2009

Combinatorial entropy
and succinct data structures

based in part on joined works with
L. Castelli Aleardi, O. Devillers,

E. Fusy and D. Poulalhon

Among data structures for geometric data, I pick meshes...

Before we start... Geometric data ; meshes

Geographic information
systems

Surface recontruction
from sampling

Surface modelling

Before we start... ∃ very large geometric data

St. Matthew (Stanford’s Digital
Michelangelo Project, 2000)

186 millions vertices
6 Giga bytes (for storing on disk)

minutes for loading the model from disk

David statue (Stanford’s Digital
Michelangelo Project, 2000)

2 billions polygons
32 Giga bytes (without compression)

No existing algorithm nor data structure
for dealing with the entire model

Before we start... What we are aiming at
Mesh compression Geometric data structures

disk storage

Transmission

Before we start... What we are aiming at
Mesh compression

Compact representations of geometric data structures

Geometric data structures

i
...

disk storage

Transmission

MERGE INTO:

ordered tree with n edges balanced parenthesis word of length 2n

Starter: the encoding of plane trees

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

⇒ 2n bits for encoding an ordered tree with n edges

ordered tree with n edges balanced parenthesis word of length 2n

Starter: the encoding of plane trees

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

⇒ 2n bits for encoding an ordered tree with n edges

ordered tree with n edges balanced parenthesis word of length 2n

Starter: the encoding of plane trees

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

Compare to the standard
explicit represention:

3n pointers ≈ 96 bits

3n log n in theory

⇒ 2n bits for encoding an ordered tree with n edges

ordered tree with n edges balanced parenthesis word of length 2n

‖Bn‖ = 1
n+1

(
2n
n

)
≈ 22nn−

3
2enumeration:

Starter: the encoding of plane trees

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

⇒ 2n bits for encoding an ordered tree with n edges

ordered tree with n edges balanced parenthesis word of length 2n

‖Bn‖ = 1
n+1

(
2n
n

)
≈ 22nn−

3
2enumeration:

Starter: the encoding of plane trees

log2 ‖Bn‖ = 2n + O(lg n) bpv

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

⇒ 2n bits for encoding an ordered tree with n edges

ordered tree with n edges balanced parenthesis word of length 2n

‖Bn‖ = 1
n+1

(
2n
n

)
≈ 22nn−

3
2enumeration:

Starter: the encoding of plane trees

log2 ‖Bn‖ = 2n + O(lg n) bpv

This is an optimal encoding!

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

it matches asymptotically the information-theory lower bound

⇒ 2n bits for encoding an ordered tree with n edges

ordered tree with n edges balanced parenthesis word of length 2n

‖Bn‖ = 1
n+1

(
2n
n

)
≈ 22nn−

3
2enumeration:

Starter: the encoding of plane trees

log2 ‖Bn‖ = 2n + O(lg n) bpv

This is an optimal encoding!

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

it matches asymptotically the information-theory lower bound

exponential growth rate

⇒ 2n bits for encoding an ordered tree with n edges

ordered tree with n edges balanced parenthesis word of length 2n

‖Bn‖ = 1
n+1

(
2n
n

)
≈ 22nn−

3
2enumeration:

Starter: the encoding of plane trees

log2 ‖Bn‖ = 2n + O(lg n) bpv

This is an optimal encoding!

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

it matches asymptotically the information-theory lower bound

exponential growth rate⇔

combinatorial entropy

Starter: linear space data structures for plane trees?

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

ordered tree with n edges balanced parenthesis word of length 2n

Navigation in the tree: handlers

Starter: linear space data structures for plane trees?

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

ordered tree with n edges balanced parenthesis word of length 2n

Navigation in the tree: handlers

Starter: linear space data structures for plane trees?

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

ordered tree with n edges balanced parenthesis word of length 2n

Navigation in the tree: handlers

Starter: linear space data structures for plane trees?

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

ordered tree with n edges balanced parenthesis word of length 2n

Navigation in the tree: handlers

move the handler to first son

move the handler to father

move the handler to next brother

Starter: linear space data structures for plane trees?

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

ordered tree with n edges balanced parenthesis word of length 2n

Navigation in the tree: handlers

move the handler to first son

move the handler to father

move the handler to next brother

Constant time with standard (pointer) representation

but the pointer based representation uses Θ(n log n) bits

Starter: linear space data structures for plane trees?

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

ordered tree with n edges balanced parenthesis word of length 2n

Navigation in the tree: handlers

move the handler to first son

move the handler to father

move the handler to next brother

Constant time with standard (pointer) representation

but the pointer based representation uses Θ(n log n) bits

handler = index of opening bracket

Starter: linear space data structures for plane trees?

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

ordered tree with n edges balanced parenthesis word of length 2n

Navigation in the tree: handlers

move the handler to first son

move the handler to father

move the handler to next brother

Constant time with standard (pointer) representation

but the pointer based representation uses Θ(n log n) bits

handler = index of opening bracket

Starter: linear space data structures for plane trees?

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

ordered tree with n edges balanced parenthesis word of length 2n

Navigation in the tree: handlers

move the handler to first son

move the handler to father

move the handler to next brother

Constant time with standard (pointer) representation

but the pointer based representation uses Θ(n log n) bits

index → index+1

handler = index of opening bracket

Starter: linear space data structures for plane trees?

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

ordered tree with n edges balanced parenthesis word of length 2n

Navigation in the tree: handlers

move the handler to first son

move the handler to father

move the handler to next brother

Constant time with standard (pointer) representation

but the pointer based representation uses Θ(n log n) bits

index → index+1

handler = index of opening bracket

index → matching(index)+1

Starter: linear space data structures for plane trees?

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

ordered tree with n edges balanced parenthesis word of length 2n

Navigation in the tree: handlers

move the handler to first son

move the handler to father

move the handler to next brother

Constant time with standard (pointer) representation

but the pointer based representation uses Θ(n log n) bits

index → index+1

handler = index of opening bracket

index → matching(index)+1

index → outer(index)

Starter: linear space data structures for plane trees?

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

ordered tree with n edges balanced parenthesis word of length 2n

Navigation in the tree: handlers

move the handler to first son

move the handler to father

move the handler to next brother

Constant time with standard (pointer) representation

but the pointer based representation uses Θ(n log n) bits

index → index+1

handler = index of opening bracket

index → matching(index)+1

index → outer(index)

up to linear time!

(((()))

b1 b2 b3 b4 b5

) ()) ((()) () ()) (

(Jacobson, Focs89)

Starter: linear space data structures for plane trees

Decompose into m small blocks of size ε

2n bits

(((()))

b1 b2 b3 b4 b5

) ()) ((()) () ()) (

(Jacobson, Focs89)

Starter: linear space data structures for plane trees

Decompose into m small blocks of size ε

matching(index): go slowly inside block

2n bits

(((()))

b1 b2 b3 b4 b5

) ()) ((()) () ()) (

(Jacobson, Focs89)

Starter: linear space data structures for plane trees

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock

2n bits

(((()))

b1 b2 b3 b4 b5

) ()) ((()) () ()) (

(Jacobson, Focs89)

Starter: linear space data structures for plane trees

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock

2n bits

(((()))

b1 b2 b3 b4 b5

) ()) ((()) () ()) (

(Jacobson, Focs89)

Starter: linear space data structures for plane trees

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock
encode interblock explicitely: up to n edges ⇒ space n log n

2n bits

(((()))

b1 b2 b3 b4 b5

) ()) ((()) () ()) (

(Jacobson, Focs89)

Starter: linear space data structures for plane trees

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock
encode interblock explicitely: up to n edges ⇒ space n log n

2n bits

encode ≤ m-1 pioneers (outermost between blocks) ⇒ space m log n

(((()))

b1 b2 b3 b4 b5

) ()) ((()) () ()) (

(Jacobson, Focs89)

Starter: linear space data structures for plane trees

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock
encode interblock explicitely: up to n edges ⇒ space n log n

2n bits

encode ≤ m-1 pioneers (outermost between blocks) ⇒ space m log n

(1, 22)(2, 9)(3, 6)(10, 19)(15, 16)(20, 21)

(((()))

b1 b2 b3 b4 b5

) ()) ((()) () ()) (

(Jacobson, Focs89)

Starter: linear space data structures for plane trees

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock
encode interblock explicitely: up to n edges ⇒ space n log n

2n bits

encode ≤ m-1 pioneers (outermost between blocks) ⇒ space m log n

(1, 22)(2, 9)(3, 6)(10, 19)(15, 16)(20, 21)

the explicit representation must allow navigation...

(((()))

1100000001000010000100

b1 b2 b3 b4 b5

22 9 16 21

B

T

) ()) ((()) () ()) (

(Jacobson, Focs89)

Starter: linear space data structures for plane trees

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock
encode interblock explicitely: up to n edges ⇒ space n log n

2n bits

encode ≤ m-1 pioneers (outermost between blocks) ⇒ space m log n
the explicit representation must allow navigation...

19

low weight bit vectors

m log n bits

select/rank queries

matching(3): 3,4,5, interblock, rB(3) = 2, T (2) = 9, 9,8,7,6.

(((()))

1100000001000010000100

b1 b2 b3 b4 b5

22 9 16 21

B

T

) ()) ((()) () ()) (

(Jacobson, Focs89)

Starter: linear space data structures for plane trees

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock
encode interblock explicitely: up to n edges ⇒ space n log n

2n bits

encode ≤ m-1 pioneers (outermost between blocks) ⇒ space m log n
the explicit representation must allow navigation...

19

low weight bit vectors

m log n bits

select/rank queries

matching(3): 3,4,5, interblock, rB(3) = 2, T (2) = 9, 9,8,7,6.

(((()))

1100000001000010000100

b1 b2 b3 b4 b5

22 9 16 21

B

T

) ()) ((()) () ()) (

(Jacobson, Focs89)

Starter: linear space data structures for plane trees

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock
encode interblock explicitely: up to n edges ⇒ space n log n

2n bits

encode ≤ m-1 pioneers (outermost between blocks) ⇒ space m log n

19

low weight bit vectors

m log n bits

select/rank queries

matching(3): 3,4,5, interblock, rB(3) = 2, T (2) = 9, 9,8,7,6.

Taking ε = Θ(log n): space m log n = O(n), queries in O(log n)

O(n) extra bits

(((()))

1100000001000010000100

b1 b2 b3 b4 b5

22 9 16 21

B

T

) ()) ((()) () ()) (

(Jacobson, Focs89)

Starter: linear space data structures for plane trees

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock
encode interblock explicitely: up to n edges ⇒ space n log n

2n bits

encode ≤ m-1 pioneers (outermost between blocks) ⇒ space m log n

19

low weight bit vectors

m log n bits

select/rank queries

matching(3): 3,4,5, interblock, rB(3) = 2, T (2) = 9, 9,8,7,6.

Taking ε = Θ(log n): space m log n = O(n), queries in O(log n)

O(n) extra bits

succinct data structures: want space 2n + o(n) and queries in O(1)

Combinatorial entropy and succinct data structures

An: structures of size n, with log2 |An| = αn + O(n).

but large explicit representation (using O(n) pointers of size log n)

Aim 1 (compression): find an encoding with α bits per size unit

with linear time encoding/decoding procedures

Combinatorial entropy and succinct data structures

An: structures of size n, with log2 |An| = αn + O(n).

but large explicit representation (using O(n) pointers of size log n)

Aim 1 (compression): find an encoding with α bits per size unit

Aim 2 (succinct data struc): idem + efficient query support

with linear time encoding/decoding procedures

answer natural queries in constant time (logtime if not constant)

Combinatorial entropy and succinct data structures

An: structures of size n, with log2 |An| = αn + O(n).

but large explicit representation (using O(n) pointers of size log n)

Aim 1 (compression): find an encoding with α bits per size unit

Aim 2 (succinct data struc): idem + efficient query support

Aim 3 (dynamical s.d.s.): idem + update of the structure

with linear time encoding/decoding procedures

answer natural queries in constant time (logtime if not constant)

update the structure in logtime (amortized if not worst case)

Combinatorial entropy and succinct data structures

An: structures of size n, with log2 |An| = αn + O(n).

but large explicit representation (using O(n) pointers of size log n)

Aim 1 (compression): find an encoding with α bits per size unit

Aim 2 (succinct data struc): idem + efficient query support

Aim 3 (dynamical s.d.s.): idem + update of the structure

with linear time encoding/decoding procedures

answer natural queries in constant time (logtime if not constant)

update the structure in logtime (amortized if not worst case)

Aim 0: understand and deal with entropy reduction...

Entropy reduction and parametrized classes

ordered trees with n vertices entropy 2bpv

Entropy reduction and parametrized classes

ordered trees with n vertices

degree 2 and 0 only: complete binary trees

entropy 2bpv

1bpv
(2n + 1 vertices: n nodes, n + 1 leaves)

Entropy reduction and parametrized classes

ordered trees with n vertices

degree 2 and 0 only: complete binary trees

degree 3 and 0 only: complete ternary

entropy 2bpv

1bpv

1
3

log2
27
2
≈ 1.25 bpv

(2n + 1 vertices: n nodes, n + 1 leaves)

(3n + 1 vertices: n nodes, 2n + 1 leaves)

Entropy reduction and parametrized classes

ordered trees with n vertices

degree 2 and 0 only: complete binary trees

degree 3 and 0 only: complete ternary

more generally, ni vertices of degree i

entropy 2bpv

1bpv

1
3

log2
27
2
≈ 1.25 bpv

(2n + 1 vertices: n nodes, n + 1 leaves)

(3n + 1 vertices: n nodes, 2n + 1 leaves)

Entropy reduction and parametrized classes

ordered trees with n vertices

degree 2 and 0 only: complete binary trees

degree 3 and 0 only: complete ternary

more generally, ni vertices of degree i

entropy 2bpv

1bpv

1
3

log2
27
2
≈ 1.25 bpv

(2n + 1 vertices: n nodes, n + 1 leaves)

(3n + 1 vertices: n nodes, 2n + 1 leaves)

Old Thm: |T (n0, . . . , nk)| = 1
n

(
n

n0,n1,...,nk

)

Entropy reduction and parametrized classes

ordered trees with n vertices

degree 2 and 0 only: complete binary trees

degree 3 and 0 only: complete ternary

more generally, ni vertices of degree i

entropy 2bpv

1bpv

1
3

log2
27
2
≈ 1.25 bpv

(2n + 1 vertices: n nodes, n + 1 leaves)

(3n + 1 vertices: n nodes, 2n + 1 leaves)

log2

(
n

n0,n1,...,nk

) 1
n

Old Thm: |T (n0, . . . , nk)| = 1
n

(
n

n0,n1,...,nk

)
log2

∏
i
α
−αi
i

if n =
∑

ni = 1 +
∑

ini

if ni = αin

Entropy reduction and parametrized classes

ordered trees with n vertices

degree 2 and 0 only: complete binary trees

degree 3 and 0 only: complete ternary

more generally, ni vertices of degree i

entropy 2bpv

1bpv

1
3

log2
27
2
≈ 1.25 bpv

(2n + 1 vertices: n nodes, n + 1 leaves)

(3n + 1 vertices: n nodes, 2n + 1 leaves)

encode tree by degree list in prefix order

log2

(
n

n0,n1,...,nk

) 1
n

Old Thm: |T (n0, . . . , nk)| = 1
n

(
n

n0,n1,...,nk

)
log2

∏
i
α
−αi
i

if n =
∑

ni = 1 +
∑

ini

if ni = αin

observe that: entropy(trees)=entropy of text
compress optimally with arithmetic coder

Entropy reduction and parametrized classes

ordered trees with n vertices

degree 2 and 0 only: complete binary trees

degree 3 and 0 only: complete ternary

more generally, ni vertices of degree i

entropy 2bpv

1bpv

1
3

log2
27
2
≈ 1.25 bpv

(2n + 1 vertices: n nodes, n + 1 leaves)

(3n + 1 vertices: n nodes, 2n + 1 leaves)

encode tree by degree list in prefix order

log2

(
n

n0,n1,...,nk

) 1
n

Old Thm: |T (n0, . . . , nk)| = 1
n

(
n

n0,n1,...,nk

)
log2

∏
i
α
−αi
i

if n =
∑

ni = 1 +
∑

ini

if ni = αin

observe that: entropy(trees)=entropy of text
compress optimally with arithmetic coder

Question: what is the maximum entropy, for which degrees?

Entropy quizz

ordered trees
entropy compression dynamicsuccinct d.s.

yes4 yesyes

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

(soda’07)

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white

(soda’07)

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white

4 if p = n
2

+ O(
√

n)

(soda’07)

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white

4 if p = n
2

+ O(
√

n)

(soda’07)

use basic result

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white (

p+q
p

) 2
n

4 if p = n
2

+ O(
√

n)

otherwise

(soda’07)

use basic result

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white (

p+q
p

) 2
n probably ?

4 if p = n
2

+ O(
√

n)

otherwise yes

(soda’07)

use basic result

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white (

p+q
p

) 2
n probably ?

4 if p = n
2

+ O(
√

n)

otherwise yes

height h

(soda’07)

use basic result

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white (

p+q
p

) 2
n probably ?

4 if p = n
2

+ O(
√

n)

otherwise yes

height h known ?

(soda’07)

use basic result

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white (

p+q
p

) 2
n probably ?

4 if p = n
2

+ O(
√

n)

otherwise yes

height h known ?

(soda’07)

positive natural embedding

use basic result

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white (

p+q
p

) 2
n probably ?

4 if p = n
2

+ O(
√

n)

otherwise yes

height h known ?

(soda’07)

positive natural embedding 4 use basic result

use basic result

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white (

p+q
p

) 2
n probably ?

4 if p = n
2

+ O(
√

n)

otherwise yes

height h known ?

(soda’07)

positive natural embedding 4

all leaves at same depth

use basic result

use basic result

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white (

p+q
p

) 2
n probably ?

4 if p = n
2

+ O(
√

n)

otherwise yes

height h known ?

(soda’07)

positive natural embedding 4

all leaves at same depth known? ?

use basic result

use basic result

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white (

p+q
p

) 2
n probably ?

4 if p = n
2

+ O(
√

n)

otherwise yes

height h known ?

(soda’07)

positive natural embedding 4

all leaves at same depth known? ?

ordinary decomposable structures
(multitype ordered trees)

use basic result

use basic result

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white (

p+q
p

) 2
n probably ?

4 if p = n
2

+ O(
√

n)

otherwise yes

height h known ?

(soda’07)

positive natural embedding 4

all leaves at same depth known? ?

ordinary decomposable structures
(multitype ordered trees)

computable ? use frequecies ?
link with multivariable Lagrange inversion?

use basic result

use basic result

Entropy quizz

ordered trees

given degree distribution

entropy compression dynamicsuccinct d.s.

yes4 yesyes∑
αi log2 1/αi yes yes ?

bipartite:
p black, q white (

p+q
p

) 2
n probably ?

4 if p = n
2

+ O(
√

n)

otherwise yes

height h known ?

(soda’07)

positive natural embedding 4

all leaves at same depth known? ?

ordinary decomposable structures
(multitype ordered trees)

computable ? use frequecies ?
link with multivariable Lagrange inversion?

use basic result

use basic result

entropy measures diversity of local structure

Geometry

between 30 et 96 bits/vertex

Geometric information

vertex

triangle

1 reference to a triangle

3 references to vertices
3 references to triangles

”Connectivity”: the underlying triangulation

13n log n 416n bits

Combinatorial informationvs

vertex
coordinates

adjacency
relations between
triangles, vertices

or

Geometry

between 30 et 96 bits/vertex

Geometric information

vertex

triangle

1 reference to a triangle

3 references to vertices
3 references to triangles

”Connectivity”: the underlying triangulation

13n log n 416n bits

Combinatorial informationvs

vertex
coordinates

adjacency
relations between
triangles, vertices

or

#{triangulations} =
2(4n + 1)!

(3n + 2)!(n + 1)!
≈

16

27

√
3

2π
n−5/2

(
256

27

)n

Geometry

between 30 et 96 bits/vertex

Geometric information

vertex

triangle

1 reference to a triangle

3 references to vertices
3 references to triangles

”Connectivity”: the underlying triangulation

13n log n 416n bits

Combinatorial informationvs

vertex
coordinates

adjacency
relations between
triangles, vertices

or

#{triangulations} =
2(4n + 1)!

(3n + 2)!(n + 1)!
≈

16

27

√
3

2π
n−5/2

(
256

27

)n

⇒ entropy = log2
256
27

≈ 3.24 bpv.

Geometry

between 30 et 96 bits/vertex

Geometric information

vertex

triangle

1 reference to a triangle

3 references to vertices
3 references to triangles

”Connectivity”: the underlying triangulation

13n log n 416n bits

Combinatorial informationvs

vertex
coordinates

adjacency
relations between
triangles, vertices

or

#{triangulations} =
2(4n + 1)!

(3n + 2)!(n + 1)!
≈

16

27

√
3

2π
n−5/2

(
256

27

)n

⇒ entropy = log2
256
27

≈ 3.24 bpv. Room for improvement!

Triangulation encodings: trees decompositions

Edgebreaker,
Rosignac (’99)

CCCRCCRCCRECRRELCRE

C CC

R

C

C
R

C
C R

S
C
RR
EL

C
RE

([[[) (] (] (] [[[) [) (]] [) . . .

V5V5V6V5V4V5V8V5V5V4S4V3V4 1101000110000010010000011001000000000

Common visual framework (Isenburg Snoeyink’05)

Canonical orderings,
Chiang at al. (’98)

Degree encoding,
Touma-Gotsman (’98)

Leftmost tree in minimal
canonical ordering
Poulalhon, S. (’03)

3.67n

? but
efficient

4n

3.24n

Triangulation encodings: trees decompositions

Edgebreaker,
Rosignac (’99)

CCCRCCRCCRECRRELCRE

C CC

R

C

C
R

C
C R

S
C
RR
EL

C
RE

([[[) (] (] (] [[[) [) (]] [) . . .

V5V5V6V5V4V5V8V5V5V4S4V3V4 1101000110000010010000011001000000000

Common visual framework (Isenburg Snoeyink’05)

Canonical orderings,
Chiang at al. (’98)

Degree encoding,
Touma-Gotsman (’98)

Leftmost tree in minimal
canonical ordering
Poulalhon, S. (’03)

3.67n

? but
efficient

4n

3.24n

”optimal”

Triangulation encodings: trees decompositions

Edgebreaker,
Rosignac (’99)

CCCRCCRCCRECRRELCRE

C CC

R

C

C
R

C
C R

S
C
RR
EL

C
RE

([[[) (] (] (] [[[) [) (]] [) . . .

V5V5V6V5V4V5V8V5V5V4S4V3V4 1101000110000010010000011001000000000

Common visual framework (Isenburg Snoeyink’05)

Canonical orderings,
Chiang at al. (’98)

Degree encoding,
Touma-Gotsman (’98)

Leftmost tree in minimal
canonical ordering
Poulalhon, S. (’03)

3.67n

? but
efficient

4n

3.24n

”optimal”

better?!

Triangulation encodings: trees decompositions

V5V5V6V5V4V5V8V5V5V4S4V3V4 1101000110000010010000011001000000000

Common visual framework (Isenburg Snoeyink’05)

Degree encoding,
Touma-Gotsman (’98)

? but
efficient

3.24n

”optimal”

better?!

The (non-optimal) degree encoder gives much better codes
for low entropy triangulations!

Patch of triangular grids ⇒ 6,6,6,6,6,6,5,6,6,6,6,5,6,6,6,7. . .

Alliez Desbrun (Eurographics ’01): could a degree encoder be optimal?

Leftmost tree in minimal
canonical ordering
Poulalhon, S. (’03)

Triangulation encodings: trees decompositions

V5V5V6V5V4V5V8V5V5V4S4V3V4 1101000110000010010000011001000000000

Common visual framework (Isenburg Snoeyink’05)

Degree encoding,
Touma-Gotsman (’98)

? but
efficient

3.24n

”optimal”

better?!

The (non-optimal) degree encoder gives much better codes
for low entropy triangulations!

Patch of triangular grids ⇒ 6,6,6,6,6,6,5,6,6,6,6,5,6,6,6,7. . .

Alliez Desbrun (Eurographics ’01): could a degree encoder be optimal?

Gotsman (’06): No. Under constraints
∑

p1 = 1 and
∑

ipi = 6 on the
proportion of vertices of degree pi, the max entropy of degree sequence is

3.236 bpv < 3.245 bpv!

Leftmost tree in minimal
canonical ordering
Poulalhon, S. (’03)

Mesh compression Graph encoding Succinct representations

Jacobson (Focs89)

Munro and Raman (Focs97)

Chiang et al. (Soda01)

Castelli Aleardi, Devillers and S.
(Wads05, CCCG05, SoCG06)

Barbay et al. (Isaac07)

Nakano et al. (2008)

Poulalhon S.(Icalp03)

Fusy et al. (Soda05)

Blandford Blelloch (Soda03)

Castelli Aleardi, Fusy, Lewiner
(SoCG08)

Turan (’84)

Keeler Westbrook (’95)

Computer graphics Graph theory / combinatorics

He et al. (’99)

Edgebreaker

V alence (degree)

Rossignac (’99)

Touma and Gotsman (’98)

Alliez and Debrun

Algorithms and DS

Cut − border machine

Isenburg

Khodakovsky

Gumhold et al. (Siggraph ’98)

Gumhold (Soda ’05)

Lope et al. (’03)

Lewiner et al. (’04)

. (many many others)

. (many others)

Chuang et al. (Icalp98)

A more generic approach?

Decomposition of quadrangulations...by the french artist Léon Gischia

First idea (following Luca Castelli Aleardi)

(1903-1991)

Literary digression

Teacher Listen to me, If you cannot deeply understand these principles, these
arithmetic archetypes, you will never perform correctly a ”polytechnicien”
job... you will never obtain a teaching position at ”Ecole Polytechnique”.
For example, what is 3.755.918.261 multiplied by 5.162.303.508?

Student (very quickly) the result is 193891900145...

Teacher (very astonished) yes ... the product is really... But, how have you
computed it, if you do not know the principles of arithmetic reasoning?

(La leçon, Eugène Ionesco, 1951)

During a private lesson, a very young student, preparing herself for the
total doctorate, talks about arithmetics with her teacher

2nd idea (following Luca Castelli Aleardi)

Student: it is simple: I have learned by heart all possible results of all
possible different multiplications.

(the young student cannot understand how to subtract integers)

1
2
3

...

. . .

. . .

Level 1:
• Θ(n

log2 n
) regions of size Θ(log2 n),

represented by pointers to level 2

Level 2:
in each of the n

log2 n
regions

• Θ(log n) regions of size C log n,
represented by pointers to level 3

A hierarchical approach, with a dictionary at bottom.

Level 3: exhaustive catalog of all different
regions of size i < C log n:

• complete explicit representation.

1
2
3

...

. . .

. . .

Level 1:
• Θ(n

log2 n
) regions of size Θ(log2 n),

represented by pointers to level 2

Level 2:
in each of the n

log2 n
regions

• Θ(log n) regions of size C log n,
represented by pointers to level 3

A hierarchical approach, with a dictionary at bottom.

Level 3: exhaustive catalog of all different
regions of size i < C log n:

• complete explicit representation.

• global pointers of size log n

• local pointers of size log log n

1
2
3

...

. . .

. . .

Dictionnary space is o(n) if C small enough.

Level 1:
• Θ(n

log2 n
) regions of size Θ(log2 n),

represented by pointers to level 2

Level 2:
in each of the n

log2 n
regions

• Θ(log n) regions of size C log n,
represented by pointers to level 3

A hierarchical approach, with a dictionary at bottom.

Level 3: exhaustive catalog of all different
regions of size i < C log n:

• complete explicit representation.

• global pointers of size log n

• local pointers of size log log n

1
2
3

...

. . .

. . .

Dictionnary space is o(n) if C small enough.

Level 1:
• Θ(n

log2 n
) regions of size Θ(log2 n),

represented by pointers to level 2

Level 2:
in each of the n

log2 n
regions

• Θ(log n) regions of size C log n,
represented by pointers to level 3

A hierarchical approach, with a dictionary at bottom.

Level 3: exhaustive catalog of all different
regions of size i < C log n:

• complete explicit representation.

• global pointers of size log n

• local pointers of size log log n

space O(n
log2 n

· log n) = o(n)

1
2
3

...

. . .

. . .

Dictionnary space is o(n) if C small enough.

Level 1:
• Θ(n

log2 n
) regions of size Θ(log2 n),

represented by pointers to level 2

Level 2:
in each of the n

log2 n
regions

• Θ(log n) regions of size C log n,
represented by pointers to level 3

A hierarchical approach, with a dictionary at bottom.

Level 3: exhaustive catalog of all different
regions of size i < C log n:

• complete explicit representation.

• global pointers of size log n

• local pointers of size log log n

space O(n
log2 n

· log n) = o(n)

space O(n
log n

· log log n) = o(n)

The dominant term is given by the sum of references to the dictionary

∑
j
2.175kj = 2.175m bits

r

k triangles

Dominant term?

2.175bpt is entropy
of triangulations
with a boundary

A hierarchical approach, with a dictionary at bottom.

references on objects of Tk have size log2 Tk ∼ 2.175k if k →∞

The dominant term is given by the sum of references to the dictionary

∑
j
2.175kj = 2.175m bits

r

k triangles

Dominant term?

2.175bpt is entropy
of triangulations
with a boundary

A hierarchical approach, with a dictionary at bottom.

references on objects of Tk have size log2 Tk ∼ 2.175k if k →∞

we should take all k s.t.
1
12

log n < k < 1
2

log n

The dominant term is given by the sum of references to the dictionary

∑
j
2.175kj = 2.175m bits

r

k triangles

Dominant term?

2.175bpt is entropy
of triangulations
with a boundary

A hierarchical approach, with a dictionary at bottom.

references on objects of Tk have size log2 Tk ∼ 2.175k if k →∞

larger than previous
1
2
· 3.24bpt

we should take all k s.t.
1
12

log n < k < 1
2

log n

The dominant term is given by the sum of references to the dictionary

∑
j
2.175kj = 2.175m bits

r

k triangles

Dominant term?

2.175bpt is entropy
of triangulations
with a boundary

A hierarchical approach, with a dictionary at bottom.

references on objects of Tk have size log2 Tk ∼ 2.175k if k →∞

larger than previous
1
2
· 3.24bpt

we should take all k s.t.
1
12

log n < k < 1
2

log n

Adaptative to ”reasonable”
entropy reduction

A word of conclusion

• A relatively generic method to get adaptative s.d.s:

triangulations with boundary, trees, polyhedral maps...

but complex hierarchical structure, unpractical subleading terms...

• Some examples of nice optimal encodings

but not so adaptative and no query support

⇒ find an optimal adaptative encoder for triangulations with given degrees

⇒ develop ”elegant” succinct data structures:

a non asymptotic 2n + O(log n) bits sds for plane trees with n vertices?

⇒ find other parameters of trees or maps that allow for simple adaptative
compression or sds (depth?)

