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2 Counting, 
oding and sampling with words 8.08.0. Introdu
tionThis 
hapter illustrates the use of words to derive enumeration results andalgorithms for sampling and 
oding. Although it 
an be read independently, itis intended as a 
ompanion to Chapter 11, Words and trees, in Lothaire 1999.Given a family C of 
ombinatorial stru
tures, endowed with a size su
h thatthe subset Cn of obje
ts of size n is �nite, we 
onsider three problems:{ Counting: determine for all n � 0, the 
ardinal Card(Cn) of the set Cn ofobje
ts with size n.{ Sampling: design an algorithm RandC that, for any n, produ
es a randomobje
t uniformly 
hosen in Cn: in other terms, the algorithm must satisfy,for any obje
t O 2 Cn, P(RandC(n) = O) = 1=Card(Cn).{ Optimal 
oding: 
onstru
t a fun
tion ' that maps inje
tively obje
ts of Con words of f0; 1g� in su
h a way that an obje
t O of size n is 
oded bya word '(O) of length roughly bounded by log2 Card(Cn).These three problems have in 
ommon an enumerative 
avour, in the sensethat they are immediately solved if a list of all obje
ts of size n is available.However, sin
e in general there is an exponential number of obje
ts of size nin the families we are interested in, this solution is by no way satisfying. Fora wide 
lass of so-
alled de
omposable 
ombinatorial stru
tures, in
luding nonambiguous algebrai
 languages, algorithms with polynomial 
omplexity 
an bederived from the rather systemati
 re
ursive method. Our aim is to explore
lasses of stru
tures for whi
h an even tighter link exists between 
ounting,sampling and 
oding.For a number of natural families of 
ombinatorial stru
tures, the 
ountingproblem has indeed a \ni
e" solution: by ni
e 
ould be intended that thereis a simple formula for Card(Cn), that the generating series Pn�0 Card(Cn)xnis an algebrai
 fun
tion, et
. The rationale of this 
hapter is that these ni
eenumerative properties are the visible \tra
es" of deeper stru
tural properties,and that making the latters expli
it is a way to solve simultaneously and simplythe three problems above.The enumeration of walks on latti
es (Se
tion 8.1) is an inextinguishablesour
e of ni
e 
ounting formulas. These formulas 
an often be given simpleinterpretations by viewing walks as words on an alphabet of steps, and usingingredients of the 
ombinatori
s of words. In parti
ular we shall 
onsider somerational and algebrai
 languages, shu�es and the 
y
le lemma.Convex or dire
ted polyominoes (Se
tion 8.2) illustrate the idea that ni
e
ombinatorial properties help for sampling. Sin
e enumeration and random gen-eration of general polyominoes appear intra
table, it was proposed in statisti
alphysi
s to study sub
lasses like 
onvex or dire
ted polyominoes, that displaybetter enumerative properties. These obje
ts 
an be des
ribed in terms of sim-ple languages, often algebrai
, and this leads to eÆ
ient random generators.The family of planar maps (Se
tion 8.3) is a further example of 
lass withunexpe
tedly ni
e enumerative properties. Maps are the natural 
ombinatorialabstra
tion for embeddings of graphs in the plane and for polygonal meshesin 
omputational geometry, and maps were also largely studied in theoreti
alVersion February 6, 2004



8.1. Counting: walks in se
tors of the plane 3physi
s. Toy models of statisti
al physi
s, like per
olation or the Ising model,are often studied on regular latti
es, but also on random maps. The uniformdistribution indeed appears to give, at the dis
rete level, the right notion of dis-tribution of probability on possible universes as pres
ribed by quantum gravity.In these various 
ontexts, results have been obtained independently on 
ounting,sampling and 
oding problems. Again we rely on a 
ombinatorial explanationof the enumerative properties of planar maps to approa
h these three problems.Most of the time, we state and prove results for some parti
ularly simplestru
tures, while they are valid for more generi
 families (e.g. walks with moregeneral steps, polyominoes on other latti
es, maps with 
onstraints). We madethis 
hoi
e to maintain the 
hapter relatively short, but also be
ause on thesesimple stru
tures the \tra
es" are more visible, and the underlying 
ombina-tori
s appears more expli
itly.All the obje
ts that are 
onsidered in this 
hapter have ni
e geometri
 in-terpretations in the plane. We have 
hosen to rely on the geometri
 intuition ofthe reader to support these interpretations, and 
on
entrate the proofs on the
ombinatorial aspe
ts.8.1. Counting: walks in se
tors of the planeA (nearest neighbor) walk on the square latti
e Z2 is a �nite sequen
e of verti
esw = (w0; w1; : : : ; wn) in Z2 su
h that ea
h step wi�wi�1, for 1 � i � n, belongsto the set S = f(0; 1); (0;�1); (�1; 0); (1; 0)g. The number of steps n is the lengthof w; w0 and wn are respe
tively its startpoint and endpoint. The reverse walkof w is the walk �w = (wn; wn�1; : : : ; w1; w0). A loop is a walk with identi
alstartpoint and endpoint.Elements of S are also denoted u; d; l; r { standing for up, down, left andright. Unless expli
itly spe
i�ed, we 
onsider walks up to translation, or equiv-alently, we assume that they start from the origin (0; 0). A walk 
an thus beseen as a word on the alphabet S = fu; d; l; rg and we identify the set of walkswith the language fu; d; l; rg�, making no distin
tion between both of them.In the rest of this se
tion, we study families of walks with various boundary
onstraints: on a line, a half line, a half plane, a quarter plane, and �nally, onthe slitplane. This is the o

asion to introdu
e enumerative tools that will beof use in later se
tions.8.1.1. Un
onstrained walks and rational seriesLet us �rst 
onsider walks that use only verti
al steps (i.e. u or d), and hen
estay on the axis (x = 0). These walks are sometimes 
alled one-dimensionalsimple symmetri
 walks, and are often 
onsidered in their \time stret
hed" ver-sion: ea
h step u or d is repla
ed by a (1; 1) or (1;�1) step, in order to give anunambiguous representation in the plane, as illustrated by Figure 8.1. Up toa �=4-rotation, these walks are in one-to-one 
orresponden
e with walks withsteps in fu; rg and as su
h, are sometimes 
alled stair
ase walks, or dire
tedtwo-dimensional walks. Version February 6, 2004
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) and rotated.Figure 8.1. Three representations of the one-dimensional walk duuudu.Counting these walks with respe
t to their length ` amounts to 
ountingwords on fu; dg of length `, and there are 2` of those. Restri
ting them to endat ordinate j, with ` = 2n+ jjj for some nonnegative n, is hardly more diÆ
ult:for j � 0, the 
orresponding words are arbitrary shu�es of n+ j letters u andn letters d, and similarly for j � 0, they are shu�es of n letters u and n � jletters d. Hen
e the number of walks of length 2n+ jjj ending at ordinate j is�2n+ jjjn �:It will be 
onvenient to express enumerative results in terms of languagesand generating fun
tions. In this 
ase, the language V of walks on the verti
alaxis is just fu; dg�. Equivalently, in the algebra Qhhu; d ii of formal power seriesin non 
ommuting variables, the language V (viewed as the formal sum of itswords) is uniquely de�ned by the linear equation:V = "+ (u+ d)V ; (8.1.1)whi
h 
orresponds to the non ambiguous de
omposition: \a walk is either theempty walk or made of a step u or d followed by a walk".De�ne now Æ(w) = jwju�jwjd for any word w on S, so that Æ(w) is the �nalordinate of the walk w. The generating fun
tion of the language V with respe
tto the length (variable t) and the �nal ordinate (variable y) isV (t; y) = Xw2V tjwjyÆ(w);whi
h is an element of the algebra Q(y)[[t℄℄ of formal power series in the variablet with 
oeÆ
ients that are rational fun
tions in y.Observe that j:j and Æ are morphisms of mono��ds (S�; �) ! (Z;+), so thatV (t; y) 
an be viewed as the 
ommutative image of V by the morphism of algebraw 7! tjwjyÆ(w) from Qhhu; d ii to Q(y)[[t℄℄. Taking the 
ommutative image ofEquation 8.1.1, the generating fun
tion V (t; y) satis�es:V (t; y) = 1 + (ty + ty�1)V (t; y):Version February 6, 2004



8.1. Counting: walks in se
tors of the plane 5An expli
it expression of V (t; y) follows, and its expansion of 
ourse agrees withthe previous dire
t enumeration:V (t; y) = 11� (y + y�1)t = +1Xm=0 mXk=0�mk�tmym�2k:The 
ommutative image me
hanism produ
es a priori a formal power seriesof Q(y)[[t℄℄, but, as in the present example, it retains properties of the initiallanguage: the series V (t; y) of the rational language fu; dg� is a rational fun
tionof t and y, i.e. belongs to Q(t; y). Walks with more general steps are dealt within a similar way: for instan
e the language W asso
iated to walks in Z2 is S�and the generating fun
tion of these walks with respe
t to the length and the
oordinates of the endpoint is:W (t;x; y) = 11� (x+ x�1 + y + y�1)t :Another illustration is given by the family of walks that never immediately undoa step they have just done. Their language is the set of words avoiding the fa
torsfud; du; lr; rlg whi
h is well known to be rational. A

ordingly their generatingfun
tion with respe
t to the length and the 
oordinate of the endpoints belongsto Q(t; x; y). Conversely, when the generating fun
tion of a set of obje
ts isrational, it is natural to try to en
ode them by words of a rational language.8.1.2. Walks on a half line and Catalan's fa
torizationWe shall now 
onsider walks that stay on the upper half axis (x = 0; y � 0).More pre
isely let the depth of w be the absolute value of the minimal ordinateÆ(v) for all pre�xes v of w. Walks that stay on the upper half axis are exa
tlythe walks with depth zero, and this 
ondition is 
alled the nonnegative pre�x
ondition. Loops satisfying the nonnegative pre�x 
ondition are often 
alledDy
k words on the alphabet fu; dg. In turn, walks satisfying the nonnegativepre�x 
ondition are sometimes referred to as Dy
k pre�xes, sin
e any of them
an be 
ompleted into a Dy
k word. See Figure 8.2 for examples. Let D denotethe language of Dy
k words and Dn the set of Dy
k words of length 2n. Thefollowing lemma gives a 
entral role to Dy
k words.Lemma 8.1.1 (Catalan's fa
torization). The language fu; dg� of one-dimen-sional walks admits the following non ambiguous de
omposition:fu; dg� = (Dd)�D(uD)�:More pre
isely, the language of walks with depth ` and ending at ordinate j is(Dd)`D(uD)j+`Proof. For any word w on the alphabet fu; dg with depth ` and �nal ordinatej, su
h a fa
torization is obtained at �rst passages from ordinate i+ 1 to i forVersion February 6, 2004
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w1 w2 w4 w5 w7 w8 w9Figure 8.3. Catalan's fa
torization of a walk in (Dd)3D(uD)5:i = �1; : : : ;�` and last passages from ordinate i to i+ 1 for i = �`; : : : ; j � 1.The uniqueness of the de
omposition follows from the fa
t that any stri
t pre�xv of a word in Dd satis�es Æ(v) � 0 by de�nition of D, and hen
e does notbelong to Dd.Catalan's fa
torization immediately allows us to derive the total number ofwalks on the half line.Proposition 8.1.2. The number of Dy
k pre�xes of length m is� m�m2 ��:Proof. A Dy
k pre�x of even length is a walk with depth zero and even �nalordinate 2j for some integer j � 0. A

ording to Lemma 8.1.1, the language ofthese words is D(uD)2j . Upon 
hanging the j �rst fa
tors u in fa
tors d, wordsof length 2n in this language are in bije
tion with words of length 2n in thelanguage (Dd)jD(uD)j , i.e. with words of the language of loops with depth j.Hen
e Dy
k pre�xes of length 2n are in bije
tion with loops of the same length,and their number is �2nn �.Similarly, a Dy
k pre�x of odd length ends at ordinate 2j+1, for some j � 0.But words of equal length in the languages D(uD)2j+1 and (Dd)jD(uD)j+1 arein bije
tion. The union of the last languages for all j � 0 is the set of words wwith Æ(w) = 1, �2n+1n � of whi
h have length 2n+ 1.Version February 6, 2004



8.1. Counting: walks in se
tors of the plane 7The previous proof 
an be summarized as follows: �nd a fa
torization intoDy
k fa
tors separated by some spe
i�
 steps (typi
ally �rst or last passages),and then reorganize the fa
torization without modifying the Dy
k fa
tors. Weshall apply this prin
iple again to give a bije
tive enumeration of Dy
k words.Proposition 8.1.3. The number of loops of length 2n that stay on the halfaxis (x = 0; y � 0) is the n-th Catalan number:Cn = 1n+ 1�2nn �:Proof (as a 
orollary of Proposition 8.1.2). Removing the last step of a Dy
kpre�x of length 2n + 1 yields a pre�x of length 2n. In this way every Dy
kpre�x of length 2n is obtained twi
e, ex
ept for Dy
k paths that are obtainedonly on
e. Hen
e �2n+1n � = 2�2nn �� CardDn, and the formula follows.Proof (dire
t bije
tion). We prove the relation (n+1) CardDn = �2nn � by givinga bije
tion between the set of pairs (v; v0) with vv0 2 Dn and v empty or endingwith a letter u, and the set of loops of length 2n. To do that we �rst state twofa
torizations that follow from Lemma 8.1.1:{ the set of pairs (v; v0) as above with Æ(v) = ` is (Du)` �D(dD)`;{ the set of loops with depth ` is (Dd)`D(uD)`.Ex
hanging u and d fa
tors in these de
ompositions leads to the announ
edbije
tion.The same idea allows to re�ne the enumeration of Dy
k pre�xes.Proposition 8.1.4. The number of Dy
k pre�xes of length 2n + j and �nalordinate j � 0 is j + 1n+ j + 1�2n+ jn �:Proof. We prove the formula by giving a bije
tion between pairs (w; i) where wis a walk with Æ(w) = j and i 2 f0; : : : ; jg, and pairs (w0; k) where w0 is a Dy
kpre�x with Æ(w0) = j and k 2 f0; : : : ; n+ jg:{ to any pair (w; i) as above, asso
iate (wi; : : : ; wj ; w0; : : : ; wi�1) where w0 isthe loop and the other w` are the Dy
k paths su
h that w = w0uw1 � � �uwj(this is the de
omposition at the last passages at level 0, . . . , j).{ to any pair (w0; k) as above, asso
iate (w00; : : : ; bw0i; : : : ; w0j), where the w0̀are the Dy
k words su
h that w0 = w00uw01 � � �uw0j , i is the index of the w0i
ontaining or following the kth letter u in the word uw0, and bw0i = (v; v0)is the fa
torization of w0i after this letter.The bije
tion in the se
ond proof of Proposition 8.1.3 allows to transform thepair bw0i = (v; v0) in a loop, so that both sets are asso
iated to the same set ofsequen
es of j + 1 walks.
Version February 6, 2004
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br rFigure 8.4. An ex
ursion in the half plane.8.1.3. Walks on a half plane and algebrai
 seriesWalks in the half plane (y � 0) are hardly more 
ompli
ated to enumerate thanwalks on the half line. Indeed, as words on the alphabet S, these walks are
ompletely 
hara
terized by the fa
t that all their pre�xes v 
ontain at least asmany letters u as letters d. Hen
e the asso
iated language is the set of shu�esof verti
al Dy
k pre�xes with sequen
es of horizontal steps. Various formulas
an be derived from this 
hara
terization: for instan
e, the number of loops oflength 2n that stay in the half plane (y � 0) isnXk=0�2n2k��2kk �Cn�k:Rather than going further in this dire
tion, we shall observe that the set ofthese walks is an algebrai
 language and return to generating fun
tions. Con-sider the alphabet Ak = fu; d; x1; : : : ; xkg, and the mono��d morphism Æ de�nedas previously by Æ(w) = jwju � jwjd. The language M(k) of k-
olored Motzkinwords is the set of words w on the alphabet Ak satisfying Æ(w) = 0 and thenonnegative pre�x property. For k = 0 this is the Dy
k language. For k = 2,upon setting x1 = l, x2 = r, bi
olored Motzkin words are ex
ursions in the halfplane, i.e. walks in the half plane (y � 0) that �nish on the axis (y = 0).The language of k-
olored Motzkin words admits an algebrai
 des
ription:M(k) = "+ (x1 + : : :+ xk)M(k) + uM(k)dM(k); (8.1.2)whi
h derives immediately from the non ambiguous de
omposition of any nonempty Motzkin word at its smallest non empty pre�x v su
h that Æ(v) = 0.Taking the 
ommutative image, the generating fun
tionM (k)(t) = Pw2M(k) tjwjof the Motzkin language with respe
t to the length satis�es the equation:M (k)(t) = 1 + ktM (k)(t) + t2M (k)(t)2: (8.1.3)Observe that this equation 
ompletely determines M (k)(t), sin
e it has a uniquesolution in the spa
e of formal power series in the variable t (as 
an be 
he
kedby indu
tion, extra
ting the 
oeÆ
ient of tn on both sides).Any additive parameter 
an be taken into 
onsideration in the 
ommutativeimage. For instan
e the previous algebrai
 de
omposition yields the followingproposition in the 
ase of bi
olored Motzkin words.Version February 6, 2004



8.1. Counting: walks in se
tors of the plane 9Proposition 8.1.5. The generating fun
tion for walks in the half plane re-turning to the axis (y = 0), with respe
t to their length, abs
issa of the endpointand number of verti
al steps, is:M (2)(t;x; z) = 1� t(x+ 1x )�q[1� t(x+ 1x + 2z)℄[1� t(x+ 1x � 2z)℄2t2z2 :Proof. Taking the 
ommutative image with the map w ! tjwjxjwjr�jwjlzjwju+jwjdyields the equationM (2)(t;x; z) = 1 + t(x + 1x )M (2)(t;x; z) + t2z2M (2)(t;x; z)2:The dis
riminant of this equation is�(t;x; z) = [t(x+ 1x )� 1℄2 � 4t2z2;and among the two roots of the quadrati
 equation, only the one of the propo-sition is a formal power series in t.Equation (8.1.3) shows that the series M (k)(t) satis�es a relation of the formP (M (k)(t); t) = 0 with P a polynomial, whi
h means that it is an algebrai
formal power series. This illustrates the fa
t that algebrai
 languages thatadmit a non ambiguous algebrai
 des
ription naturally have algebrai
 generatingfun
tions with respe
t to additive parameters. Conversely, when the generatingfun
tion of a set of obje
ts is algebrai
, one would like to obtain it from analgebrai
 des
ription of the obje
ts (or more formally from an en
oding of theobje
ts by the words of an algebrai
 language with a non ambiguous des
ription).In this sense, Equation (8.1.2) is more satisfying than Catalan's fa
torization,even though the 
ommutative image of the latter also indu
es an algebrai
equation.Expanding the generating fun
tion M (2)(t; 1; 1) = (1� 2t�p1� 4t)=2t2 inpowers of t, one observe the following amusing result (
f. Problem 8.1.5).Corollary 8.1.6. The number of bi
olored Motzkin words of length n isgiven by the Catalan number Cn+1.Loops in the up diagonal quadrant (x+y � 0; y � x) are simple to des
ribe:let w be su
h a loop of length 2n, and 
onsider the proje
tions of the walk onthe two diagonals (x = y) and (x = �y). Let fa; bg be the elementary steps onthese two axes, with a 
orresponding to up steps and b to down steps. Steps inZ2 have the following proje
tions:u �! (a; a) d �! (b; b) l �! (b; a) r �! (a; b)and the proje
tions of w on the diagonals are Dy
k words of length 2n onfa; bg; re
ipro
ally any pair of Dy
k words of same length over this alphabet
orresponds to a loop in the up diagonal quadrant. Hen
e:Version February 6, 2004
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bbbr(b) A loop in the �rst quadrant.Figure 8.5. Walks in quadrants.Proposition 8.1.7. The number of loops of length 2n that stay in the diag-onal quadrant (x+ y � 0; y � x) is given by:C2n:More generally, any walk of length 2n+ jij+ j and endpoint (i; j) in the updiagonal quadrant is des
ribed by its proje
tions on the two diagonal axes; theseproje
tions are de
oupled Dy
k pre�xes of length 2n + jij + j with respe
tiveordinate of the endpoint i+ j and j � i. Hen
e:Proposition 8.1.8. The number of walks of length 2n+ jij+ j and endpoint(i; j) that stay in the diagonal quadrant (x+ y � 0; y � x) is given by:(j + i+ 1)(j � i+ 1)(n+ j + jij+ 1)(n+ j + 1)�2n+ jij+ jn+ jij ��2n+ jij+ jn �;and the total number of walks of length n that stay in the diagonal quadrant(x+ y � 0; y � x) is given by � n�n2 ��2:The 
ase of loops in the �rst quadrant (x � 0; y � 0) is quite similar. Theseloops are words w on S su
h that both restri
tions of w to fu; dg and to fl; rgare Dy
k words; hen
e the language of loops in the �rst quadrant is the shu�eof the Dy
k languages on fu; dg and fl; rg.Proposition 8.1.9. The number of loops of length 2n that stay in the quad-rant (x � 0; y � 0) is given by:nXk=0�2n2k�CkCn�k = 1(2n+ 1)(2n+ 2)�2n+ 2n+ 1 �2:Version February 6, 2004
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(b) The fa
torization of a walk.Figure 8.6. On the slitplane.The general 
ase of walks with given length and endpoint or with givenlength is similar to the 
ase of the diagonal quadrant and left to the reader.A remarkable 
onsequen
e of these formulas is that the languages of walksin the diagonal (or in the standard quadrant) 
annot be an algebrai
 language:on the one hand the asymptoti
 number of walks of length n in the diagonalquadrant, � nbn=2
�2, grows like 4n=n when n goes to in�nity; on the other hand,the possible asymptoti
 behaviors of the Taylor 
oeÆ
ients of an algebrai
 seriesare 
lassi�ed, and do not in
lude the form �nn�i for i a positive integer; thereforethe generating fun
tion of walks in the diagonal quadrant is not algebrai
, andthe asso
iated language 
annot be algebrai
 either.8.1.4. Walks on the slitplane and the 
y
le lemmaWe 
all slitplane the 
omplement of the half axis (x = 0; y � 0) in the squarelatti
e Z2. Walks on the slitplane are de�ned as walks that do not tou
h this halfaxis ex
ept maybe at their startpoint or endpoint, as shown in Figure 8.6(a).The tool we shall use to enumerate walks on the slitplane is the so-
alled
y
le lemma. For any alphabet A endowed with a morphism Æ : (A; �)! (Z;+),a word w in A� is said to have the  Lukasiewi
z property if every stri
t pre�x vof w satis�es Æ(v) > Æ(w).Lemma 8.1.10 (Cy
le lemma). Let A be an alphabet endowed with a mor-phism Æ : (A; �) ! (Z;+). Then a word w in A� su
h that Æ(w) = �1 ad-mits a unique fa
torization w1w2 with w1 non empty su
h that w2w1 has the Lukasiewi
z property.Proof. Let w1 be the shortest pre�x of w with Æ(w1) equal to the depth of w.Then w2w1 has the  Lukasiewi
z property. Moreover, let us verify that there isno other su
h fa
torization. First assume that w01 is a pre�x of w shorter thanw1. Then the pre�x w00 of w02 of length jw1j � jw01j satis�es Æ(w00) < 0 and isVersion February 6, 2004



12 Counting, 
oding and sampling with words 8.0also a stri
t pre�x of w02w01. Hen
e w02w01 has not the  Lukasiewi
z property. Itremains to 
onsider the 
ase of a pre�x w01 of w longer than w1. The suÆx w00of w01 of length jw01j � jw1j satis�es Æ(w) � 0 and is also a suÆx of w02w01. Sin
emoreover Æ(w02w01) = �1, w02w01 has not the  Lukasiewi
z property.Corollary 8.1.11. Consider the alphabet A = fa1; a2; : : : ; akg, endowedwith a morphism Æ, and let n1; n2; : : : ; nk be nonnegative integers su
h that,kXi=1 niÆ(ai) = �1:Then the number of words with ni letters ai for any 1 � i � k that have the Lukasiewi
z property is equal to:1n1 + : : :+ nk�n1 + : : :+ nkn1; : : : ; nk �:Proof. For any word w as above, Æ(w) = �1, so that the 
onjuga
y 
lass of w
ontains jwj di�erent words. A

ording to the 
y
le lemma exa
tly one of these
rossref to 
hapter 1 ? n1 + � � �+ nk words has the  Lukasiewi
z property. The formula follows.For A = fu; dg with Æ(u) = 1, Æ(d) = �1, the set of words enumeratedby the previous 
orollary is the Dy
k- Lukasiewi
z language Dd, and we re
overProposition 8.1.3.Corollary 8.1.12. Let C be a 
ode for a set of words on the alphabet A.def of 
ode needed? Then the generating fun
tion (with respe
t to the length) for  Lukasiewi
z wordsw in C� su
h that Æ(w) = �1 is equal to[y�1℄ log 11� C(t; y) ;where C(t; y) is the generating fun
tion of the 
ode C with respe
t to the length(variable t) and to Æ (variable y).Proof. The generating fun
tion of words on the alphabet A with k fa
tors in C isC(t; y)k. Restri
ting the generating fun
tion to words w with Æ(w) = �1 is doneby taking the 
oeÆ
ients of y�1 in the series. The fra
tion of these words thathave the  Lukasiewi
z property is then 1=k, so that their generating fun
tion isXk�1 1k [y�1℄C(t; y)k = [y�1℄ log 11� C(t; y) :To study walks on the slitplane, it is natural to de
ompose them at pointswhere they tou
h the verti
al axis (x = 0), as shown in Figure 8.6: any walkw on the plane that �nishes on the verti
al axis 
an be uniquely fa
tored intoVersion February 6, 2004



8.1. Counting: walks in se
tors of the plane 13verti
al steps on this axis and primitive ex
ursions in the left or right half plane;in other terms, the language of these walks is(u+ d+ lM(l)r + rM(r)l)�where M(l) and M(r) respe
tively denote the set of ex
ursions in the left halfplane (x < 0) and in the right one (x > 0). Hen
e the set fu; dg[lM(l)r[rM(r)lforms a 
ode C for walks on the plane ending on the verti
al axis: these walks
an thus be viewed as walks on the axis (x = 0) with the in�nite set of steps C.To apply the 
y
le lemma to walks on the slitplane, we 
onsider again themorphism Æ(w) = jwju�jwjd. Let us single out the 
lass of walks on the slitplanethat start at position (0; 1) and end on the half axis at position (0; 0): thesewalks are exa
tly the  Lukasiewi
z words w in C� su
h that Æ(w) = �1.Proposition 8.1.13. The number of walks on the slitplane with startpoint(0; 0), endpoint (0; 1) and length 2n+ 1 is:C2n+1 = 12n+ 2�4n+ 22n+ 1�:Proof. Let C(t; y) be the 
ommutative image of C, so that 1=(1� C(t; y)) isthe generating fun
tion of words on the 
ode C. Observe that a �=2- (respe
-tively ��=2-) rotation maps bije
tively words of length n in M(l) (resp. M(r))on words of length n in the bi
olored Motzkin language M(2), hen
e Proposi-tion 8.1.5 yields:log 11� C(t; y) = 12  log 11� t(y + 1y + 2) + log 11� t(y + 1y � 2)!= 12 Xn�1 tnn �(y + 1y + 2)n + (y + 1y � 2)n� :The formula follows by extra
ting the 
oeÆ
ient of y�1 and resumming.The above proof does not yield an interpretation of the o

urren
e of Catalannumbers in Proposition 8.1.13. We 
on
lude this se
tion with a more dire
tderivation.Proof of Proposition 8.1.13 (bis). We are interested in walks w su
h that{ jwjl = jwjr , and jwjd = jwju + 1,{ and for any stri
t pre�x v of w, either jvjl 6= jvjr, or jvju � jvjd.The �rst 
ondition a

ounts for the displa
ement between the startpoint andendpoint, while the se
ond one ensures that the walks stay in the slitplane. Letus des
ribe a one-to-one 
orresponden
e ' between these walks and ex
ursionsof even length in the half plane (bi
olored Motzkin words). The result thenfollows from Corollary 8.1.6.Let w be a walk as in the proposition. Sin
e jwjd = jwju + 1, Lemma 8.1.10yields a unique fa
torization of w in w1dw2 su
h that ea
h proper pre�x v ofVersion February 6, 2004



14 Counting, 
oding and sampling with words 8.0
bbb

b

b

b

bb

b

bb

b

b

b

bb

b

b b

bbb

b

bbb

bb

b

b bb b

b

bb

b b

b b

b b

b b b b

b b b

b

r

r

r

r(a) A walk w on the slitplane.
b b

b

b

b

b b

b

bb

b b b

b

b b b

b b

b

bbbb

b

b b

bb

bb

bb

bbbb

bbb

b

bb

b

b

b

bb

br

r r(b) The half plane ex
ursion '(w).Figure 8.7. On the slitplane.w2w1d satis�es jvju � jvjd: this is the fa
torization at the �rst arrival to thelowest level. Let �w2 be the walk that is symmetri
 to w2 with respe
t to theverti
al axis (x = 0), and '(w) be equal to �w2w1. Then '(w) is a bi
oloredMotzkin word, 
orresponding to an ex
ursion in the half plane (y � 0) of length2n. Moreover the fa
torization �w2w1 of '(w) is the fa
torization at the �rstpassage on the lowest point on the verti
al line of equidistan
e between thestartpoint and endpoint of '(w).Conversely, given a bi
olored Motzkin word w0, let w01w02 be its fa
torizationat the �rst passage on the lowest point on the verti
al line of equidistan
ebetween its startpoint and endpoint. Let  (w0) = w02d �w01. The walk  (w0) is
learly a walk in the slitplane from (0; 1) to (0; 0), and '( (w0)) = w0. Moreover, ('(w)) = w for any walk w as in the proposition, and this 
on
ludes the proof.As dis
ussed in Se
tion 8.1.3, the language of bi
olored Motzkin words hasa very natural algebrai
 de
omposition. However this de
omposition does not
arry very well through the bije
tion.8.2. Sampling: polygons, animals and polyominoesA walk on the square latti
e Z2 is 
alled a self-avoiding walk, or a path, if itvisits at most on
e ea
h vertex of the latti
e. A self-avoiding polygon, or simplyin this text, a polygon, is a self-avoiding loop.An animal is a set A of verti
es of the latti
e su
h that any two verti
es ofA are 
onne
ted by a path visiting only verti
es of A. Animals are 
onsideredup to translations of the latti
e. Pla
ing a unit square 
entered on ea
h vertexof A, we obtain a polyomino. The latter are however more naturally de�ned asedge-
onne
ted sets of squares of the latti
e. These de�nitions are illustratedby Figure 8.8. Ea
h polygon is the 
ontour (or the boundary) of a simply-
onne
ted polyomino, and in the plane this is a one-to-one 
orresponden
e (seeVersion February 6, 2004
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(
) and a polyomino.Figure 8.8. Three related 
lasses of obje
ts.
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onvex polyomino. rrr
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rr(b) A dire
ted polyomino.Figure 8.9. Sub
lasses of polyominoes.Figures 8.10, 8.11 and 8.12). In parti
ular the length of a polygon 
orrespondsto the perimeter of the polyomino. A polygon has moreover dimension (p; q)if the smallest re
tangle in whi
h it 
an be ins
ribed has horizontal width pand verti
al width q. Finally the area of a polyomino is its number of 
ells,
orresponding for animals to the number of verti
es.Little 
an be said from the enumerative point of view on animals, polygonsor polyominoes in general. Two ideas have however been parti
ularly su

essfulfor de�ning sub
lasses amenable to mathemati
al study and still of interest:restri
tion to 
onvex or to dire
ted obje
ts. A polygon of dimension (p; q) is
onvex if its length is 2p+2q. This de�nition stresses the fa
t that 
onvex poly-gons are in some sense the most extended polygons, and do not make meanders.An equivalent, but maybe more appealing interpretation is in terms of polyomi-noes: a polyomino is 
onvex if its interse
tion with any horizontal or verti
alline is 
onne
ted. A polyomino (respe
tively an animal) is dire
ted if there isa 
ell (resp. a vertex) from whi
h every 
ell (resp. vertex) 
an be rea
hed bya path going up or right inside the obje
t. These de�nitions are illustrated byFigure 8.9. Version February 6, 2004



16 Counting, 
oding and sampling with words 8.08.2.1. Generalities on samplingTogether with the enumerative questions, mu
h interest has been given to theproperties of random animals, polyominoes and polygons. By random is meanthere the uniform distribution: obje
ts of equal size are given equal probabilityto appear. We illustrate this trend by 
on
entrating on the derivation of randomgenerators. In order to des
ribe these algorithms, we assume that we have atour disposal a perfe
t random number generator Rand(m;n) that outputs aninteger of the interval [m;n℄ 
hosen with uniform probability: for all m � i � n,P(Rand(m;n) = i) = 1=(n�m+ 1):We assume unit 
ost for arithmeti
 operations and for 
alls to the generatorRand(). These randomness and 
omplexity models are justi�ed by the fa
tthat our algorithms only sample and 
ompute on integers that are polynomiallybounded in the size of the obje
ts generated.We shall need a random sampler for elements of S(w), the set of permu-tations of the letters of a �xed word w. The following algorithm does this byapplying a random permutation to the letters of w.RandPerm(w)1 for i 2 to jwj do2 Swap(w[i℄; w[Rand(1; i)℄)3 return wLemma 8.2.1. RandPerm(w) returns in linear time a random element ofS(w) under the uniform distribution: for all w0 2 S(w),P(RandPerm(w) = w0) = 1Card(S(w)) :Proof. A permutation � on the set f1; : : : ; ng has a unique de
omposition as aprodu
t � = �n : : : �2 of transpositions of the form �i = (ji; i) with 1 � ji � i,and 
onversely any su
h de
omposition provides a permutation. Therefore,the 
all RandPerm(w) on a word w with distin
t letters generates a uniformrandom permutation of the letters. Upon labelling identi
al letters by theirinitial pla
e, we 
on
lude that uniformity is also preserved in the general 
ase.In the rest of this part, we des
ribe random sampling algorithms for 
onvexpolygons and dire
ted animals.8.2.2. Parallelogram polyominoes and the 
y
le lemmaA 
onvex polyomino P is a parallelogram polyomino if its 
ontour 
ontains thebottom left and top right 
orners of its bounding box. Equivalently, its 
ontourmust be a stair
ase polygon, i.e. a polygon made of two up-right dire
ted paths,meeting only at their extremities. These upper and lower paths, being dire
ted,Version February 6, 2004
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Figure 8.10. A parallelogram polyomino and its 
ontour.
an be 
oded with two letters. For later purpose, it will be 
onvenient to 
odethem on the alphabet fh; vg, with h standing for a horizontal step and v standingfor a verti
al step. Starting from the bottom left 
orner, let vw1h be the word
oding the upper path, and hw2v be the word 
oding the lower path (thereis no 
hoi
e for �rst and last letters). If P has dimension (p + 1; q + 1) thenjw1jh = jw2jh = p and jw1jv = jw2jv = q. The redu
ed 
ode of a stair
asepolygon w is the word on the alphabet A = ��vh�; �vv�; �hh�; �hv�	 obtained bysta
king the two words w1 and w2. In the example of Figure 8.10, the two pathsare respe
tively vw1h = v �vhvhvvhhhvhh �h and hw2v = h �hhvhvhvvhhvh �v.Words on A that 
ode for stair
ase polygons are 
hara
terized by the fa
tsthat they have an equal number of letters h in both rows, and that their pre�xes
ontain at least as many letters �vh� as letters �hv�: indeed, the morphism Æindu
ed by fÆ�vh� = 1; Æ�hv� = �1; Æ�hh� = Æ�vv� = 0g measures the distan
ebetween the upper and lower paths along diagonals, and the positive pre�xproperty expresses the 
ondition that the upper and lower paths do not meetbefore their endpoint. Codes of stair
ase polygons are thus essentially bi
oloredMotzkin words.This 
hara
terization suggests to 
onstru
t stair
ase polygons by applyingthe 
y
le lemma to words of the set S(p; q) of words of length p + q + 1 on Awith p + 1 letters h and q letters v in the �rst row, and p letters h and q + 1letters v in the se
ond row:Stair
ase(p; q)1 w01  RandPerm(hp+1vq) . generate w0 = �w01w02� 2 S(p; q)2 w02  RandPerm(hpvq+1)3 (m; Æm) (0; 0) . seek the position m of the4 Æ  0 . leftmost minimum w.r.t Æ5 for i 1 to p+ q + 1 do6 if (w01[i℄; w02[i℄) = (v; h) then7 Æ  Æ + 18 elseif (w01[i℄; w02[i℄) = (h; v) then9 Æ  Æ � 110 if Æ < Æm then Version February 6, 2004
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rFigure 8.11. A dire
ted 
onvex polyomino and its 
ontour.11 (m; Æm) (i; Æ)12 (w1h;w2v) Shift((w01; w02);m) . get the 
onjugate at position m13 return (vw1h; hw2v)Proposition 8.2.2. Stair
ase(p; q) produ
es the 
ode of a random uniformstair
ase polygon with dimension (p+ 1; q + 1) in linear time.Proof. Let us �rst use the 
y
le lemma to derive the number of stair
ase poly-gons. The number of words in S(p; q) is Card(S(p; q)) = �p+q+1q ��p+q+1p �. Thenamong the p + q + 1 
y
li
 shifts of any word w0 2 S(p; q), exa
tly one is ofthe form w�hv� with w having the positive pre�x property. Hen
e the number ofstair
ase polygons with dimension (p+ 1; q + 1) is 1p+q+1�p+q+1q ��p+q+1p �.The algorithm Stair
ase() generates a word uniformly at random in theset S(p; q), and 
omputes its unique 
y
li
 shift 
oding for a stair
ase polygon.The probability to get the 
ode of a given polygon P is thus the sum of theprobability to get ea
h of its 
y
li
 shifts. But the 
ode of P admits p+ q + 1distin
t 
y
li
 shifts, and ea
h of these word has probability 1=Card(S(p; q)) tobe obtained. Thus the probability to get P is (p + q + 1)=Card(S(p; q)), i.e.depends only on the dimension of P : uniformity is preserved through the 
y
lelemma.8.2.3. Dire
ted 
onvex polyominoes and Catalan's fa
torizationDire
ted 
onvex polyominoes are 
hara
terized among 
onvex polyominoes bythe property that their 
ontour 
ontains the bottom left 
orner of their boundingbox. In other terms 
ontours of dire
ted 
onvex polyominoes are unimodalpolygons, i.e. shu�es of a word of the language u�d� and a word of the languager�l�. Let us 
onsider an unimodal polygon with dimension (p + 1; q + 1), andde
ompose it into an upper path and a lower path both starting from the bottomleft 
orner and of length p+ q + 2, and respe
tively obtained in 
lo
kwise and
ounter
lo
kwise dire
tion. Let w01 and w02 be the 
odes of these two paths on thealphabet fh; vg. In the example of Figure 8.11, the two paths are respe
tivelyw01 = vhvhvvhvhvhhvv and w02 = hhhhvhvhhhvhvh. The following propertiesof w01 are immediate 
onsequen
es of the de�nition of unimodal polygons:1. the word w01 starts with a letter v;Version February 6, 2004



8.2. Sampling: polygons, animals and polyominoes 192. it 
ontains at least q + 1 letters v;3. the �rst q + 1 letters v 
ode up steps, the other ones down steps;4. the (q + 1)th letter v is followed by a letter h.The last property a

ounts for the right turn that the path has to make whenrea
hing the upper boundary. De�ne the redu
ed 
ode w1 as obtained fromw01 by deleting the two redundant letters given by Properties 1 and 4 above.Similarly the redu
ed 
ode w2 is obtained by deleting from w02 the �rst letter(that is a letter h) and the letter following the (p+ 1)th letter h (that is a letterv). Let w be the word on A obtained by sta
king w1 and w2. Then again allpre�xes of w 
ontain at least as many letters �vh� as letters �hv�. It turns out thatthis 
ondition is suÆ
ient for w to 
ode an unimodal polygon: this is expressedby the following lemma, the proof of whi
h is left to the reader.Lemma 8.2.3. A word w on A is the sta
ked redu
ed 
ode of an unimodalpolygon with dimension (p + 1; q + 1) if and only if all its pre�xes 
ontain atleast as many letters �vh� as letters �hv�, and, viewed as a pair of words on fh; vg,it 
ontains 2p letters h and 2q letters v.In terms of the morphism Æ of the previous se
tion, Lemma 8.2.3 impliesthat a word of A� is the 
ode of an unimodal polygon if and only if it is a pre�xof Motzkin word on (A; Æ). These pre�xes are similar to pre�xes of Dy
k wordswith Æ even, and the proof of Proposition 8.1.2 suggests the following algorithm.Unimodal(p; q)1 w1  RandPerm(hpvq) . generate w = �w1w2� with Æ(w) = 02 w2  RandPerm(hpvq)3 Æ  04 Æm  05 for i 1 to p+ q do6 if (w1[i℄; w2[i℄) = (v; h) then7 Æ  Æ + 18 elseif (w1[i℄; w2[i℄) = (h; v) then9 Æ  Æ � 110 if Æ < Æm then . leftmost minimum found11 (Æm; w1[i℄; w2[i℄) (Æ; v; h) . down step be
omes up step12 return (w1; w2)Proposition 8.2.4. Unimodal(p; q) produ
es the redu
ed 
ode of a randomuniform unimodal polygon with dimension (p+ 1; q + 1) in linear time.Proof. Lines 1, 2 of the algorithm 
onstru
t a word �w1w2� satisfying Æ�w1w2� = 0.A straightforward adaptation of the bije
tion used for Proposition 8.1.2 showsthat these words are in one-to-one 
orresponden
e with pre�xes of Motzkinwords: for the 
urrent Æ, steps �vh� play the role of up steps, steps �hv� that downsteps, and Motzkin fa
tors repla
e Dy
k fa
tors. The algorithm implements theinverse bije
tion, repla
ing leftmost down steps at negative levels by up steps.Version February 6, 2004
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rFigure 8.12. A 
onvex polyomino and its 
ontour.Sin
e the word �w1w2� is taken uniformly in the set of words with p letters hand q letters v in both lines, its image is uniform in the set of bi
olored Motzkinpre�xes with 2p letters h and 2q letters v.As a 
orollary of the previous proof, we also see that the number of unimodalpolygons of dimension (p+ 1; q + 1) is �p+qp �2.8.2.4. Convex polyominoes and reje
tion samplingThe 
ontour of a 
onvex polyomino with dimension (p+ 1; q + 1) 
an be 
odedas follows by a pair (w0; k): start from the upper point of the 
ontour on the leftboundary, and 
ode the path in 
lo
kwise dire
tion by a word w0 with letters hand v as previously; let moreover k be the distan
e of the startpoint to the topborder of the bounding box (see Figure 8.12). From the geometry, the followingproperties of the word w0 are immediate:1. there are 2p+ 2 letters h and 2q + 2 letters v; moreover 0 � k � q;2. the �rst p+ 1 letters h 
ode right steps, the other p+ 1 left steps;3. the �rst k letters v 
ode up steps, the next q+ 1 down steps, and the �nalq + 1� k up steps again;4. the �rst letter is a letter h;5. if k > 0 then the kth letter v is followed by a letter h;6. the (p+ 1)th letter h is followed by a letter v;7. the (k + q + 1)th letter v is followed by a letter h;8. the (2p+ 2)th letter h is followed by a letter v;9. the letters singled out in 4, 5, 6, 7, and 8 above appear in this order.These properties do not 
ompletely 
hara
terize the 
odes of 
onvex polygons,but this is almost the 
ase, as the reader will verify:Lemma 8.2.5. A pair (w0; k) satisfying the nine properties above is the 
odeof a 
onvex polygon if and only if the 
orresponding walk is a polygon, that is,if it does not visit twi
e the same point. This property 
an be 
he
ked in lineartime by the following algorithm.Che
kSimple(w0; k)Version February 6, 2004



8.2. Sampling: polygons, animals and polyominoes 211 (i1; Æ1; "1) (1; q + 1� k;+1) . traversal of w0 from the left2 (i2; Æ2; "2) (2p+ 2q + 3; q � k;�1) . traversal of w0 from the right3 for ` 1 to p+ 1 do . ` 
ounts horizontal steps4 while w0[i1℄ = v do . verti
al move on top5 (i1; Æ1) (i1 + 1; Æ1 + "1)6 while w0[i2℄ = v do . verti
al move on bottom7 (i2; Æ2) (i2 � 1; Æ2 + "2)8 if Æ1 � Æ2 then . self-interse
tion dete
ted9 return false10 if Æ1 = q + 1 then . top rea
hed11 "1  �112 if Æ2 = 0 then . bottom rea
hed13 "2  +114 (i1; i2) (i1 + 1; i2 � 1) . next 
olumn15 return trueThe redu
ed 
ode (w; k) of a 
onvex polygon is obtained by deleting theredundant letters given by Properties 4, 6, 7, 8, and if k > 0 by Property 5.The redu
ed word w has thus, if k = 0, 2p letters h and 2q letters v, or, if k > 0,2p�1 letter h and 2q letters v. Given the redu
ed word w and the index k thereis an immediate algorithm InsertRedundantLetters(w; k) that re
onstru
tsw0 by inserting the missing letters from left to right.The following generator is based on the reje
tion prin
iple: words of a su-perset of the set of 
odes are generated uniformly at random until a proper 
odeis obtained.Convex(p; q)1 do k  Rand(0; q)2 w  RandPerm(h2pv2q)3 if k = 0 or w[2p+ 2q℄ = h then4 w0  InsertRedundantLetters(w; k)5 if Che
kSimple(w0; k) = true then6 return (w0; k)7 while trueProposition 8.2.6. Convex(p; q) produ
es the 
ode of a random uniform
onvex polygon with dimension (p+ 1; q + 1).Proof. The fa
t that the output is uniform follows from the following standardreje
tion argument: when the algorithm stops, the probability to output a given
ode is proportional to the probability to get this 
ode as an element of thesuperset; but elements of the superset are sampled uniformly, i.e. have thesame probability to be generated.The expe
ted 
omplexity of the algorithm Convex() depends on the 
om-parison between the size (q + 1)�2p+2q2p � of the superset Sp;q in whi
h k and ware sampled, and the size of the set Pp;q of 
onvex polygons with dimensionVersion February 6, 2004



22 Counting, 
oding and sampling with words 8.0
b

b

b

b

b

b

b

b b

b

b

b

b

b

b b

b

b

Figure 8.13. A dire
ted animal and the equivalent stri
t pyramid.(p + 1; q + 1). More pre
isely, ea
h loop takes linear time, the probability ofsu

ess of a loop is sp;q = Card(Pp;q)=Card(Sp;q), and the number of loops is ageometri
 random variable with expe
tation 1=sp;q. The expli
it 
omputationof Card(Pp;q) shows that this last value is bounded by a 
onstant, but we donot in
lude the details here (see Problem 8.2.2).Proposition 8.2.7. The 
all Convex(p; q) has expe
ted linear 
omplexity.8.2.5. Dire
ted animalsUpon rotating the latti
e 
ounter
lo
kwise by �=4, dire
ted animals 
an begiven an elegant interpretation in terms of heaps of bri
ks : 
ells are viewedas bri
ks exposed to the gravity law with the bottom bri
k lying on the 
oor;the 
ondition that animals are dire
ted, i.e. that there always exists a pathdownward to the bottom 
ell, is equivalent to the fa
t that every bri
k leans onone bri
k below and 
annot fall.To be more pre
ise, let us give a de�nition of heaps of bri
ks. The alphabetof bri
ks is B = f(i; i+ 1); i 2 Zg. Two bri
ks b, b0 of B 
ommute if and onlyif, as subsets of Z, b \ b0 = ;. Two words are equivalent, w � w0, if one 
an beobtained from the other by a sequen
e of 
ommutations of adja
ent 
ommutingbri
ks. A heap of bri
ks is an element of the asso
iated partially 
ommutativemono��d, i.e. an equivalen
e 
lass for the relation �. The set of minimal bri
ksof a heap w is the set min(w) = fb j 9w0; w � bw0g. A pyramid at abs
issa i isa heap su
h that min(w) = f(i; i+ 1)g.The 
anoni
al geometri
 representation of a heap indu
ed by the gravity law
orresponds to the standard Cartier-Foata normal form of the heap: readinga heap from left to right in lines from bottom to top yields a word w of theform w1 � � �wk with ea
h blo
k wi made of 
ommuting letters and su
h that forea
h letter b of wi+1 there is a letter b0 of wi with b\ b0 6= ;. A heap is stri
t ifmoreover no two 
onse
utive blo
ks of the normal form have a bri
k in 
ommon:in other terms in a stri
t heap a bri
k (i; i+ 1) always lean on a bri
k (i� 1; i)or (i+ 1; i+ 2), not on another bri
k (i; i+ 1).From the geometri
 interpretation of pyramids of bri
ks and the initial dis-
ussion of this paragraph, the following lemma is immediate.Version February 6, 2004
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(a) Fa
torization of a pyramid into apyramid and a semi-pyramid. (b) Fa
torization of a semi-pyramidinto a bri
k and two semi-pyramids.Figure 8.14. De
omposition of pyramids.Lemma 8.2.8. Dire
ted animals \are" stri
t pyramids of bri
ks.This interpretation of dire
ted animals in terms of pyramids of bri
ks allows toperform de
ompositions that would otherwise be very diÆ
ult to explain. Firstde�ne a semi-pyramid to be a pyramid without bri
ks on the left hand sideof the bottom bri
k. Then the following two de
ompositions are obtained bypushing upward a bri
k and all the bri
ks that lay above it, or indire
tly leanon it:{ a stri
t pyramid of bri
ks is either a stri
t semi-pyramid, or 
an be fa
-tored, by pushing upward the lowest bri
k with abs
issa �1, into a stri
tpyramid at abs
issa �1 sta
ked over a stri
t semi-pyramid;{ a stri
t semi-pyramid is redu
ed to a bri
k, or to a stri
t semi-pyramidat abs
issa 1 over a bri
k, or 
an be fa
tored, by pushing upward these
ond lowest bri
k with abs
issa 0, into a stri
t semi-pyramid at abs
issa0 sta
ked over a stri
t semi-pyramid at abs
issa 1 over a bri
k.This joint de
omposition is isomorphi
 to the joint de
omposition of pre�xes ofwords and of words of the Motzkin language on the alphabet fa; b; x1g:{ a pre�x of Motzkin word is either a Motzkin word or 
an be de
omposedas uav with u a Motzkin word and v a pre�x of Motzkin word.{ a Motzkin word is redu
ed to the empty word ", or is of the form x1uwith u a Motzkin word, or 
an be de
omposed as aubv with u and v twoMotzkin words.These isomorphi
 de
ompositions indu
e a bije
tion between stri
t pyramids ofn bri
ks and pre�xes of Motzkin words of length n� 1.Corollary 8.2.9. Pre�xes of Motzkin words 
an be bije
tively transformedinto stri
t pyramids of bri
ks in linear time.The Motzkin language being algebrai
, uniform random generation 
ould bedone using a re
ursive approa
h. We des
ribe instead another appli
ation ofVersion February 6, 2004



24 Counting, 
oding and sampling with words 8.0the reje
tion prin
iple whi
h is both more elegant and more eÆ
ient for thisspe
i�
 problem. Let us 
onsider again the alphabet Ak = fu; d; x1; : : : ; xkgand the asso
iated k-
olored Motzkin words of Se
tion 8.1.3. A naive algorithmto generate uniform random pre�xes of k-
olored Motzkin words of length n
onsists in generating uniform random words of (Ak)n and reje
ting. Howevera simple 
al
ulation shows that the probability of su

ess is of order O(n�1=2)thus giving an algorithm with expe
ted 
omplexity O(n3=2). A slight re�nementon this idea is to observe that reje
tion 
an be de
ided on the 
y. This turnsout to be surprisingly eÆ
ient.FlorentineReje
tion(n; k)1 do w  "2 for i 1 to n do . generate from left to right3 w[i℄ Rand(1; k + 2)4 if w[i℄ = k + 1 then5 Æ  Æ + 16 w[i℄ u7 elseif w[i℄ = k + 2 then8 Æ  Æ � 19 w[i℄ d10 if Æ < 0 then . if a negative pre�x is dete
ted11 break . restart from s
rat
h12 while i 6= n+ 1 . until w is a valid n letters word13 return wThis algorithm obviously produ
es a pre�x of k-
olored Motzkin word.Lemma 8.2.10. FlorentineReje
tion(n; k) generates a random uniform pre-�x of k-Motzkin word of length n in expe
ted linear time.Proof. For simpli
ity the analysis is presented in the 
ase k = 0 but the samestrategy of analysis applies to the general 
ase (using generating fun
tions in-stead of elementary 
ounting). It will be 
onvenient to 
onsider that when the
onstru
tion fails at the ith step of the inner loop, we �nish the loop and gener-ate n�i more letters at no 
ost. This modi�
ation of the algorithm do not a�e
tthe �nal result or the 
ost, but allow us to think at ea
h iteration as produ
-ing a uniform random word of (Ak)n. From this point of view, the Florentinereje
tion behaves like standard reje
tion and therefore it is uniform on pre�xes.The probability of su

ess of the inner loop is pn = �2nn �2�2n = pn, and thenumber of aborted loops is a geometri
 random variable with expe
ted value1=pn = O(n1=2). Let us now 
ompute the expe
ted 
ost of a failure: a failurewith 
ost 2i+ 1 is obtained for a word w of the form ubv with u a Dy
k word oflength 2i and v in fa; bg2n�2i�1. Hen
e the 
umulated 
ost for all these 22n��2nn �words isPn�1i=0 (2i+1)Ci22n�2i�1 = 22n�1Pn�1i=0 �2i+1i �2�2i = O(22nn1=2): WithO(n1=2) aborted loops with 
ost O(n1=2) ea
h, and one su

essful loop with 
ostn, the total expe
ted 
ost is linear as announ
ed.Version February 6, 2004
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Figure 8.15. Two rooted planar maps with the same underlying graph.Florentine reje
tion thus uses on average a linear number of random bits.As opposed to this a 
all to RandPerm(w) for a word w of length n uses aboutn logn bits, and this is in general suboptimal from a theoreti
al point of view.For instan
e for w = anbn, log �2nn � � 2n bits should suÆ
e. In this 
ase anoptimal solution (on average) is obtained using FlorentineReje
tion(n; 0)to get a pre�x of Dy
k words and Catalan's fa
torization (Proposition 8.1.2) totransform it into a word of S(anbn). As opposed to this, it is an open problemin general to sample in linear time from S(w) using O(log Card(S(w))) randombits.8.3. Coding: trees and mapsA planar map1 is a proper embedding of a 
onne
ted graph in the plane. Mul-tiple edges and loops are allowed, and proper means that edges are smoothsimple ar
s whi
h meet only at their endpoints. The fa
es of a planar map arethe 
onne
ted 
omponents of the 
omplement of the graph in the plane: apartfrom one in�nite fa
e, all fa
es are bounded and homeomorphi
 to disks. Allthe planar maps we 
onsider are rooted : they have an oriented edge, 
alled theroot, whi
h is in
ident to the in�nite fa
e on its right-hand side. Examples ofrooted maps are presented in Figure 8.15.From now on we shall 
onsider that two planar maps are the same if one
an be mapped onto the other (in
luding roots) by an homeomorphism of theplane. However there are still many more planar maps than planar graphs, asillustrated by Figure 8.15. Indeed homeomorphisms of the plane respe
t theneighborhood of ea
h vertex, so that the 
ir
ular order of edges around verti
esis �xed.From a 
ombinatorial point of view, a planar map 
an in fa
t entirely bespe
i�ed as follows: label half-edges (or darts) and for ea
h half-edge give thenames of the opposite half-edge, and of the next half-edge around its origin in
ounter
lo
kwise dire
tion. As a 
onsequen
e the number of planar maps withn edges is �nite. Moreover these labeled maps 
apture exa
tly the level at whi
halgorithms on maps are implemented in 
omputational geometry, using dartsas elementary data stru
tures. Carrying on with labeled maps, one 
ould alsorea
h a purely 
ombinatorial setting and eliminate the geometry (at least atthe formal level of proofs). However for the sake of 
on
iseness it appears more1The word map is intended here in its geographi
 sense, like in road-map.Version February 6, 2004



26 Counting, 
oding and sampling with words 8.0eÆ
ient to keep higher level geometri
 arguments.Examples of spe
i�
 families of planar maps are numerous. A triangulationof a k-gon is a planar map without multiple edges su
h that all bounded fa
eshave degree 3 and the in�nite fa
e has degree k (the degree of a fa
e is thenumber of sides of edges to whi
h it is in
ident). A k-valent map is a planarmap su
h that all verti
es have degree k (the degree of a vertex is the numberof half-edges to whi
h it is in
ident).8.3.1. Plane trees and generalities on 
odingA rooted plane tree, or hereafter simply a plane tree is a planar map with onefa
e. A planted plane tree is a plane tree su
h that the root vertex has degree 1.A binary tree is a planted plane tree with verti
es of degree 3 and 1 only, respe
-tively 
alled nodes and leaves. These de�nitions agree with 
lassi
al re
ursivede�nitions of plane trees: for instan
e a plane tree 
an be de
omposed as anordered sequen
e of subtrees atta
hed to the root.The 
ontour traversal of a planar map is the walk on the verti
es and edgesof the map that starts from (the right-hand side of) the root edge, and turnsaround the map in 
ounter
lo
kwise dire
tion so as to visit the boundary ofthe in�nite fa
e. (The reader is en
ouraged to imagine an ant walking aroundthe map.) The 
ontour traversal of a plane tree visits in parti
ular twi
e everyedge: the �rst time away from the root vertex, and the se
ond time toward theroot vertex. The preorder on the verti
es of a planted plane tree is de�ned byordering verti
es a

ording to the �rst passage of the 
ontour traversal.The Dy
k 
ode of a planted plane tree with n+ 1 edges is the word of length2n on the alphabet fu; dg obtained during a 
ontour traversal of the tree bywriting a letter u ea
h time a non-root edge is visited for the �rst time (awayfrom the root vertex), and a letter d ea
h time a non-root edge is visited for these
ond time (toward the root vertex). The reader should 
onvin
e himself thatthe Dy
k 
ode of a tree 
hara
terizes it.Lemma 8.3.1. Dy
k en
oding is a bije
tion between planted plane trees withn+ 1 edges and Dy
k words of length 2n. In parti
ular the number of plantedplane trees with n+ 1 edges is the nth Catalan number.The pre�x or  Lukasiewi
z 
ode of a planted plane tree with n edges is theword of length n on the alphabet fxi; i � 0g obtained during a 
ontour traversalof the tree by writing a letter xi ea
h time a non-root vertex with degree i+1 isvisited for the �rst time. Let us de�ne the morphism Æ by Æ(xi) = i� 1. Thenthe pre�x 
ode w of a planted plane tree has the  Lukasiewi
z property (i.e. forea
h stri
t pre�x v of w, Æ(v) > Æ(w)). In parti
ular, upon setting x2 = u andx0 = d, we obtain the following lemma for the 
ase of binary trees:Lemma 8.3.2. Pre�x en
oding is a bije
tion between binary trees with n nodes,(and thus n+2 leaves and 2n+1 edges) and words of length 2n+1 of the Dy
k- Lukasiewi
z language Dd. In parti
ular the number of binary trees with n nodesis the nth Catalan number.Version February 6, 2004
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bFigure 8.16. A planted plane tree and its Dy
k 
ode.
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bFigure 8.17. A planted binary tree and its pre�x 
ode.Re
all that the optimal 
oding problem for a family C of 
ombinatorial stru
-tures 
onsists in �nding a fun
tion ' that maps inje
tively obje
ts of C on wordsof f0; 1g� in su
h a way that an obje
t O of size n is 
oded by a word '(O) oflength roughly bounded by log2 Card(Cn), with Cn the set of obje
ts of size n.Sin
e the nth Catalan number satis�es logCn � 2n as n goes to in�nity, Dy
k
odes and pre�x 
odes respe
tively solve the optimal 
oding problem for planetrees and for binary trees. On the other hand, the Dy
k 
ode of a binary treewith n nodes has length 4n+2, so that Dy
k 
odes are far from optimality withrespe
t to the family of binary trees: the optimality of a 
ode is relative to theentropy log Cn of the set Cn under 
onsideration.More generally, 
onsider the set of planted plane trees with di nodes ofdegree i (and thus ` = 1+P(i�2)di non-root leaves). Pre�x en
oding de�nes abije
tion between this set of trees and the subset of words of S(x0̀xd11 : : : xdkk ) thathave the  Lukasiewi
z property. But a

ording to the 
y
le lemma, the fra
tionof su
h words of length n among words of same length in S(x0̀xd11 : : : xdkk ) is 1=n.Now words on a �nite alphabet with �xed proportion of letters 
an be en
odedoptimally by the so-
alled entropy 
oder. Hen
e pre�x en
oding 
ombined withentropy en
oding yields optimal 
oding for plane trees with a �xed proportionof nodes of ea
h degree.
Version February 6, 2004
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oding and sampling with words 8.0
(a) A blossoming tree, (b) and a balan
ed one.Figure 8.18. Two 
onjugate blossoming trees.8.3.2. Conjuga
y 
lasses of treesFrom now on, we 
onsider planted plane trees with two types of verti
es ofdegree 1, respe
tively 
alled buds and leaves. Verti
es of higher degree are
alled nodes. In parti
ular, a blossoming tree is a planted plane tree su
h thatea
h node has degree 4 and is adja
ent to exa
tly one bud; a blossoming treewith n nodes has thus n+ 2 leaves and n buds. Examples of blossoming treesare given in Figure 8.18.Lemma 8.3.3. The number of blossoming trees that are planted on a leaf andhave n nodes is 3nn+1�2nn �. The number of blossoming trees that are planted ona bud and have n nodes is 3nn+2� 2nn�1�.Proof. Let B0n and B00n denote these two sets of blossoming trees. A blossomingtree of the �rst type 
an be uniquely obtained from a binary tree with n nodesby atta
hing a bud to ea
h node in one of the three possible ways. Togetherwith Lemma 8.3.2, this proves the �rst formula.Now let us 
onsider the set of doubly planted blossoming trees, one root beinga leaf and the se
ond one a bud. Su
h a tree with n nodes 
an be 
onsideredeither as a blossoming tree in B0n with a marked bud, or as a blossoming treein B00n with a marked leaf. Hen
e doubly planted blossoming trees with n nodesare either 
ounted by nCard(B0n) or by (n + 2) Card(B00n). As a 
onsequen
e,Card(B00n) = nn+2 � 3nn+1�2nn �, whi
h proves the se
ond formula.Let T be a planted plane tree with n nodes. During a 
ontour traversal ofT , its buds and leaves are visited in a sequen
e (by 
onvention the root vertex isvisited at the end of the traversal). A

ordingly the border word is the word withletters fb; `g obtained along the 
ontour traversal by writing a letter b ea
h timea bud is visited and a letter ` ea
h time a leaf is visited. For example, the borderwords of the blossoming trees of Figure 8.18 are respe
tively ``b`b``bb`b``b`bb`and b`b``bb`b``b`bb```.Version February 6, 2004



8.3. Coding: trees and maps 29Two planted plane trees T and T 0 are 
onjugate if one is obtained from theother by re-rooting. In other terms, two planted plane trees are in the same
onjuga
y 
lass of trees if they share the same underlying unrooted plane tree.This terminology is motivated by the remark that 
onjugate planted plane treeshave 
onjugate border words. Taking Æ(b) = +1 and Æ(`) = �1, the 
y
le lemmasuggests the following de�nition: a planted plane tree is balan
ed if its borderword has the  Lukasiewi
z property. With this de�nition, and remembering thatblossoming trees have two more leaves than buds, the 
y
le lemma for thosetrees reads: a blossoming tree has exa
tly two 
anoni
al leaves su
h that the
onjugate trees rooted at these leaves are balan
ed.Lemma 8.3.4. There are 2n+2 3nn+1�2nn � balan
ed blossoming trees with n nodes.Proof. The �rst proof is again based on a double 
ounting argument. Let B�nbe the set of balan
ed blossoming trees with n nodes. The number of balan
edblossoming trees with a se
ondary root leaf is (n+2) Card(B�n). Upon ex
hangingthe role of the two roots, these trees are also blossoming trees with a se
ondaryroot leaf taken among the two 
anoni
al leaves: their number is thus 2 � 3nn+1�2nn �.The result follows.Proof (bis). An alternative proof is based on the following remark: the numberof balan
ed re-rootings of any blossoming tree is equal to the di�eren
e betweenits numbers of leaves and buds, so that, in ea
h 
onjuga
y 
lass of trees, thenumber of balan
ed trees is exa
tly the di�eren
e between the number of treesrooted on a leaf and the number of trees rooted on a bud. Hen
e the number ofbalan
ed blossoming trees with n nodes is the di�eren
e 3nn+1�2nn �� 3nn+2� 2nn�1�.8.3.3. The 
losure of a plane treeThe 
losure of a planted plane tree with two more leaves than buds is obtainedby repeating the following 
onstru
tion until only two leaves remain: perform a
ontour traversal, and ea
h time a leaf follows a bud in the sequen
e of verti
es ofdegree 1 met by the walk, mat
h them, i.e. fuse the two 
orresponding danglingedges in the unique way that 
reates a bounded fa
e with no vertex of degree 1inside (see Figure 8.19(a)).Lemma 8.3.5. The 
losure of a plane tree with n nodes and two more leavesthan buds terminates and produ
es a planar map with the same n nodes andtwo leaves, whi
h are both in
ident to the in�nite fa
e. In parti
ular the 
losureof a blossoming tree has n verti
es of degree four, plus two of degree one in thein�nite fa
e.If moreover the tree is balan
ed, then its root vertex is one of the two re-maining leaves.Proof. At ea
h iteration all fa
tors b` of the border word are dete
ted, anddeleted sin
e the 
orresponding pairs of bud and leaf are mat
hed. In parti
ularVersion February 6, 2004
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(a) A fusion, �

�
�

�
�
�

(b) the partial 
losure (
) and the 
omplete
losure.Figure 8.19. The 
losure of the balan
ed blossoming tree of Figure 8.18(b).at least one pair is mat
hed at ea
h iteration, so that the 
onstru
tion termi-nates. Verti
es of degree at least two remain un
hanged while all buds andleaves are eliminated but the two 
anoni
al roots.As des
ribed above the 
losure 
ould require a quadrati
 number of opera-tions. The following algorithm takes a planted plane tree with two more leavesthan buds and 
omputes its 
losure in linear time. It uses the following items:{ a lo
al sta
k with fun
tions PutInSta
k(), PopFromSta
k() and Is-Sta
kEmpty(),{ a fun
tion NextFreeVertex(vertex ) that starts a 
ontour traversal afterthe vertex of degree 1 vertex and returns the �rst vertex of degree 1 found,{ a fun
tion Type(vertex ) that tells whether vertex is a bud or a leaf,{ a fun
tion FuseIntoEdge(bud ; leaf ) that realizes the fusion of a bud budand a leaf leaf into an edge.Closure(T )1 n NumberOfLeaves(T )2 vertex  RootOf(T )3 (`1; `2) (vertex ; vertex )4 while n > 2 do5 vertex  NextFreeVertex(vertex )6 if Type(vertex ) = bud then7 PutInSta
k(vertex )8 elseif IsSta
kEmpty() then9 (`1; `2) (`2; vertex )10 else bud  PopFromSta
k()11 FuseIntoEdge(bud ; vertex)12 n n� 1
Version February 6, 2004



8.3. Coding: trees and maps 3113 if `1 = `2 then14 `2  NextFreeVertex(vertex )15 return (T; `1; `2)Remark 8.3.6. Lines 13 and 14 only treat the spe
ial 
ase of a balan
ed blos-soming tree in whi
h the se
ond free leaf is the last one of the border word.The 
omplete 
losure of a balan
ed blossoming tree is obtained from its
losure by fusing the two remaining verti
es of degree 1 and the in
ident danglingedges into a root edge. Lemma 8.3.5 implies that the 
omplete 
losure of ablossoming tree with n nodes is a 4-valent map with n verti
es. The followingmore pre
ise theorem will be proved in the next se
tion.Theorem 8.3.7. The 
omplete 
losure is one-to-one between balan
ed blos-soming trees with n nodes and 4-valent maps with n verti
es. In parti
ular thenumber of these maps is 2n+2 3nn+1�2nn �.As a 
orollary we already have the 
omplete des
ription of a random sam-pling algorithm for 4-valent maps with n verti
es. Apart from the fun
tionClosure(), it uses the random generator FlorentineReje
tion() de�ned inSe
tion 8.2 and the following items:{ a fun
tion PrefixDe
ode(w) that 
onstru
ts the binary tree en
oded bya Dy
k- Lukasiewi
z word w,{ a fun
tion AddBud(n; i) that adds a bud to a node n in one of the threepossible manners,{ a fun
tion AddRoot(M; `1; `2) that roots the map M by fusing its twoleaves `1 and `2 into an oriented edge.RandMap(n)1 w  FlorentineReje
tion(n; 0)2 T  PrefixDe
ode(wd)3 for node 2 T do4 AddBud(node;Rand(1; 3))5 (M; `1; `2) Closure(T )6 if Rand(1; 2) = 1 then7 AddRoot(M; `1; `2)8 else AddRoot(M; `2; `1)9 return MCorollary 8.3.8. RandMap(n) outputs a uniform random 4-valent mapwith n verti
es in linear time.8.3.4. The opening of a 4-valent mapThe dual of a planar map M is the planar map M� de�ned as follows: in ea
hfa
e of M put a vertex, and join these new verti
es by edges dual to the edgesof M . By 
onstru
tion the verti
es, edges and fa
es of M� are respe
tively inVersion February 6, 2004



32 Counting, 
oding and sampling with words 8.0bije
tion with fa
es, edges and verti
es of M . This 
onstru
tion is illustrated byFigure 8.20(a). The proof of the following property of duality in planar maps isleft to the reader.Lemma 8.3.9. Let (E1; E2) be a partition of the set of edges of a planar mapM . Then E1 is a spanning tree of M if and only if E�2 is a spanning tree of M�.When this 
ase we 
all (E1; E2) a spanning tree de
omposition of M .From now on, let M be a planar map, and (E1; E2) be a spanning treede
omposition of M . For e an edge of E2, opening e with respe
t to (E1; E2)will mean: orienting e so that the 
y
le it indu
es with the tree E1 is 
ounter-
lo
kwise, and then repla
ing e by two dangling edges, the one atta
hed to theorigin of e holding a bud b(e), the other one holding a leaf `(e). We shall alwaysassume moreover that the root r of M belongs to E2. Then, the opening of Mwith respe
t to (E1; E2) is the tree T de�ned as follows: (see Figure 8.20(
)){ open ea
h edge e 2 E2 with respe
t to (E1; E2),{ repla
e the bud b(r) by a leaf and plant the tree on it.The tree T thus 
onsists of the edges of the spanning tree E1 together withpairs of dangling edges asso
iated to edges of E2. More pre
isely, these edges
ontribute to one bud and one leaf ex
ept for the root whi
h 
ontributes to twoleaves. By 
onstru
tion, the opening T of a 4-valent planar map M with nverti
es has n nodes of degree 4, n buds and n+ 2 leaves.Lemma 8.3.10. The 
omplete 
losure of the opening of a planar map M withrespe
t to any spanning tree de
omposition is the planar map M itself.Proof. The opening of an edge merges the two fa
es in
ident to it. Sin
e E�2forms a spanning tree of M�, the openings 
an be performed sequentially so thatone of the two merged fa
es is always the in�nite fa
e. It is then immediateat ea
h step that the pair of bud and leaf 
reated by the opening of an edge
orresponds to a mat
hed pair in the 
losure.There are in general many spanning tree de
ompositions of M , and the rightone must be 
hosen to invert the 
losure. To explain how this is done we needto introdu
e the distan
e in the dual map M�: two fa
es of M are adja
ent ifthey share a 
ommon edge, and the distan
e between two fa
es f and f 0 is thelength k of the shortest path (f0; : : : ; fk) where f0 = f , fk = f 0 and for all i, thetwo fa
es fi and fi�1 are adja
ent. Observe that the dual M� of a 4-valent maphas only fa
es with even degrees (in fa
t degree 4), so that it does not 
ontainany 
y
le of odd length, and the distan
es of a fa
e f to two adja
ent fa
es f 0and f 00 always di�er by 1.To ea
h fa
e f of M , asso
iate the fa
e r(f) in
ident to the root edge r and
losest to f for the distan
e in M�. The set P(f) of paths of minimal lengthfrom r(f) to f forms a bundle of paths bounded by two paths P0(f) and P1(f),with P0(f) having the bundle on its right hand side. We shall 
all P0(f) theleftmost minimal path from the root to f . The union of r� and of the edges ofthe paths P0(f) for all fa
es f of M forms a spanning tree of M�: the existen
eVersion February 6, 2004
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(a) A map and its dual, (b) a spanning tree de-
omposition, (
) and the 
orrespond-ing opening.Figure 8.20. An opening of the map of Figure 8.19(
).of a 
y
le would prevent one of the paths from being leftmost. This tree is 
alledthe leftmost breadth �rst sear
h tree of M� starting from r�, be
ause it is alsogiven by a breadth �rst sear
h traversal with the left hand rule. As stated inthe following proposition, it is the spanning tree we are looking for.Proposition 8.3.11. Let M be a 4-valent map with root edge r and (E1; E2)be a spanning tree de
omposition su
h that r 2 E2. Then the opening of Mwith respe
t to (E1; E2) is a blossoming tree if and only if E�2 is the leftmostbreadth �rst sear
h tree of M� starting from r�.The proof of this proposition is based on two lemmas. The �rst one is a
hara
terization of blossoming trees.Lemma 8.3.12. A tree T with n buds, n+ 2 leaves and n nodes of degree 4 isa blossoming tree if and only if, for every inner edge e, the two 
omponents ofT n e both 
ontain one more leave than buds.Proof. The 
hara
terization is trivial for n = 1, and remains true when a furthernode with two leaves and a bud is atta
hed in pla
e of a leaf. The lemma thusfollows by indu
tion sin
e every tree 
an be obtained by adding new nodesin
rementally.For the se
ond lemma it is useful to view the spanning tree E�2 as rooted onr�, with the 
onvention that the in�nite fa
e of M is the origin of the root.Lemma 8.3.13. Let e be an edge of E1 separating two fa
es f , f 0, with fbefore f 0 in the leftmost depth �rst order on the tree E�2 . Consider the pathsP and P 0 from f and f 0 to their 
ommon an
estor in E�2 , whi
h de�ne with e�a 
y
le separating a bounded region B of the plane from an unbounded one U .Then, Version February 6, 2004



34 Counting, 
oding and sampling with words 8.0{ the opening of an edge of P with respe
t to (E1; E2) 
reates a leaf in Band a bud in U ,{ and the opening of an edge of P 0 with respe
t to (E1; E2) 
reates a budin B and a leaf in U .Proof. The result is immediate upon 
omparing the orientation used in thede�nition of the opening of an edge and the orientation of the 
y
le going frome� up the path P and down the path P 0.Proof of Proposition 8.3.11. First assume that E�2 is the leftmost breadth �rstsear
h tree of M� starting from r�, and let T be the opening of M with respe
tto E�2 . A

ording to Lemma 8.3.12, it suÆ
es to 
he
k that for any edge e of E1,both 
omponents of T n e 
ontain one more leaves than buds. Let us 
onsiderthe paths P and P 0 of Lemma 8.3.13. The breadth �rst sear
h 
ondition on E�2implies that the length of these two paths di�er at most by 1, hen
e exa
tly by1, in view of the dis
ussion of distan
es in M�. The leftmost 
ondition on E�2moreover implies that the shortest path of the two must be P 0. Finally observethat two 
omponents of T n e are separated by the dual 
y
le of Lemma 8.3.13,so that this lemma 
an be used to 
ount buds and leaves in the two regions.This 
an be done easily upon distinguishing whether r� is on P or not.Let now E�2 be a spanning tree of M� di�erent from the leftmost breadth�rst sear
h tree E0�2 . Then there are leftmost minimal paths that do not appearin E�2 . Among the shortest of them let P0(f) be the leftmost one, 
onne
ting theroot to a fa
e f . Sin
e P0(f) is minimal, all its edges but the last one e belongto E�2 . Moreover, by de�nition of P0(f), this path is to the left and no longerthan the path P (f) 
onne
ting the root to f in E�2 . Applying Lemma 8.3.13to e, P � P0(f) and P 0 � P (f) and 
omparing the length of these two pathsshows that P 0 is longer than P , so that the two 
omponents of T n e have notthe expe
ted number of buds and leaves.The opening of M with respe
t to (E1; E2) with E�2 the leftmost breadth�rst sear
h tree of M� at r� will be 
alled simply the opening of M . In viewof Lemma 8.3.10, Proposition 8.3.11 
ompletes the proof of Theorem 8.3.7: theopening is the inverse of the 
losure. Moreover it indu
es a linear time algorithmOpening(M) that re
overs the unique balan
ed blossoming tree T su
h thatClosure(T )= M :Opening(M)1 Perform a leftmost bfs traversal of the dual map M� starting from r�.2 Open the edges of the resulting tree to 
reate buds and leaves.3 Return the resulting balan
ed blossom tree.8.3.5. A 
ode for planar mapsTheorem 8.3.7 deals with a spe
i�
 family of planar maps, namely 4-valent ones.It turns out however that 4-valent maps play for planar maps the role that edge-graph play for graphs. More pre
isely, de�ne the edge-map of a planar map MVersion February 6, 2004
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(a) Bi
oloration of fa
es. (b) Corresponding map.Figure 8.21. Inverse of the edge-map 
onstru
tion.as the 4-valent map M' having as vertex set the set of edges of M and havingan edge 
' for ea
h 
orner 
 of the map M .Proposition 8.3.14. The edge-map 
onstru
tion is a bije
tion between pla-nar maps with n edges and 4-valent maps with n verti
es. In parti
ular thenumber of planar maps with n edges is 2n+2 3nn+1�2nn �.Proof. The inverse 
onstru
tion follows from the remark that the fa
es of a4-valent map F 
an be 
olored in two 
olors, bla
k and white, so that adja
entfa
es have di�erent 
olors. The planar map M is obtained by putting a vertexinto ea
h bla
k fa
e of F and joining these verti
es by an edge a
ross ea
h vertexof F .The edge-map 
onstru
tion thus allows us to dedu
e from Theorem 8.3.7 a
ode for the family of planar map.En
odeMap(M)1 F  EdgeMap(M)2 T  Opening(F )3 for node 2 T do4 w0[node℄ PositionOfBud(node)5 T  RemoveBud(T )6 w  BinaryCode(T )7 return (w;w0)Theorem 8.3.15. The algorithm En
odeMap() en
odes a planar map withn edges by a pair of words respe
tively in fa; bg2n and f0; 1; 2gn. In view of thenumber of planar maps, this 
ode is optimal.
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36 Counting, 
oding and sampling with words 8.08.4. NotesSystemati
 approa
hes to enumeration, in parti
ular using generating fun
tions,are des
ribed in the books Goulden and Ja
kson 1983, Bergeron et al. 1998 andin the more re
ent Stanley 1999, Flajolet and Sedgewi
k 2002. In parti
ular therelevan
e of rational, algebrai
 and D-�nite series to enumeration is emphasizedin the last two ones.The enumeration of walks in the plane, in the half plane and in the quar-ter plane has be
ome part of the 
ombinatorial folklore, as well as Dy
k walksand Catalan's fa
torization. The 
y
le lemma is attributed in the 
ombinatorialliterature to Dvoretzky and Motzkin 1947, where it is used to derive Proposi-tion 8.1.4. As �rst shown by Raney 1960 (see also Chapter 11 of Lothaire 1999),the 
y
le lemma is a 
ombinatorial version of the Lagrange inversion formula,whi
h has numerous appli
ations in enumerative 
ombinatori
s. More detailedhistori
al a

ounts 
an be found in Pitman 1998 and Stanley 1999.The 
lassi�
ation of the possible asymptoti
 behaviors of the Taylor 
oef-�
ients of an algebrai
 series 
an be found in Flajolet 1987. The generatingfun
tion of walks on the slitplane a

ording to the length and the 
oordinates ofthe extremities was �rst shown algebrai
 and 
omputed in Bousquet-M�elou andS
hae�er 2002. This is one in a series of results obtained re
ently by writingand solving linear equations with 
atalyti
 variables, see Banderier and Flajolet2002, Bousquet-M�elou 2002 (these referen
es are also good entry points to theliterature on 
ounting walks on latti
es). The �rst proof we present illustratesa very general approa
h developed in Bousquet-M�elou 2001. The se
ond proofis taken from Bar
u

i et al. 2001.The foundation of 
ombinatorial random generation was laid in Nijenhuisand Wilf 1978 with the re
ursive method. As shown in Flajolet et al. 1994,this approa
h leads systemati
ally to polynomial algorithms for de
omposable
ombinatorial stru
tures. The (mu
h more spe
ialized) appli
ation of the 
y-
le lemma to random generation is dis
ussed in Dershowitz and Zaks 1990 andAlonso et al. 1997. The Florentine reje
tion algorithm is taken from Bar
u

iet al. 1995. A systemati
 utilisation of mixed probabilisti
/
ombinatorial argu-ments for sampling was re
ently proposed in Du
hon et al. 2002.General referen
es on polyominoes are Klarner 1997, van Rensburg 2000.Exa
t enumerative results are surveyed in Bousquet-M�elou 1996. The algo-rithms to sample 
onvex and dire
ted 
onvex polyominoes are adapted fromHo
hst�attler et al. 1996 and Del Lungo et al. 2001. From the enumeration pointof view, these results are en
ompassed by Bousquet-M�elou and Guttmann 1997,whi
h deals with 
onvex polygons in any dimension. Our treatment of dire
tedanimals and heaps of bri
ks is adapted from B�etr�ema and Penaud 1993. Theseresults built on the 
ombinatorial intepretation of the 
ommutation mono��d ofCartier and Foata 1969 in terms of heaps of pie
es due to Viennot 1986.Starting from the seminal work of Tutte 1962, the literature on 
ombinatorialmaps has grown almost independently in 
ombinatori
s and in physi
s. Somesurveys are Cori and Ma
h�� 1992 (
ombinatorial point of view), Ambj�rn et al.1997 (physi
al point of view) and Di Fran
es
o 2001 (mixed points of view).Version February 6, 2004



Problems 37A more detailed des
ription of 
odes for plane trees appear in Chapter 11of Lothaire 1999. The idea to use algebrai
 languages to en
ode maps alreadyappeared in Cori 1975, and plane trees are expli
itly used in Cori and Vauquelin1981. Conjuga
y 
lasses of trees were introdu
ed in S
hae�er 1997, as well asthe bije
tion between balan
ed trees and planar maps. Appli
ations to 
odingand sampling are dis
ussed in Poulalhon and S
hae�er 2003.ProblemsSe
tion 8.18.1.1 Show that the generating fun
tion of a rational language with respe
tto the length is rational.8.1.2 Compute the generating fun
tion with respe
t to the length of walksthat never immediately undo a step they have just done.8.1.3 De�ne the area under a Dy
k word as the number of integer pointsbetween the horizontal axis and the asso
iated walk. Use Catalan'sfa
torization to show that the sum of the area under all Dy
k words oflength 2n is 4n. (Chottin and Cori 1982)8.1.4 Show that an algebrai
 language that 
an be generated by a non am-biguous 
ontext free grammar has an algebrai
 generating fun
tion withrespe
t to the length.8.1.5 Give a bije
tive proof of the fa
t that the number of bi
olored Motzkinwords of length n is equal to the number of Dy
k words of length 2n+2.8.1.6 Give a bije
tive proof of the right hand side formula in Proposition 8.1.9for the number of loops of length 2n that stay in the quadrant (x �0; y � 0). (Guy et al. 1992)Se
tion 8.28.2.1 What is the number of stair
ase and unimodal polygons with semi-perimeter n?�8.2.2 Show bije
tively that the number of 
onvex polyominoes with boundingbox (p; q) is�2p+ 2q2p �+ q�2p+ 2q � 12p� 1 �� 2(p+ q)�p+ q � 1q ��p+ q � 1p �:What is the number of 
onvex polyominoes with semi-perimeter n?(Bousquet-M�elou and Guttmann 1997,Gessel 2000)8.2.3 An animal on the square latti
e has 
ompa
t sour
e if there exists ksu
h that every vertex of the animal 
an be rea
hed from one of theverti
es (i; k � i) with 0 � i � k by a path going north or east insideVersion February 6, 2004



38 Problemsthe animal. In parti
ular dire
ted animals are exa
tly the animals with
ompa
t sour
e for k = 0.Prove that there are 3n�1 animals of size n with 
ompa
t sour
e.(Gouyou-Beau
hamps and Viennot 1988)�8.2.4 Give a bije
tion between bilateral Dy
k paths of length n and (nonne
essarily stri
t) pyramids of n bri
ks su
h that the number of pairs ofsteps 
onne
ting levels i and i+ 1 is mapped onto the number of bri
ksin position (i; i+ 1). (Viennot 1986)��8.2.5 Give a uniform random sampling algorithm of expe
ted linear 
omplex-ity for the set of words of length n on an arbitrary �xed �nite alphabetthat have the  Lukasiewi
z property.Se
tion 8.38.3.1 Give a dire
t bije
tion between plane trees with n edges and binarytrees with n nodes.�8.3.2 What is the number of rooted planar maps with di verti
es of degree 2ifor all i � 0 and no odd degree vertex? (S
hae�er 1997)��8.3.3 Compute the generating fun
tion of rooted planar maps a

ording tothe distribution of degrees. (Bouttier et al. 2002)��8.3.4 Show that planted plane trees with two leaves per inner verti
es arein one-to-one 
orresponden
e with rooted triangulations with a markedfa
e. (Poulalhon and S
hae�er 2003)
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