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2 Counting, oding and sampling with words 8.08.0. IntrodutionThis hapter illustrates the use of words to derive enumeration results andalgorithms for sampling and oding. Although it an be read independently, itis intended as a ompanion to Chapter 11, Words and trees, in Lothaire 1999.Given a family C of ombinatorial strutures, endowed with a size suh thatthe subset Cn of objets of size n is �nite, we onsider three problems:{ Counting: determine for all n � 0, the ardinal Card(Cn) of the set Cn ofobjets with size n.{ Sampling: design an algorithm RandC that, for any n, produes a randomobjet uniformly hosen in Cn: in other terms, the algorithm must satisfy,for any objet O 2 Cn, P(RandC(n) = O) = 1=Card(Cn).{ Optimal oding: onstrut a funtion ' that maps injetively objets of Con words of f0; 1g� in suh a way that an objet O of size n is oded bya word '(O) of length roughly bounded by log2 Card(Cn).These three problems have in ommon an enumerative avour, in the sensethat they are immediately solved if a list of all objets of size n is available.However, sine in general there is an exponential number of objets of size nin the families we are interested in, this solution is by no way satisfying. Fora wide lass of so-alled deomposable ombinatorial strutures, inluding nonambiguous algebrai languages, algorithms with polynomial omplexity an bederived from the rather systemati reursive method. Our aim is to explorelasses of strutures for whih an even tighter link exists between ounting,sampling and oding.For a number of natural families of ombinatorial strutures, the ountingproblem has indeed a \nie" solution: by nie ould be intended that thereis a simple formula for Card(Cn), that the generating series Pn�0 Card(Cn)xnis an algebrai funtion, et. The rationale of this hapter is that these nieenumerative properties are the visible \traes" of deeper strutural properties,and that making the latters expliit is a way to solve simultaneously and simplythe three problems above.The enumeration of walks on latties (Setion 8.1) is an inextinguishablesoure of nie ounting formulas. These formulas an often be given simpleinterpretations by viewing walks as words on an alphabet of steps, and usingingredients of the ombinatoris of words. In partiular we shall onsider somerational and algebrai languages, shu�es and the yle lemma.Convex or direted polyominoes (Setion 8.2) illustrate the idea that nieombinatorial properties help for sampling. Sine enumeration and random gen-eration of general polyominoes appear intratable, it was proposed in statistialphysis to study sublasses like onvex or direted polyominoes, that displaybetter enumerative properties. These objets an be desribed in terms of sim-ple languages, often algebrai, and this leads to eÆient random generators.The family of planar maps (Setion 8.3) is a further example of lass withunexpetedly nie enumerative properties. Maps are the natural ombinatorialabstration for embeddings of graphs in the plane and for polygonal meshesin omputational geometry, and maps were also largely studied in theoretialVersion February 6, 2004



8.1. Counting: walks in setors of the plane 3physis. Toy models of statistial physis, like perolation or the Ising model,are often studied on regular latties, but also on random maps. The uniformdistribution indeed appears to give, at the disrete level, the right notion of dis-tribution of probability on possible universes as presribed by quantum gravity.In these various ontexts, results have been obtained independently on ounting,sampling and oding problems. Again we rely on a ombinatorial explanationof the enumerative properties of planar maps to approah these three problems.Most of the time, we state and prove results for some partiularly simplestrutures, while they are valid for more generi families (e.g. walks with moregeneral steps, polyominoes on other latties, maps with onstraints). We madethis hoie to maintain the hapter relatively short, but also beause on thesesimple strutures the \traes" are more visible, and the underlying ombina-toris appears more expliitly.All the objets that are onsidered in this hapter have nie geometri in-terpretations in the plane. We have hosen to rely on the geometri intuition ofthe reader to support these interpretations, and onentrate the proofs on theombinatorial aspets.8.1. Counting: walks in setors of the planeA (nearest neighbor) walk on the square lattie Z2 is a �nite sequene of vertiesw = (w0; w1; : : : ; wn) in Z2 suh that eah step wi�wi�1, for 1 � i � n, belongsto the set S = f(0; 1); (0;�1); (�1; 0); (1; 0)g. The number of steps n is the lengthof w; w0 and wn are respetively its startpoint and endpoint. The reverse walkof w is the walk �w = (wn; wn�1; : : : ; w1; w0). A loop is a walk with identialstartpoint and endpoint.Elements of S are also denoted u; d; l; r { standing for up, down, left andright. Unless expliitly spei�ed, we onsider walks up to translation, or equiv-alently, we assume that they start from the origin (0; 0). A walk an thus beseen as a word on the alphabet S = fu; d; l; rg and we identify the set of walkswith the language fu; d; l; rg�, making no distintion between both of them.In the rest of this setion, we study families of walks with various boundaryonstraints: on a line, a half line, a half plane, a quarter plane, and �nally, onthe slitplane. This is the oasion to introdue enumerative tools that will beof use in later setions.8.1.1. Unonstrained walks and rational seriesLet us �rst onsider walks that use only vertial steps (i.e. u or d), and henestay on the axis (x = 0). These walks are sometimes alled one-dimensionalsimple symmetri walks, and are often onsidered in their \time strethed" ver-sion: eah step u or d is replaed by a (1; 1) or (1;�1) step, in order to give anunambiguous representation in the plane, as illustrated by Figure 8.1. Up toa �=4-rotation, these walks are in one-to-one orrespondene with walks withsteps in fu; rg and as suh, are sometimes alled stairase walks, or diretedtwo-dimensional walks. Version February 6, 2004
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() and rotated.Figure 8.1. Three representations of the one-dimensional walk duuudu.Counting these walks with respet to their length ` amounts to ountingwords on fu; dg of length `, and there are 2` of those. Restriting them to endat ordinate j, with ` = 2n+ jjj for some nonnegative n, is hardly more diÆult:for j � 0, the orresponding words are arbitrary shu�es of n+ j letters u andn letters d, and similarly for j � 0, they are shu�es of n letters u and n � jletters d. Hene the number of walks of length 2n+ jjj ending at ordinate j is�2n+ jjjn �:It will be onvenient to express enumerative results in terms of languagesand generating funtions. In this ase, the language V of walks on the vertialaxis is just fu; dg�. Equivalently, in the algebra Qhhu; d ii of formal power seriesin non ommuting variables, the language V (viewed as the formal sum of itswords) is uniquely de�ned by the linear equation:V = "+ (u+ d)V ; (8.1.1)whih orresponds to the non ambiguous deomposition: \a walk is either theempty walk or made of a step u or d followed by a walk".De�ne now Æ(w) = jwju�jwjd for any word w on S, so that Æ(w) is the �nalordinate of the walk w. The generating funtion of the language V with respetto the length (variable t) and the �nal ordinate (variable y) isV (t; y) = Xw2V tjwjyÆ(w);whih is an element of the algebra Q(y)[[t℄℄ of formal power series in the variablet with oeÆients that are rational funtions in y.Observe that j:j and Æ are morphisms of mono��ds (S�; �) ! (Z;+), so thatV (t; y) an be viewed as the ommutative image of V by the morphism of algebraw 7! tjwjyÆ(w) from Qhhu; d ii to Q(y)[[t℄℄. Taking the ommutative image ofEquation 8.1.1, the generating funtion V (t; y) satis�es:V (t; y) = 1 + (ty + ty�1)V (t; y):Version February 6, 2004



8.1. Counting: walks in setors of the plane 5An expliit expression of V (t; y) follows, and its expansion of ourse agrees withthe previous diret enumeration:V (t; y) = 11� (y + y�1)t = +1Xm=0 mXk=0�mk�tmym�2k:The ommutative image mehanism produes a priori a formal power seriesof Q(y)[[t℄℄, but, as in the present example, it retains properties of the initiallanguage: the series V (t; y) of the rational language fu; dg� is a rational funtionof t and y, i.e. belongs to Q(t; y). Walks with more general steps are dealt within a similar way: for instane the language W assoiated to walks in Z2 is S�and the generating funtion of these walks with respet to the length and theoordinates of the endpoint is:W (t;x; y) = 11� (x+ x�1 + y + y�1)t :Another illustration is given by the family of walks that never immediately undoa step they have just done. Their language is the set of words avoiding the fatorsfud; du; lr; rlg whih is well known to be rational. Aordingly their generatingfuntion with respet to the length and the oordinate of the endpoints belongsto Q(t; x; y). Conversely, when the generating funtion of a set of objets isrational, it is natural to try to enode them by words of a rational language.8.1.2. Walks on a half line and Catalan's fatorizationWe shall now onsider walks that stay on the upper half axis (x = 0; y � 0).More preisely let the depth of w be the absolute value of the minimal ordinateÆ(v) for all pre�xes v of w. Walks that stay on the upper half axis are exatlythe walks with depth zero, and this ondition is alled the nonnegative pre�xondition. Loops satisfying the nonnegative pre�x ondition are often alledDyk words on the alphabet fu; dg. In turn, walks satisfying the nonnegativepre�x ondition are sometimes referred to as Dyk pre�xes, sine any of theman be ompleted into a Dyk word. See Figure 8.2 for examples. Let D denotethe language of Dyk words and Dn the set of Dyk words of length 2n. Thefollowing lemma gives a entral role to Dyk words.Lemma 8.1.1 (Catalan's fatorization). The language fu; dg� of one-dimen-sional walks admits the following non ambiguous deomposition:fu; dg� = (Dd)�D(uD)�:More preisely, the language of walks with depth ` and ending at ordinate j is(Dd)`D(uD)j+`Proof. For any word w on the alphabet fu; dg with depth ` and �nal ordinatej, suh a fatorization is obtained at �rst passages from ordinate i+ 1 to i forVersion February 6, 2004
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w1 w2 w4 w5 w7 w8 w9Figure 8.3. Catalan's fatorization of a walk in (Dd)3D(uD)5:i = �1; : : : ;�` and last passages from ordinate i to i+ 1 for i = �`; : : : ; j � 1.The uniqueness of the deomposition follows from the fat that any strit pre�xv of a word in Dd satis�es Æ(v) � 0 by de�nition of D, and hene does notbelong to Dd.Catalan's fatorization immediately allows us to derive the total number ofwalks on the half line.Proposition 8.1.2. The number of Dyk pre�xes of length m is� m�m2 ��:Proof. A Dyk pre�x of even length is a walk with depth zero and even �nalordinate 2j for some integer j � 0. Aording to Lemma 8.1.1, the language ofthese words is D(uD)2j . Upon hanging the j �rst fators u in fators d, wordsof length 2n in this language are in bijetion with words of length 2n in thelanguage (Dd)jD(uD)j , i.e. with words of the language of loops with depth j.Hene Dyk pre�xes of length 2n are in bijetion with loops of the same length,and their number is �2nn �.Similarly, a Dyk pre�x of odd length ends at ordinate 2j+1, for some j � 0.But words of equal length in the languages D(uD)2j+1 and (Dd)jD(uD)j+1 arein bijetion. The union of the last languages for all j � 0 is the set of words wwith Æ(w) = 1, �2n+1n � of whih have length 2n+ 1.Version February 6, 2004



8.1. Counting: walks in setors of the plane 7The previous proof an be summarized as follows: �nd a fatorization intoDyk fators separated by some spei� steps (typially �rst or last passages),and then reorganize the fatorization without modifying the Dyk fators. Weshall apply this priniple again to give a bijetive enumeration of Dyk words.Proposition 8.1.3. The number of loops of length 2n that stay on the halfaxis (x = 0; y � 0) is the n-th Catalan number:Cn = 1n+ 1�2nn �:Proof (as a orollary of Proposition 8.1.2). Removing the last step of a Dykpre�x of length 2n + 1 yields a pre�x of length 2n. In this way every Dykpre�x of length 2n is obtained twie, exept for Dyk paths that are obtainedonly one. Hene �2n+1n � = 2�2nn �� CardDn, and the formula follows.Proof (diret bijetion). We prove the relation (n+1) CardDn = �2nn � by givinga bijetion between the set of pairs (v; v0) with vv0 2 Dn and v empty or endingwith a letter u, and the set of loops of length 2n. To do that we �rst state twofatorizations that follow from Lemma 8.1.1:{ the set of pairs (v; v0) as above with Æ(v) = ` is (Du)` �D(dD)`;{ the set of loops with depth ` is (Dd)`D(uD)`.Exhanging u and d fators in these deompositions leads to the announedbijetion.The same idea allows to re�ne the enumeration of Dyk pre�xes.Proposition 8.1.4. The number of Dyk pre�xes of length 2n + j and �nalordinate j � 0 is j + 1n+ j + 1�2n+ jn �:Proof. We prove the formula by giving a bijetion between pairs (w; i) where wis a walk with Æ(w) = j and i 2 f0; : : : ; jg, and pairs (w0; k) where w0 is a Dykpre�x with Æ(w0) = j and k 2 f0; : : : ; n+ jg:{ to any pair (w; i) as above, assoiate (wi; : : : ; wj ; w0; : : : ; wi�1) where w0 isthe loop and the other w` are the Dyk paths suh that w = w0uw1 � � �uwj(this is the deomposition at the last passages at level 0, . . . , j).{ to any pair (w0; k) as above, assoiate (w00; : : : ; bw0i; : : : ; w0j), where the w0̀are the Dyk words suh that w0 = w00uw01 � � �uw0j , i is the index of the w0iontaining or following the kth letter u in the word uw0, and bw0i = (v; v0)is the fatorization of w0i after this letter.The bijetion in the seond proof of Proposition 8.1.3 allows to transform thepair bw0i = (v; v0) in a loop, so that both sets are assoiated to the same set ofsequenes of j + 1 walks.
Version February 6, 2004
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br rFigure 8.4. An exursion in the half plane.8.1.3. Walks on a half plane and algebrai seriesWalks in the half plane (y � 0) are hardly more ompliated to enumerate thanwalks on the half line. Indeed, as words on the alphabet S, these walks areompletely haraterized by the fat that all their pre�xes v ontain at least asmany letters u as letters d. Hene the assoiated language is the set of shu�esof vertial Dyk pre�xes with sequenes of horizontal steps. Various formulasan be derived from this haraterization: for instane, the number of loops oflength 2n that stay in the half plane (y � 0) isnXk=0�2n2k��2kk �Cn�k:Rather than going further in this diretion, we shall observe that the set ofthese walks is an algebrai language and return to generating funtions. Con-sider the alphabet Ak = fu; d; x1; : : : ; xkg, and the mono��d morphism Æ de�nedas previously by Æ(w) = jwju � jwjd. The language M(k) of k-olored Motzkinwords is the set of words w on the alphabet Ak satisfying Æ(w) = 0 and thenonnegative pre�x property. For k = 0 this is the Dyk language. For k = 2,upon setting x1 = l, x2 = r, biolored Motzkin words are exursions in the halfplane, i.e. walks in the half plane (y � 0) that �nish on the axis (y = 0).The language of k-olored Motzkin words admits an algebrai desription:M(k) = "+ (x1 + : : :+ xk)M(k) + uM(k)dM(k); (8.1.2)whih derives immediately from the non ambiguous deomposition of any nonempty Motzkin word at its smallest non empty pre�x v suh that Æ(v) = 0.Taking the ommutative image, the generating funtionM (k)(t) = Pw2M(k) tjwjof the Motzkin language with respet to the length satis�es the equation:M (k)(t) = 1 + ktM (k)(t) + t2M (k)(t)2: (8.1.3)Observe that this equation ompletely determines M (k)(t), sine it has a uniquesolution in the spae of formal power series in the variable t (as an be hekedby indution, extrating the oeÆient of tn on both sides).Any additive parameter an be taken into onsideration in the ommutativeimage. For instane the previous algebrai deomposition yields the followingproposition in the ase of biolored Motzkin words.Version February 6, 2004



8.1. Counting: walks in setors of the plane 9Proposition 8.1.5. The generating funtion for walks in the half plane re-turning to the axis (y = 0), with respet to their length, absissa of the endpointand number of vertial steps, is:M (2)(t;x; z) = 1� t(x+ 1x )�q[1� t(x+ 1x + 2z)℄[1� t(x+ 1x � 2z)℄2t2z2 :Proof. Taking the ommutative image with the map w ! tjwjxjwjr�jwjlzjwju+jwjdyields the equationM (2)(t;x; z) = 1 + t(x + 1x )M (2)(t;x; z) + t2z2M (2)(t;x; z)2:The disriminant of this equation is�(t;x; z) = [t(x+ 1x )� 1℄2 � 4t2z2;and among the two roots of the quadrati equation, only the one of the propo-sition is a formal power series in t.Equation (8.1.3) shows that the series M (k)(t) satis�es a relation of the formP (M (k)(t); t) = 0 with P a polynomial, whih means that it is an algebraiformal power series. This illustrates the fat that algebrai languages thatadmit a non ambiguous algebrai desription naturally have algebrai generatingfuntions with respet to additive parameters. Conversely, when the generatingfuntion of a set of objets is algebrai, one would like to obtain it from analgebrai desription of the objets (or more formally from an enoding of theobjets by the words of an algebrai language with a non ambiguous desription).In this sense, Equation (8.1.2) is more satisfying than Catalan's fatorization,even though the ommutative image of the latter also indues an algebraiequation.Expanding the generating funtion M (2)(t; 1; 1) = (1� 2t�p1� 4t)=2t2 inpowers of t, one observe the following amusing result (f. Problem 8.1.5).Corollary 8.1.6. The number of biolored Motzkin words of length n isgiven by the Catalan number Cn+1.Loops in the up diagonal quadrant (x+y � 0; y � x) are simple to desribe:let w be suh a loop of length 2n, and onsider the projetions of the walk onthe two diagonals (x = y) and (x = �y). Let fa; bg be the elementary steps onthese two axes, with a orresponding to up steps and b to down steps. Steps inZ2 have the following projetions:u �! (a; a) d �! (b; b) l �! (b; a) r �! (a; b)and the projetions of w on the diagonals are Dyk words of length 2n onfa; bg; reiproally any pair of Dyk words of same length over this alphabetorresponds to a loop in the up diagonal quadrant. Hene:Version February 6, 2004
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(a) A walk on the slitplane.
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(b) The fatorization of a walk.Figure 8.6. On the slitplane.The general ase of walks with given length and endpoint or with givenlength is similar to the ase of the diagonal quadrant and left to the reader.A remarkable onsequene of these formulas is that the languages of walksin the diagonal (or in the standard quadrant) annot be an algebrai language:on the one hand the asymptoti number of walks of length n in the diagonalquadrant, � nbn=2�2, grows like 4n=n when n goes to in�nity; on the other hand,the possible asymptoti behaviors of the Taylor oeÆients of an algebrai seriesare lassi�ed, and do not inlude the form �nn�i for i a positive integer; thereforethe generating funtion of walks in the diagonal quadrant is not algebrai, andthe assoiated language annot be algebrai either.8.1.4. Walks on the slitplane and the yle lemmaWe all slitplane the omplement of the half axis (x = 0; y � 0) in the squarelattie Z2. Walks on the slitplane are de�ned as walks that do not touh this halfaxis exept maybe at their startpoint or endpoint, as shown in Figure 8.6(a).The tool we shall use to enumerate walks on the slitplane is the so-alledyle lemma. For any alphabet A endowed with a morphism Æ : (A; �)! (Z;+),a word w in A� is said to have the  Lukasiewiz property if every strit pre�x vof w satis�es Æ(v) > Æ(w).Lemma 8.1.10 (Cyle lemma). Let A be an alphabet endowed with a mor-phism Æ : (A; �) ! (Z;+). Then a word w in A� suh that Æ(w) = �1 ad-mits a unique fatorization w1w2 with w1 non empty suh that w2w1 has the Lukasiewiz property.Proof. Let w1 be the shortest pre�x of w with Æ(w1) equal to the depth of w.Then w2w1 has the  Lukasiewiz property. Moreover, let us verify that there isno other suh fatorization. First assume that w01 is a pre�x of w shorter thanw1. Then the pre�x w00 of w02 of length jw1j � jw01j satis�es Æ(w00) < 0 and isVersion February 6, 2004



12 Counting, oding and sampling with words 8.0also a strit pre�x of w02w01. Hene w02w01 has not the  Lukasiewiz property. Itremains to onsider the ase of a pre�x w01 of w longer than w1. The suÆx w00of w01 of length jw01j � jw1j satis�es Æ(w) � 0 and is also a suÆx of w02w01. Sinemoreover Æ(w02w01) = �1, w02w01 has not the  Lukasiewiz property.Corollary 8.1.11. Consider the alphabet A = fa1; a2; : : : ; akg, endowedwith a morphism Æ, and let n1; n2; : : : ; nk be nonnegative integers suh that,kXi=1 niÆ(ai) = �1:Then the number of words with ni letters ai for any 1 � i � k that have the Lukasiewiz property is equal to:1n1 + : : :+ nk�n1 + : : :+ nkn1; : : : ; nk �:Proof. For any word w as above, Æ(w) = �1, so that the onjugay lass of wontains jwj di�erent words. Aording to the yle lemma exatly one of theserossref to hapter 1 ? n1 + � � �+ nk words has the  Lukasiewiz property. The formula follows.For A = fu; dg with Æ(u) = 1, Æ(d) = �1, the set of words enumeratedby the previous orollary is the Dyk- Lukasiewiz language Dd, and we reoverProposition 8.1.3.Corollary 8.1.12. Let C be a ode for a set of words on the alphabet A.def of ode needed? Then the generating funtion (with respet to the length) for  Lukasiewiz wordsw in C� suh that Æ(w) = �1 is equal to[y�1℄ log 11� C(t; y) ;where C(t; y) is the generating funtion of the ode C with respet to the length(variable t) and to Æ (variable y).Proof. The generating funtion of words on the alphabet A with k fators in C isC(t; y)k. Restriting the generating funtion to words w with Æ(w) = �1 is doneby taking the oeÆients of y�1 in the series. The fration of these words thathave the  Lukasiewiz property is then 1=k, so that their generating funtion isXk�1 1k [y�1℄C(t; y)k = [y�1℄ log 11� C(t; y) :To study walks on the slitplane, it is natural to deompose them at pointswhere they touh the vertial axis (x = 0), as shown in Figure 8.6: any walkw on the plane that �nishes on the vertial axis an be uniquely fatored intoVersion February 6, 2004



8.1. Counting: walks in setors of the plane 13vertial steps on this axis and primitive exursions in the left or right half plane;in other terms, the language of these walks is(u+ d+ lM(l)r + rM(r)l)�where M(l) and M(r) respetively denote the set of exursions in the left halfplane (x < 0) and in the right one (x > 0). Hene the set fu; dg[lM(l)r[rM(r)lforms a ode C for walks on the plane ending on the vertial axis: these walksan thus be viewed as walks on the axis (x = 0) with the in�nite set of steps C.To apply the yle lemma to walks on the slitplane, we onsider again themorphism Æ(w) = jwju�jwjd. Let us single out the lass of walks on the slitplanethat start at position (0; 1) and end on the half axis at position (0; 0): thesewalks are exatly the  Lukasiewiz words w in C� suh that Æ(w) = �1.Proposition 8.1.13. The number of walks on the slitplane with startpoint(0; 0), endpoint (0; 1) and length 2n+ 1 is:C2n+1 = 12n+ 2�4n+ 22n+ 1�:Proof. Let C(t; y) be the ommutative image of C, so that 1=(1� C(t; y)) isthe generating funtion of words on the ode C. Observe that a �=2- (respe-tively ��=2-) rotation maps bijetively words of length n in M(l) (resp. M(r))on words of length n in the biolored Motzkin language M(2), hene Proposi-tion 8.1.5 yields:log 11� C(t; y) = 12  log 11� t(y + 1y + 2) + log 11� t(y + 1y � 2)!= 12 Xn�1 tnn �(y + 1y + 2)n + (y + 1y � 2)n� :The formula follows by extrating the oeÆient of y�1 and resumming.The above proof does not yield an interpretation of the ourrene of Catalannumbers in Proposition 8.1.13. We onlude this setion with a more diretderivation.Proof of Proposition 8.1.13 (bis). We are interested in walks w suh that{ jwjl = jwjr , and jwjd = jwju + 1,{ and for any strit pre�x v of w, either jvjl 6= jvjr, or jvju � jvjd.The �rst ondition aounts for the displaement between the startpoint andendpoint, while the seond one ensures that the walks stay in the slitplane. Letus desribe a one-to-one orrespondene ' between these walks and exursionsof even length in the half plane (biolored Motzkin words). The result thenfollows from Corollary 8.1.6.Let w be a walk as in the proposition. Sine jwjd = jwju + 1, Lemma 8.1.10yields a unique fatorization of w in w1dw2 suh that eah proper pre�x v ofVersion February 6, 2004
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r r(b) The half plane exursion '(w).Figure 8.7. On the slitplane.w2w1d satis�es jvju � jvjd: this is the fatorization at the �rst arrival to thelowest level. Let �w2 be the walk that is symmetri to w2 with respet to thevertial axis (x = 0), and '(w) be equal to �w2w1. Then '(w) is a bioloredMotzkin word, orresponding to an exursion in the half plane (y � 0) of length2n. Moreover the fatorization �w2w1 of '(w) is the fatorization at the �rstpassage on the lowest point on the vertial line of equidistane between thestartpoint and endpoint of '(w).Conversely, given a biolored Motzkin word w0, let w01w02 be its fatorizationat the �rst passage on the lowest point on the vertial line of equidistanebetween its startpoint and endpoint. Let  (w0) = w02d �w01. The walk  (w0) islearly a walk in the slitplane from (0; 1) to (0; 0), and '( (w0)) = w0. Moreover, ('(w)) = w for any walk w as in the proposition, and this onludes the proof.As disussed in Setion 8.1.3, the language of biolored Motzkin words hasa very natural algebrai deomposition. However this deomposition does notarry very well through the bijetion.8.2. Sampling: polygons, animals and polyominoesA walk on the square lattie Z2 is alled a self-avoiding walk, or a path, if itvisits at most one eah vertex of the lattie. A self-avoiding polygon, or simplyin this text, a polygon, is a self-avoiding loop.An animal is a set A of verties of the lattie suh that any two verties ofA are onneted by a path visiting only verties of A. Animals are onsideredup to translations of the lattie. Plaing a unit square entered on eah vertexof A, we obtain a polyomino. The latter are however more naturally de�ned asedge-onneted sets of squares of the lattie. These de�nitions are illustratedby Figure 8.8. Eah polygon is the ontour (or the boundary) of a simply-onneted polyomino, and in the plane this is a one-to-one orrespondene (seeVersion February 6, 2004
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rr(b) A direted polyomino.Figure 8.9. Sublasses of polyominoes.Figures 8.10, 8.11 and 8.12). In partiular the length of a polygon orrespondsto the perimeter of the polyomino. A polygon has moreover dimension (p; q)if the smallest retangle in whih it an be insribed has horizontal width pand vertial width q. Finally the area of a polyomino is its number of ells,orresponding for animals to the number of verties.Little an be said from the enumerative point of view on animals, polygonsor polyominoes in general. Two ideas have however been partiularly suessfulfor de�ning sublasses amenable to mathematial study and still of interest:restrition to onvex or to direted objets. A polygon of dimension (p; q) isonvex if its length is 2p+2q. This de�nition stresses the fat that onvex poly-gons are in some sense the most extended polygons, and do not make meanders.An equivalent, but maybe more appealing interpretation is in terms of polyomi-noes: a polyomino is onvex if its intersetion with any horizontal or vertialline is onneted. A polyomino (respetively an animal) is direted if there isa ell (resp. a vertex) from whih every ell (resp. vertex) an be reahed bya path going up or right inside the objet. These de�nitions are illustrated byFigure 8.9. Version February 6, 2004



16 Counting, oding and sampling with words 8.08.2.1. Generalities on samplingTogether with the enumerative questions, muh interest has been given to theproperties of random animals, polyominoes and polygons. By random is meanthere the uniform distribution: objets of equal size are given equal probabilityto appear. We illustrate this trend by onentrating on the derivation of randomgenerators. In order to desribe these algorithms, we assume that we have atour disposal a perfet random number generator Rand(m;n) that outputs aninteger of the interval [m;n℄ hosen with uniform probability: for all m � i � n,P(Rand(m;n) = i) = 1=(n�m+ 1):We assume unit ost for arithmeti operations and for alls to the generatorRand(). These randomness and omplexity models are justi�ed by the fatthat our algorithms only sample and ompute on integers that are polynomiallybounded in the size of the objets generated.We shall need a random sampler for elements of S(w), the set of permu-tations of the letters of a �xed word w. The following algorithm does this byapplying a random permutation to the letters of w.RandPerm(w)1 for i 2 to jwj do2 Swap(w[i℄; w[Rand(1; i)℄)3 return wLemma 8.2.1. RandPerm(w) returns in linear time a random element ofS(w) under the uniform distribution: for all w0 2 S(w),P(RandPerm(w) = w0) = 1Card(S(w)) :Proof. A permutation � on the set f1; : : : ; ng has a unique deomposition as aprodut � = �n : : : �2 of transpositions of the form �i = (ji; i) with 1 � ji � i,and onversely any suh deomposition provides a permutation. Therefore,the all RandPerm(w) on a word w with distint letters generates a uniformrandom permutation of the letters. Upon labelling idential letters by theirinitial plae, we onlude that uniformity is also preserved in the general ase.In the rest of this part, we desribe random sampling algorithms for onvexpolygons and direted animals.8.2.2. Parallelogram polyominoes and the yle lemmaA onvex polyomino P is a parallelogram polyomino if its ontour ontains thebottom left and top right orners of its bounding box. Equivalently, its ontourmust be a stairase polygon, i.e. a polygon made of two up-right direted paths,meeting only at their extremities. These upper and lower paths, being direted,Version February 6, 2004
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Figure 8.10. A parallelogram polyomino and its ontour.an be oded with two letters. For later purpose, it will be onvenient to odethem on the alphabet fh; vg, with h standing for a horizontal step and v standingfor a vertial step. Starting from the bottom left orner, let vw1h be the wordoding the upper path, and hw2v be the word oding the lower path (thereis no hoie for �rst and last letters). If P has dimension (p + 1; q + 1) thenjw1jh = jw2jh = p and jw1jv = jw2jv = q. The redued ode of a stairasepolygon w is the word on the alphabet A = ��vh�; �vv�; �hh�; �hv�	 obtained bystaking the two words w1 and w2. In the example of Figure 8.10, the two pathsare respetively vw1h = v �vhvhvvhhhvhh �h and hw2v = h �hhvhvhvvhhvh �v.Words on A that ode for stairase polygons are haraterized by the fatsthat they have an equal number of letters h in both rows, and that their pre�xesontain at least as many letters �vh� as letters �hv�: indeed, the morphism Æindued by fÆ�vh� = 1; Æ�hv� = �1; Æ�hh� = Æ�vv� = 0g measures the distanebetween the upper and lower paths along diagonals, and the positive pre�xproperty expresses the ondition that the upper and lower paths do not meetbefore their endpoint. Codes of stairase polygons are thus essentially bioloredMotzkin words.This haraterization suggests to onstrut stairase polygons by applyingthe yle lemma to words of the set S(p; q) of words of length p + q + 1 on Awith p + 1 letters h and q letters v in the �rst row, and p letters h and q + 1letters v in the seond row:Stairase(p; q)1 w01  RandPerm(hp+1vq) . generate w0 = �w01w02� 2 S(p; q)2 w02  RandPerm(hpvq+1)3 (m; Æm) (0; 0) . seek the position m of the4 Æ  0 . leftmost minimum w.r.t Æ5 for i 1 to p+ q + 1 do6 if (w01[i℄; w02[i℄) = (v; h) then7 Æ  Æ + 18 elseif (w01[i℄; w02[i℄) = (h; v) then9 Æ  Æ � 110 if Æ < Æm then Version February 6, 2004
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rFigure 8.11. A direted onvex polyomino and its ontour.11 (m; Æm) (i; Æ)12 (w1h;w2v) Shift((w01; w02);m) . get the onjugate at position m13 return (vw1h; hw2v)Proposition 8.2.2. Stairase(p; q) produes the ode of a random uniformstairase polygon with dimension (p+ 1; q + 1) in linear time.Proof. Let us �rst use the yle lemma to derive the number of stairase poly-gons. The number of words in S(p; q) is Card(S(p; q)) = �p+q+1q ��p+q+1p �. Thenamong the p + q + 1 yli shifts of any word w0 2 S(p; q), exatly one is ofthe form w�hv� with w having the positive pre�x property. Hene the number ofstairase polygons with dimension (p+ 1; q + 1) is 1p+q+1�p+q+1q ��p+q+1p �.The algorithm Stairase() generates a word uniformly at random in theset S(p; q), and omputes its unique yli shift oding for a stairase polygon.The probability to get the ode of a given polygon P is thus the sum of theprobability to get eah of its yli shifts. But the ode of P admits p+ q + 1distint yli shifts, and eah of these word has probability 1=Card(S(p; q)) tobe obtained. Thus the probability to get P is (p + q + 1)=Card(S(p; q)), i.e.depends only on the dimension of P : uniformity is preserved through the ylelemma.8.2.3. Direted onvex polyominoes and Catalan's fatorizationDireted onvex polyominoes are haraterized among onvex polyominoes bythe property that their ontour ontains the bottom left orner of their boundingbox. In other terms ontours of direted onvex polyominoes are unimodalpolygons, i.e. shu�es of a word of the language u�d� and a word of the languager�l�. Let us onsider an unimodal polygon with dimension (p + 1; q + 1), anddeompose it into an upper path and a lower path both starting from the bottomleft orner and of length p+ q + 2, and respetively obtained in lokwise andounterlokwise diretion. Let w01 and w02 be the odes of these two paths on thealphabet fh; vg. In the example of Figure 8.11, the two paths are respetivelyw01 = vhvhvvhvhvhhvv and w02 = hhhhvhvhhhvhvh. The following propertiesof w01 are immediate onsequenes of the de�nition of unimodal polygons:1. the word w01 starts with a letter v;Version February 6, 2004



8.2. Sampling: polygons, animals and polyominoes 192. it ontains at least q + 1 letters v;3. the �rst q + 1 letters v ode up steps, the other ones down steps;4. the (q + 1)th letter v is followed by a letter h.The last property aounts for the right turn that the path has to make whenreahing the upper boundary. De�ne the redued ode w1 as obtained fromw01 by deleting the two redundant letters given by Properties 1 and 4 above.Similarly the redued ode w2 is obtained by deleting from w02 the �rst letter(that is a letter h) and the letter following the (p+ 1)th letter h (that is a letterv). Let w be the word on A obtained by staking w1 and w2. Then again allpre�xes of w ontain at least as many letters �vh� as letters �hv�. It turns out thatthis ondition is suÆient for w to ode an unimodal polygon: this is expressedby the following lemma, the proof of whih is left to the reader.Lemma 8.2.3. A word w on A is the staked redued ode of an unimodalpolygon with dimension (p + 1; q + 1) if and only if all its pre�xes ontain atleast as many letters �vh� as letters �hv�, and, viewed as a pair of words on fh; vg,it ontains 2p letters h and 2q letters v.In terms of the morphism Æ of the previous setion, Lemma 8.2.3 impliesthat a word of A� is the ode of an unimodal polygon if and only if it is a pre�xof Motzkin word on (A; Æ). These pre�xes are similar to pre�xes of Dyk wordswith Æ even, and the proof of Proposition 8.1.2 suggests the following algorithm.Unimodal(p; q)1 w1  RandPerm(hpvq) . generate w = �w1w2� with Æ(w) = 02 w2  RandPerm(hpvq)3 Æ  04 Æm  05 for i 1 to p+ q do6 if (w1[i℄; w2[i℄) = (v; h) then7 Æ  Æ + 18 elseif (w1[i℄; w2[i℄) = (h; v) then9 Æ  Æ � 110 if Æ < Æm then . leftmost minimum found11 (Æm; w1[i℄; w2[i℄) (Æ; v; h) . down step beomes up step12 return (w1; w2)Proposition 8.2.4. Unimodal(p; q) produes the redued ode of a randomuniform unimodal polygon with dimension (p+ 1; q + 1) in linear time.Proof. Lines 1, 2 of the algorithm onstrut a word �w1w2� satisfying Æ�w1w2� = 0.A straightforward adaptation of the bijetion used for Proposition 8.1.2 showsthat these words are in one-to-one orrespondene with pre�xes of Motzkinwords: for the urrent Æ, steps �vh� play the role of up steps, steps �hv� that downsteps, and Motzkin fators replae Dyk fators. The algorithm implements theinverse bijetion, replaing leftmost down steps at negative levels by up steps.Version February 6, 2004
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rFigure 8.12. A onvex polyomino and its ontour.Sine the word �w1w2� is taken uniformly in the set of words with p letters hand q letters v in both lines, its image is uniform in the set of biolored Motzkinpre�xes with 2p letters h and 2q letters v.As a orollary of the previous proof, we also see that the number of unimodalpolygons of dimension (p+ 1; q + 1) is �p+qp �2.8.2.4. Convex polyominoes and rejetion samplingThe ontour of a onvex polyomino with dimension (p+ 1; q + 1) an be odedas follows by a pair (w0; k): start from the upper point of the ontour on the leftboundary, and ode the path in lokwise diretion by a word w0 with letters hand v as previously; let moreover k be the distane of the startpoint to the topborder of the bounding box (see Figure 8.12). From the geometry, the followingproperties of the word w0 are immediate:1. there are 2p+ 2 letters h and 2q + 2 letters v; moreover 0 � k � q;2. the �rst p+ 1 letters h ode right steps, the other p+ 1 left steps;3. the �rst k letters v ode up steps, the next q+ 1 down steps, and the �nalq + 1� k up steps again;4. the �rst letter is a letter h;5. if k > 0 then the kth letter v is followed by a letter h;6. the (p+ 1)th letter h is followed by a letter v;7. the (k + q + 1)th letter v is followed by a letter h;8. the (2p+ 2)th letter h is followed by a letter v;9. the letters singled out in 4, 5, 6, 7, and 8 above appear in this order.These properties do not ompletely haraterize the odes of onvex polygons,but this is almost the ase, as the reader will verify:Lemma 8.2.5. A pair (w0; k) satisfying the nine properties above is the odeof a onvex polygon if and only if the orresponding walk is a polygon, that is,if it does not visit twie the same point. This property an be heked in lineartime by the following algorithm.ChekSimple(w0; k)Version February 6, 2004



8.2. Sampling: polygons, animals and polyominoes 211 (i1; Æ1; "1) (1; q + 1� k;+1) . traversal of w0 from the left2 (i2; Æ2; "2) (2p+ 2q + 3; q � k;�1) . traversal of w0 from the right3 for ` 1 to p+ 1 do . ` ounts horizontal steps4 while w0[i1℄ = v do . vertial move on top5 (i1; Æ1) (i1 + 1; Æ1 + "1)6 while w0[i2℄ = v do . vertial move on bottom7 (i2; Æ2) (i2 � 1; Æ2 + "2)8 if Æ1 � Æ2 then . self-intersetion deteted9 return false10 if Æ1 = q + 1 then . top reahed11 "1  �112 if Æ2 = 0 then . bottom reahed13 "2  +114 (i1; i2) (i1 + 1; i2 � 1) . next olumn15 return trueThe redued ode (w; k) of a onvex polygon is obtained by deleting theredundant letters given by Properties 4, 6, 7, 8, and if k > 0 by Property 5.The redued word w has thus, if k = 0, 2p letters h and 2q letters v, or, if k > 0,2p�1 letter h and 2q letters v. Given the redued word w and the index k thereis an immediate algorithm InsertRedundantLetters(w; k) that reonstrutsw0 by inserting the missing letters from left to right.The following generator is based on the rejetion priniple: words of a su-perset of the set of odes are generated uniformly at random until a proper odeis obtained.Convex(p; q)1 do k  Rand(0; q)2 w  RandPerm(h2pv2q)3 if k = 0 or w[2p+ 2q℄ = h then4 w0  InsertRedundantLetters(w; k)5 if ChekSimple(w0; k) = true then6 return (w0; k)7 while trueProposition 8.2.6. Convex(p; q) produes the ode of a random uniformonvex polygon with dimension (p+ 1; q + 1).Proof. The fat that the output is uniform follows from the following standardrejetion argument: when the algorithm stops, the probability to output a givenode is proportional to the probability to get this ode as an element of thesuperset; but elements of the superset are sampled uniformly, i.e. have thesame probability to be generated.The expeted omplexity of the algorithm Convex() depends on the om-parison between the size (q + 1)�2p+2q2p � of the superset Sp;q in whih k and ware sampled, and the size of the set Pp;q of onvex polygons with dimensionVersion February 6, 2004



22 Counting, oding and sampling with words 8.0
b

b

b

b

b

b

b

b b

b

b

b

b

b

b b

b

b

Figure 8.13. A direted animal and the equivalent strit pyramid.(p + 1; q + 1). More preisely, eah loop takes linear time, the probability ofsuess of a loop is sp;q = Card(Pp;q)=Card(Sp;q), and the number of loops is ageometri random variable with expetation 1=sp;q. The expliit omputationof Card(Pp;q) shows that this last value is bounded by a onstant, but we donot inlude the details here (see Problem 8.2.2).Proposition 8.2.7. The all Convex(p; q) has expeted linear omplexity.8.2.5. Direted animalsUpon rotating the lattie ounterlokwise by �=4, direted animals an begiven an elegant interpretation in terms of heaps of briks : ells are viewedas briks exposed to the gravity law with the bottom brik lying on the oor;the ondition that animals are direted, i.e. that there always exists a pathdownward to the bottom ell, is equivalent to the fat that every brik leans onone brik below and annot fall.To be more preise, let us give a de�nition of heaps of briks. The alphabetof briks is B = f(i; i+ 1); i 2 Zg. Two briks b, b0 of B ommute if and onlyif, as subsets of Z, b \ b0 = ;. Two words are equivalent, w � w0, if one an beobtained from the other by a sequene of ommutations of adjaent ommutingbriks. A heap of briks is an element of the assoiated partially ommutativemono��d, i.e. an equivalene lass for the relation �. The set of minimal briksof a heap w is the set min(w) = fb j 9w0; w � bw0g. A pyramid at absissa i isa heap suh that min(w) = f(i; i+ 1)g.The anonial geometri representation of a heap indued by the gravity laworresponds to the standard Cartier-Foata normal form of the heap: readinga heap from left to right in lines from bottom to top yields a word w of theform w1 � � �wk with eah blok wi made of ommuting letters and suh that foreah letter b of wi+1 there is a letter b0 of wi with b\ b0 6= ;. A heap is strit ifmoreover no two onseutive bloks of the normal form have a brik in ommon:in other terms in a strit heap a brik (i; i+ 1) always lean on a brik (i� 1; i)or (i+ 1; i+ 2), not on another brik (i; i+ 1).From the geometri interpretation of pyramids of briks and the initial dis-ussion of this paragraph, the following lemma is immediate.Version February 6, 2004



8.2. Sampling: polygons, animals and polyominoes 23
(a) Fatorization of a pyramid into apyramid and a semi-pyramid. (b) Fatorization of a semi-pyramidinto a brik and two semi-pyramids.Figure 8.14. Deomposition of pyramids.Lemma 8.2.8. Direted animals \are" strit pyramids of briks.This interpretation of direted animals in terms of pyramids of briks allows toperform deompositions that would otherwise be very diÆult to explain. Firstde�ne a semi-pyramid to be a pyramid without briks on the left hand sideof the bottom brik. Then the following two deompositions are obtained bypushing upward a brik and all the briks that lay above it, or indiretly leanon it:{ a strit pyramid of briks is either a strit semi-pyramid, or an be fa-tored, by pushing upward the lowest brik with absissa �1, into a stritpyramid at absissa �1 staked over a strit semi-pyramid;{ a strit semi-pyramid is redued to a brik, or to a strit semi-pyramidat absissa 1 over a brik, or an be fatored, by pushing upward theseond lowest brik with absissa 0, into a strit semi-pyramid at absissa0 staked over a strit semi-pyramid at absissa 1 over a brik.This joint deomposition is isomorphi to the joint deomposition of pre�xes ofwords and of words of the Motzkin language on the alphabet fa; b; x1g:{ a pre�x of Motzkin word is either a Motzkin word or an be deomposedas uav with u a Motzkin word and v a pre�x of Motzkin word.{ a Motzkin word is redued to the empty word ", or is of the form x1uwith u a Motzkin word, or an be deomposed as aubv with u and v twoMotzkin words.These isomorphi deompositions indue a bijetion between strit pyramids ofn briks and pre�xes of Motzkin words of length n� 1.Corollary 8.2.9. Pre�xes of Motzkin words an be bijetively transformedinto strit pyramids of briks in linear time.The Motzkin language being algebrai, uniform random generation ould bedone using a reursive approah. We desribe instead another appliation ofVersion February 6, 2004



24 Counting, oding and sampling with words 8.0the rejetion priniple whih is both more elegant and more eÆient for thisspei� problem. Let us onsider again the alphabet Ak = fu; d; x1; : : : ; xkgand the assoiated k-olored Motzkin words of Setion 8.1.3. A naive algorithmto generate uniform random pre�xes of k-olored Motzkin words of length nonsists in generating uniform random words of (Ak)n and rejeting. Howevera simple alulation shows that the probability of suess is of order O(n�1=2)thus giving an algorithm with expeted omplexity O(n3=2). A slight re�nementon this idea is to observe that rejetion an be deided on the y. This turnsout to be surprisingly eÆient.FlorentineRejetion(n; k)1 do w  "2 for i 1 to n do . generate from left to right3 w[i℄ Rand(1; k + 2)4 if w[i℄ = k + 1 then5 Æ  Æ + 16 w[i℄ u7 elseif w[i℄ = k + 2 then8 Æ  Æ � 19 w[i℄ d10 if Æ < 0 then . if a negative pre�x is deteted11 break . restart from srath12 while i 6= n+ 1 . until w is a valid n letters word13 return wThis algorithm obviously produes a pre�x of k-olored Motzkin word.Lemma 8.2.10. FlorentineRejetion(n; k) generates a random uniform pre-�x of k-Motzkin word of length n in expeted linear time.Proof. For simpliity the analysis is presented in the ase k = 0 but the samestrategy of analysis applies to the general ase (using generating funtions in-stead of elementary ounting). It will be onvenient to onsider that when theonstrution fails at the ith step of the inner loop, we �nish the loop and gener-ate n�i more letters at no ost. This modi�ation of the algorithm do not a�etthe �nal result or the ost, but allow us to think at eah iteration as produ-ing a uniform random word of (Ak)n. From this point of view, the Florentinerejetion behaves like standard rejetion and therefore it is uniform on pre�xes.The probability of suess of the inner loop is pn = �2nn �2�2n = pn, and thenumber of aborted loops is a geometri random variable with expeted value1=pn = O(n1=2). Let us now ompute the expeted ost of a failure: a failurewith ost 2i+ 1 is obtained for a word w of the form ubv with u a Dyk word oflength 2i and v in fa; bg2n�2i�1. Hene the umulated ost for all these 22n��2nn �words isPn�1i=0 (2i+1)Ci22n�2i�1 = 22n�1Pn�1i=0 �2i+1i �2�2i = O(22nn1=2): WithO(n1=2) aborted loops with ost O(n1=2) eah, and one suessful loop with ostn, the total expeted ost is linear as announed.Version February 6, 2004



8.3. Coding: trees and maps 25
Figure 8.15. Two rooted planar maps with the same underlying graph.Florentine rejetion thus uses on average a linear number of random bits.As opposed to this a all to RandPerm(w) for a word w of length n uses aboutn logn bits, and this is in general suboptimal from a theoretial point of view.For instane for w = anbn, log �2nn � � 2n bits should suÆe. In this ase anoptimal solution (on average) is obtained using FlorentineRejetion(n; 0)to get a pre�x of Dyk words and Catalan's fatorization (Proposition 8.1.2) totransform it into a word of S(anbn). As opposed to this, it is an open problemin general to sample in linear time from S(w) using O(log Card(S(w))) randombits.8.3. Coding: trees and mapsA planar map1 is a proper embedding of a onneted graph in the plane. Mul-tiple edges and loops are allowed, and proper means that edges are smoothsimple ars whih meet only at their endpoints. The faes of a planar map arethe onneted omponents of the omplement of the graph in the plane: apartfrom one in�nite fae, all faes are bounded and homeomorphi to disks. Allthe planar maps we onsider are rooted : they have an oriented edge, alled theroot, whih is inident to the in�nite fae on its right-hand side. Examples ofrooted maps are presented in Figure 8.15.From now on we shall onsider that two planar maps are the same if onean be mapped onto the other (inluding roots) by an homeomorphism of theplane. However there are still many more planar maps than planar graphs, asillustrated by Figure 8.15. Indeed homeomorphisms of the plane respet theneighborhood of eah vertex, so that the irular order of edges around vertiesis �xed.From a ombinatorial point of view, a planar map an in fat entirely bespei�ed as follows: label half-edges (or darts) and for eah half-edge give thenames of the opposite half-edge, and of the next half-edge around its origin inounterlokwise diretion. As a onsequene the number of planar maps withn edges is �nite. Moreover these labeled maps apture exatly the level at whihalgorithms on maps are implemented in omputational geometry, using dartsas elementary data strutures. Carrying on with labeled maps, one ould alsoreah a purely ombinatorial setting and eliminate the geometry (at least atthe formal level of proofs). However for the sake of oniseness it appears more1The word map is intended here in its geographi sense, like in road-map.Version February 6, 2004



26 Counting, oding and sampling with words 8.0eÆient to keep higher level geometri arguments.Examples of spei� families of planar maps are numerous. A triangulationof a k-gon is a planar map without multiple edges suh that all bounded faeshave degree 3 and the in�nite fae has degree k (the degree of a fae is thenumber of sides of edges to whih it is inident). A k-valent map is a planarmap suh that all verties have degree k (the degree of a vertex is the numberof half-edges to whih it is inident).8.3.1. Plane trees and generalities on odingA rooted plane tree, or hereafter simply a plane tree is a planar map with onefae. A planted plane tree is a plane tree suh that the root vertex has degree 1.A binary tree is a planted plane tree with verties of degree 3 and 1 only, respe-tively alled nodes and leaves. These de�nitions agree with lassial reursivede�nitions of plane trees: for instane a plane tree an be deomposed as anordered sequene of subtrees attahed to the root.The ontour traversal of a planar map is the walk on the verties and edgesof the map that starts from (the right-hand side of) the root edge, and turnsaround the map in ounterlokwise diretion so as to visit the boundary ofthe in�nite fae. (The reader is enouraged to imagine an ant walking aroundthe map.) The ontour traversal of a plane tree visits in partiular twie everyedge: the �rst time away from the root vertex, and the seond time toward theroot vertex. The preorder on the verties of a planted plane tree is de�ned byordering verties aording to the �rst passage of the ontour traversal.The Dyk ode of a planted plane tree with n+ 1 edges is the word of length2n on the alphabet fu; dg obtained during a ontour traversal of the tree bywriting a letter u eah time a non-root edge is visited for the �rst time (awayfrom the root vertex), and a letter d eah time a non-root edge is visited for theseond time (toward the root vertex). The reader should onvine himself thatthe Dyk ode of a tree haraterizes it.Lemma 8.3.1. Dyk enoding is a bijetion between planted plane trees withn+ 1 edges and Dyk words of length 2n. In partiular the number of plantedplane trees with n+ 1 edges is the nth Catalan number.The pre�x or  Lukasiewiz ode of a planted plane tree with n edges is theword of length n on the alphabet fxi; i � 0g obtained during a ontour traversalof the tree by writing a letter xi eah time a non-root vertex with degree i+1 isvisited for the �rst time. Let us de�ne the morphism Æ by Æ(xi) = i� 1. Thenthe pre�x ode w of a planted plane tree has the  Lukasiewiz property (i.e. foreah strit pre�x v of w, Æ(v) > Æ(w)). In partiular, upon setting x2 = u andx0 = d, we obtain the following lemma for the ase of binary trees:Lemma 8.3.2. Pre�x enoding is a bijetion between binary trees with n nodes,(and thus n+2 leaves and 2n+1 edges) and words of length 2n+1 of the Dyk- Lukasiewiz language Dd. In partiular the number of binary trees with n nodesis the nth Catalan number.Version February 6, 2004
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bFigure 8.16. A planted plane tree and its Dyk ode.
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bFigure 8.17. A planted binary tree and its pre�x ode.Reall that the optimal oding problem for a family C of ombinatorial stru-tures onsists in �nding a funtion ' that maps injetively objets of C on wordsof f0; 1g� in suh a way that an objet O of size n is oded by a word '(O) oflength roughly bounded by log2 Card(Cn), with Cn the set of objets of size n.Sine the nth Catalan number satis�es logCn � 2n as n goes to in�nity, Dykodes and pre�x odes respetively solve the optimal oding problem for planetrees and for binary trees. On the other hand, the Dyk ode of a binary treewith n nodes has length 4n+2, so that Dyk odes are far from optimality withrespet to the family of binary trees: the optimality of a ode is relative to theentropy log Cn of the set Cn under onsideration.More generally, onsider the set of planted plane trees with di nodes ofdegree i (and thus ` = 1+P(i�2)di non-root leaves). Pre�x enoding de�nes abijetion between this set of trees and the subset of words of S(x0̀xd11 : : : xdkk ) thathave the  Lukasiewiz property. But aording to the yle lemma, the frationof suh words of length n among words of same length in S(x0̀xd11 : : : xdkk ) is 1=n.Now words on a �nite alphabet with �xed proportion of letters an be enodedoptimally by the so-alled entropy oder. Hene pre�x enoding ombined withentropy enoding yields optimal oding for plane trees with a �xed proportionof nodes of eah degree.
Version February 6, 2004



28 Counting, oding and sampling with words 8.0
(a) A blossoming tree, (b) and a balaned one.Figure 8.18. Two onjugate blossoming trees.8.3.2. Conjugay lasses of treesFrom now on, we onsider planted plane trees with two types of verties ofdegree 1, respetively alled buds and leaves. Verties of higher degree arealled nodes. In partiular, a blossoming tree is a planted plane tree suh thateah node has degree 4 and is adjaent to exatly one bud; a blossoming treewith n nodes has thus n+ 2 leaves and n buds. Examples of blossoming treesare given in Figure 8.18.Lemma 8.3.3. The number of blossoming trees that are planted on a leaf andhave n nodes is 3nn+1�2nn �. The number of blossoming trees that are planted ona bud and have n nodes is 3nn+2� 2nn�1�.Proof. Let B0n and B00n denote these two sets of blossoming trees. A blossomingtree of the �rst type an be uniquely obtained from a binary tree with n nodesby attahing a bud to eah node in one of the three possible ways. Togetherwith Lemma 8.3.2, this proves the �rst formula.Now let us onsider the set of doubly planted blossoming trees, one root beinga leaf and the seond one a bud. Suh a tree with n nodes an be onsideredeither as a blossoming tree in B0n with a marked bud, or as a blossoming treein B00n with a marked leaf. Hene doubly planted blossoming trees with n nodesare either ounted by nCard(B0n) or by (n + 2) Card(B00n). As a onsequene,Card(B00n) = nn+2 � 3nn+1�2nn �, whih proves the seond formula.Let T be a planted plane tree with n nodes. During a ontour traversal ofT , its buds and leaves are visited in a sequene (by onvention the root vertex isvisited at the end of the traversal). Aordingly the border word is the word withletters fb; `g obtained along the ontour traversal by writing a letter b eah timea bud is visited and a letter ` eah time a leaf is visited. For example, the borderwords of the blossoming trees of Figure 8.18 are respetively ``b`b``bb`b``b`bb`and b`b``bb`b``b`bb```.Version February 6, 2004



8.3. Coding: trees and maps 29Two planted plane trees T and T 0 are onjugate if one is obtained from theother by re-rooting. In other terms, two planted plane trees are in the sameonjugay lass of trees if they share the same underlying unrooted plane tree.This terminology is motivated by the remark that onjugate planted plane treeshave onjugate border words. Taking Æ(b) = +1 and Æ(`) = �1, the yle lemmasuggests the following de�nition: a planted plane tree is balaned if its borderword has the  Lukasiewiz property. With this de�nition, and remembering thatblossoming trees have two more leaves than buds, the yle lemma for thosetrees reads: a blossoming tree has exatly two anonial leaves suh that theonjugate trees rooted at these leaves are balaned.Lemma 8.3.4. There are 2n+2 3nn+1�2nn � balaned blossoming trees with n nodes.Proof. The �rst proof is again based on a double ounting argument. Let B�nbe the set of balaned blossoming trees with n nodes. The number of balanedblossoming trees with a seondary root leaf is (n+2) Card(B�n). Upon exhangingthe role of the two roots, these trees are also blossoming trees with a seondaryroot leaf taken among the two anonial leaves: their number is thus 2 � 3nn+1�2nn �.The result follows.Proof (bis). An alternative proof is based on the following remark: the numberof balaned re-rootings of any blossoming tree is equal to the di�erene betweenits numbers of leaves and buds, so that, in eah onjugay lass of trees, thenumber of balaned trees is exatly the di�erene between the number of treesrooted on a leaf and the number of trees rooted on a bud. Hene the number ofbalaned blossoming trees with n nodes is the di�erene 3nn+1�2nn �� 3nn+2� 2nn�1�.8.3.3. The losure of a plane treeThe losure of a planted plane tree with two more leaves than buds is obtainedby repeating the following onstrution until only two leaves remain: perform aontour traversal, and eah time a leaf follows a bud in the sequene of verties ofdegree 1 met by the walk, math them, i.e. fuse the two orresponding danglingedges in the unique way that reates a bounded fae with no vertex of degree 1inside (see Figure 8.19(a)).Lemma 8.3.5. The losure of a plane tree with n nodes and two more leavesthan buds terminates and produes a planar map with the same n nodes andtwo leaves, whih are both inident to the in�nite fae. In partiular the losureof a blossoming tree has n verties of degree four, plus two of degree one in thein�nite fae.If moreover the tree is balaned, then its root vertex is one of the two re-maining leaves.Proof. At eah iteration all fators b` of the border word are deteted, anddeleted sine the orresponding pairs of bud and leaf are mathed. In partiularVersion February 6, 2004



30 Counting, oding and sampling with words 8.0
(a) A fusion, �
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(b) the partial losure () and the ompletelosure.Figure 8.19. The losure of the balaned blossoming tree of Figure 8.18(b).at least one pair is mathed at eah iteration, so that the onstrution termi-nates. Verties of degree at least two remain unhanged while all buds andleaves are eliminated but the two anonial roots.As desribed above the losure ould require a quadrati number of opera-tions. The following algorithm takes a planted plane tree with two more leavesthan buds and omputes its losure in linear time. It uses the following items:{ a loal stak with funtions PutInStak(), PopFromStak() and Is-StakEmpty(),{ a funtion NextFreeVertex(vertex ) that starts a ontour traversal afterthe vertex of degree 1 vertex and returns the �rst vertex of degree 1 found,{ a funtion Type(vertex ) that tells whether vertex is a bud or a leaf,{ a funtion FuseIntoEdge(bud ; leaf ) that realizes the fusion of a bud budand a leaf leaf into an edge.Closure(T )1 n NumberOfLeaves(T )2 vertex  RootOf(T )3 (`1; `2) (vertex ; vertex )4 while n > 2 do5 vertex  NextFreeVertex(vertex )6 if Type(vertex ) = bud then7 PutInStak(vertex )8 elseif IsStakEmpty() then9 (`1; `2) (`2; vertex )10 else bud  PopFromStak()11 FuseIntoEdge(bud ; vertex)12 n n� 1
Version February 6, 2004



8.3. Coding: trees and maps 3113 if `1 = `2 then14 `2  NextFreeVertex(vertex )15 return (T; `1; `2)Remark 8.3.6. Lines 13 and 14 only treat the speial ase of a balaned blos-soming tree in whih the seond free leaf is the last one of the border word.The omplete losure of a balaned blossoming tree is obtained from itslosure by fusing the two remaining verties of degree 1 and the inident danglingedges into a root edge. Lemma 8.3.5 implies that the omplete losure of ablossoming tree with n nodes is a 4-valent map with n verties. The followingmore preise theorem will be proved in the next setion.Theorem 8.3.7. The omplete losure is one-to-one between balaned blos-soming trees with n nodes and 4-valent maps with n verties. In partiular thenumber of these maps is 2n+2 3nn+1�2nn �.As a orollary we already have the omplete desription of a random sam-pling algorithm for 4-valent maps with n verties. Apart from the funtionClosure(), it uses the random generator FlorentineRejetion() de�ned inSetion 8.2 and the following items:{ a funtion PrefixDeode(w) that onstruts the binary tree enoded bya Dyk- Lukasiewiz word w,{ a funtion AddBud(n; i) that adds a bud to a node n in one of the threepossible manners,{ a funtion AddRoot(M; `1; `2) that roots the map M by fusing its twoleaves `1 and `2 into an oriented edge.RandMap(n)1 w  FlorentineRejetion(n; 0)2 T  PrefixDeode(wd)3 for node 2 T do4 AddBud(node;Rand(1; 3))5 (M; `1; `2) Closure(T )6 if Rand(1; 2) = 1 then7 AddRoot(M; `1; `2)8 else AddRoot(M; `2; `1)9 return MCorollary 8.3.8. RandMap(n) outputs a uniform random 4-valent mapwith n verties in linear time.8.3.4. The opening of a 4-valent mapThe dual of a planar map M is the planar map M� de�ned as follows: in eahfae of M put a vertex, and join these new verties by edges dual to the edgesof M . By onstrution the verties, edges and faes of M� are respetively inVersion February 6, 2004



32 Counting, oding and sampling with words 8.0bijetion with faes, edges and verties of M . This onstrution is illustrated byFigure 8.20(a). The proof of the following property of duality in planar maps isleft to the reader.Lemma 8.3.9. Let (E1; E2) be a partition of the set of edges of a planar mapM . Then E1 is a spanning tree of M if and only if E�2 is a spanning tree of M�.When this ase we all (E1; E2) a spanning tree deomposition of M .From now on, let M be a planar map, and (E1; E2) be a spanning treedeomposition of M . For e an edge of E2, opening e with respet to (E1; E2)will mean: orienting e so that the yle it indues with the tree E1 is ounter-lokwise, and then replaing e by two dangling edges, the one attahed to theorigin of e holding a bud b(e), the other one holding a leaf `(e). We shall alwaysassume moreover that the root r of M belongs to E2. Then, the opening of Mwith respet to (E1; E2) is the tree T de�ned as follows: (see Figure 8.20()){ open eah edge e 2 E2 with respet to (E1; E2),{ replae the bud b(r) by a leaf and plant the tree on it.The tree T thus onsists of the edges of the spanning tree E1 together withpairs of dangling edges assoiated to edges of E2. More preisely, these edgesontribute to one bud and one leaf exept for the root whih ontributes to twoleaves. By onstrution, the opening T of a 4-valent planar map M with nverties has n nodes of degree 4, n buds and n+ 2 leaves.Lemma 8.3.10. The omplete losure of the opening of a planar map M withrespet to any spanning tree deomposition is the planar map M itself.Proof. The opening of an edge merges the two faes inident to it. Sine E�2forms a spanning tree of M�, the openings an be performed sequentially so thatone of the two merged faes is always the in�nite fae. It is then immediateat eah step that the pair of bud and leaf reated by the opening of an edgeorresponds to a mathed pair in the losure.There are in general many spanning tree deompositions of M , and the rightone must be hosen to invert the losure. To explain how this is done we needto introdue the distane in the dual map M�: two faes of M are adjaent ifthey share a ommon edge, and the distane between two faes f and f 0 is thelength k of the shortest path (f0; : : : ; fk) where f0 = f , fk = f 0 and for all i, thetwo faes fi and fi�1 are adjaent. Observe that the dual M� of a 4-valent maphas only faes with even degrees (in fat degree 4), so that it does not ontainany yle of odd length, and the distanes of a fae f to two adjaent faes f 0and f 00 always di�er by 1.To eah fae f of M , assoiate the fae r(f) inident to the root edge r andlosest to f for the distane in M�. The set P(f) of paths of minimal lengthfrom r(f) to f forms a bundle of paths bounded by two paths P0(f) and P1(f),with P0(f) having the bundle on its right hand side. We shall all P0(f) theleftmost minimal path from the root to f . The union of r� and of the edges ofthe paths P0(f) for all faes f of M forms a spanning tree of M�: the existeneVersion February 6, 2004
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(a) A map and its dual, (b) a spanning tree de-omposition, () and the orrespond-ing opening.Figure 8.20. An opening of the map of Figure 8.19().of a yle would prevent one of the paths from being leftmost. This tree is alledthe leftmost breadth �rst searh tree of M� starting from r�, beause it is alsogiven by a breadth �rst searh traversal with the left hand rule. As stated inthe following proposition, it is the spanning tree we are looking for.Proposition 8.3.11. Let M be a 4-valent map with root edge r and (E1; E2)be a spanning tree deomposition suh that r 2 E2. Then the opening of Mwith respet to (E1; E2) is a blossoming tree if and only if E�2 is the leftmostbreadth �rst searh tree of M� starting from r�.The proof of this proposition is based on two lemmas. The �rst one is aharaterization of blossoming trees.Lemma 8.3.12. A tree T with n buds, n+ 2 leaves and n nodes of degree 4 isa blossoming tree if and only if, for every inner edge e, the two omponents ofT n e both ontain one more leave than buds.Proof. The haraterization is trivial for n = 1, and remains true when a furthernode with two leaves and a bud is attahed in plae of a leaf. The lemma thusfollows by indution sine every tree an be obtained by adding new nodesinrementally.For the seond lemma it is useful to view the spanning tree E�2 as rooted onr�, with the onvention that the in�nite fae of M is the origin of the root.Lemma 8.3.13. Let e be an edge of E1 separating two faes f , f 0, with fbefore f 0 in the leftmost depth �rst order on the tree E�2 . Consider the pathsP and P 0 from f and f 0 to their ommon anestor in E�2 , whih de�ne with e�a yle separating a bounded region B of the plane from an unbounded one U .Then, Version February 6, 2004



34 Counting, oding and sampling with words 8.0{ the opening of an edge of P with respet to (E1; E2) reates a leaf in Band a bud in U ,{ and the opening of an edge of P 0 with respet to (E1; E2) reates a budin B and a leaf in U .Proof. The result is immediate upon omparing the orientation used in thede�nition of the opening of an edge and the orientation of the yle going frome� up the path P and down the path P 0.Proof of Proposition 8.3.11. First assume that E�2 is the leftmost breadth �rstsearh tree of M� starting from r�, and let T be the opening of M with respetto E�2 . Aording to Lemma 8.3.12, it suÆes to hek that for any edge e of E1,both omponents of T n e ontain one more leaves than buds. Let us onsiderthe paths P and P 0 of Lemma 8.3.13. The breadth �rst searh ondition on E�2implies that the length of these two paths di�er at most by 1, hene exatly by1, in view of the disussion of distanes in M�. The leftmost ondition on E�2moreover implies that the shortest path of the two must be P 0. Finally observethat two omponents of T n e are separated by the dual yle of Lemma 8.3.13,so that this lemma an be used to ount buds and leaves in the two regions.This an be done easily upon distinguishing whether r� is on P or not.Let now E�2 be a spanning tree of M� di�erent from the leftmost breadth�rst searh tree E0�2 . Then there are leftmost minimal paths that do not appearin E�2 . Among the shortest of them let P0(f) be the leftmost one, onneting theroot to a fae f . Sine P0(f) is minimal, all its edges but the last one e belongto E�2 . Moreover, by de�nition of P0(f), this path is to the left and no longerthan the path P (f) onneting the root to f in E�2 . Applying Lemma 8.3.13to e, P � P0(f) and P 0 � P (f) and omparing the length of these two pathsshows that P 0 is longer than P , so that the two omponents of T n e have notthe expeted number of buds and leaves.The opening of M with respet to (E1; E2) with E�2 the leftmost breadth�rst searh tree of M� at r� will be alled simply the opening of M . In viewof Lemma 8.3.10, Proposition 8.3.11 ompletes the proof of Theorem 8.3.7: theopening is the inverse of the losure. Moreover it indues a linear time algorithmOpening(M) that reovers the unique balaned blossoming tree T suh thatClosure(T )= M :Opening(M)1 Perform a leftmost bfs traversal of the dual map M� starting from r�.2 Open the edges of the resulting tree to reate buds and leaves.3 Return the resulting balaned blossom tree.8.3.5. A ode for planar mapsTheorem 8.3.7 deals with a spei� family of planar maps, namely 4-valent ones.It turns out however that 4-valent maps play for planar maps the role that edge-graph play for graphs. More preisely, de�ne the edge-map of a planar map MVersion February 6, 2004



8.3. Coding: trees and maps 35
(a) Bioloration of faes. (b) Corresponding map.Figure 8.21. Inverse of the edge-map onstrution.as the 4-valent map M' having as vertex set the set of edges of M and havingan edge ' for eah orner  of the map M .Proposition 8.3.14. The edge-map onstrution is a bijetion between pla-nar maps with n edges and 4-valent maps with n verties. In partiular thenumber of planar maps with n edges is 2n+2 3nn+1�2nn �.Proof. The inverse onstrution follows from the remark that the faes of a4-valent map F an be olored in two olors, blak and white, so that adjaentfaes have di�erent olors. The planar map M is obtained by putting a vertexinto eah blak fae of F and joining these verties by an edge aross eah vertexof F .The edge-map onstrution thus allows us to dedue from Theorem 8.3.7 aode for the family of planar map.EnodeMap(M)1 F  EdgeMap(M)2 T  Opening(F )3 for node 2 T do4 w0[node℄ PositionOfBud(node)5 T  RemoveBud(T )6 w  BinaryCode(T )7 return (w;w0)Theorem 8.3.15. The algorithm EnodeMap() enodes a planar map withn edges by a pair of words respetively in fa; bg2n and f0; 1; 2gn. In view of thenumber of planar maps, this ode is optimal.
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36 Counting, oding and sampling with words 8.08.4. NotesSystemati approahes to enumeration, in partiular using generating funtions,are desribed in the books Goulden and Jakson 1983, Bergeron et al. 1998 andin the more reent Stanley 1999, Flajolet and Sedgewik 2002. In partiular therelevane of rational, algebrai and D-�nite series to enumeration is emphasizedin the last two ones.The enumeration of walks in the plane, in the half plane and in the quar-ter plane has beome part of the ombinatorial folklore, as well as Dyk walksand Catalan's fatorization. The yle lemma is attributed in the ombinatorialliterature to Dvoretzky and Motzkin 1947, where it is used to derive Proposi-tion 8.1.4. As �rst shown by Raney 1960 (see also Chapter 11 of Lothaire 1999),the yle lemma is a ombinatorial version of the Lagrange inversion formula,whih has numerous appliations in enumerative ombinatoris. More detailedhistorial aounts an be found in Pitman 1998 and Stanley 1999.The lassi�ation of the possible asymptoti behaviors of the Taylor oef-�ients of an algebrai series an be found in Flajolet 1987. The generatingfuntion of walks on the slitplane aording to the length and the oordinates ofthe extremities was �rst shown algebrai and omputed in Bousquet-M�elou andShae�er 2002. This is one in a series of results obtained reently by writingand solving linear equations with atalyti variables, see Banderier and Flajolet2002, Bousquet-M�elou 2002 (these referenes are also good entry points to theliterature on ounting walks on latties). The �rst proof we present illustratesa very general approah developed in Bousquet-M�elou 2001. The seond proofis taken from Barui et al. 2001.The foundation of ombinatorial random generation was laid in Nijenhuisand Wilf 1978 with the reursive method. As shown in Flajolet et al. 1994,this approah leads systematially to polynomial algorithms for deomposableombinatorial strutures. The (muh more speialized) appliation of the y-le lemma to random generation is disussed in Dershowitz and Zaks 1990 andAlonso et al. 1997. The Florentine rejetion algorithm is taken from Baruiet al. 1995. A systemati utilisation of mixed probabilisti/ombinatorial argu-ments for sampling was reently proposed in Duhon et al. 2002.General referenes on polyominoes are Klarner 1997, van Rensburg 2000.Exat enumerative results are surveyed in Bousquet-M�elou 1996. The algo-rithms to sample onvex and direted onvex polyominoes are adapted fromHohst�attler et al. 1996 and Del Lungo et al. 2001. From the enumeration pointof view, these results are enompassed by Bousquet-M�elou and Guttmann 1997,whih deals with onvex polygons in any dimension. Our treatment of diretedanimals and heaps of briks is adapted from B�etr�ema and Penaud 1993. Theseresults built on the ombinatorial intepretation of the ommutation mono��d ofCartier and Foata 1969 in terms of heaps of piees due to Viennot 1986.Starting from the seminal work of Tutte 1962, the literature on ombinatorialmaps has grown almost independently in ombinatoris and in physis. Somesurveys are Cori and Mah�� 1992 (ombinatorial point of view), Ambj�rn et al.1997 (physial point of view) and Di Franeso 2001 (mixed points of view).Version February 6, 2004



Problems 37A more detailed desription of odes for plane trees appear in Chapter 11of Lothaire 1999. The idea to use algebrai languages to enode maps alreadyappeared in Cori 1975, and plane trees are expliitly used in Cori and Vauquelin1981. Conjugay lasses of trees were introdued in Shae�er 1997, as well asthe bijetion between balaned trees and planar maps. Appliations to odingand sampling are disussed in Poulalhon and Shae�er 2003.ProblemsSetion 8.18.1.1 Show that the generating funtion of a rational language with respetto the length is rational.8.1.2 Compute the generating funtion with respet to the length of walksthat never immediately undo a step they have just done.8.1.3 De�ne the area under a Dyk word as the number of integer pointsbetween the horizontal axis and the assoiated walk. Use Catalan'sfatorization to show that the sum of the area under all Dyk words oflength 2n is 4n. (Chottin and Cori 1982)8.1.4 Show that an algebrai language that an be generated by a non am-biguous ontext free grammar has an algebrai generating funtion withrespet to the length.8.1.5 Give a bijetive proof of the fat that the number of biolored Motzkinwords of length n is equal to the number of Dyk words of length 2n+2.8.1.6 Give a bijetive proof of the right hand side formula in Proposition 8.1.9for the number of loops of length 2n that stay in the quadrant (x �0; y � 0). (Guy et al. 1992)Setion 8.28.2.1 What is the number of stairase and unimodal polygons with semi-perimeter n?�8.2.2 Show bijetively that the number of onvex polyominoes with boundingbox (p; q) is�2p+ 2q2p �+ q�2p+ 2q � 12p� 1 �� 2(p+ q)�p+ q � 1q ��p+ q � 1p �:What is the number of onvex polyominoes with semi-perimeter n?(Bousquet-M�elou and Guttmann 1997,Gessel 2000)8.2.3 An animal on the square lattie has ompat soure if there exists ksuh that every vertex of the animal an be reahed from one of theverties (i; k � i) with 0 � i � k by a path going north or east insideVersion February 6, 2004



38 Problemsthe animal. In partiular direted animals are exatly the animals withompat soure for k = 0.Prove that there are 3n�1 animals of size n with ompat soure.(Gouyou-Beauhamps and Viennot 1988)�8.2.4 Give a bijetion between bilateral Dyk paths of length n and (nonneessarily strit) pyramids of n briks suh that the number of pairs ofsteps onneting levels i and i+ 1 is mapped onto the number of briksin position (i; i+ 1). (Viennot 1986)��8.2.5 Give a uniform random sampling algorithm of expeted linear omplex-ity for the set of words of length n on an arbitrary �xed �nite alphabetthat have the  Lukasiewiz property.Setion 8.38.3.1 Give a diret bijetion between plane trees with n edges and binarytrees with n nodes.�8.3.2 What is the number of rooted planar maps with di verties of degree 2ifor all i � 0 and no odd degree vertex? (Shae�er 1997)��8.3.3 Compute the generating funtion of rooted planar maps aording tothe distribution of degrees. (Bouttier et al. 2002)��8.3.4 Show that planted plane trees with two leaves per inner verties arein one-to-one orrespondene with rooted triangulations with a markedfae. (Poulalhon and Shae�er 2003)
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