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Abstract. We introduce a bijection between plane bipolar orientations with fixed numbers
of vertices and faces, and non-intersecting triples of upright lattice paths with some specific
extremities. Writing ϑij for the number of plane bipolar orientations with (i + 1) vertices and
(j +1) faces, our bijection provides a combinatorial proof of the following formula due to Baxter:

(1) ϑij = 2
(i + j − 2)! (i + j − 1)! (i + j)!

(i − 1)! i! (i + 1)! (j − 1)! j! (j + 1)!
.

1. Introduction

A bipolar orientation of a graph G = (V, E) is an acyclic orientation of G such that the in-
duced partial order on the vertex set has a unique minimum s called the source, and a unique
maximum t called the sink ; s and t are the two poles. Bipolar orientations are a powerful combi-
natorial structure and prove insightful to solve many algorithmic problems such as planar graph
embedding [11, 4] and geometric representations of graphs in various flavours (visibility [12], floor
planning [10], straight-line drawing [13, 7]). As a consequence, it is an interesting issue to have a
better understanding of their combinatorial properties.

This article focuses on the enumeration of bipolar orientations in the planar case. We consider
bipolar orientations on rooted planar maps, where a planar map is a connected planar graph
embedded in the plane without edge-crossings and up to continuous deformation, and rooted means
with a marked oriented edge (called the root) having the outer face on its left. A plane bipolar

orientation is a pair (M, X), where X is a bipolar orientation of a rooted planar map M such
that the poles are the extremities of the root. It is well known that the graphs admitting such
a bipolar orientation with adjacent poles are exactly 2-connected graphs, i.e., graphs with no
separating vertex. Given M a rooted 2-connected map, let ϑ(M) be the number of (rooted)
bipolar orientations of M . As shown in [5], ϑ(M) is equal to the coefficient [x]TM (x, y) in the
Tutte polynomial of M , but no explicit formula is known for ϑ(M). The purpose of this article
is to show an explicit formula for the quantities ϑ(M) when added up over maps with same size
parameters. Precisely, let Mij be the set of rooted 2-connected maps with (i+1) vertices and (j+1)
faces (including the outer one); then the quantity ϑij :=

∑
M∈Mij

ϑ(M) satisfies Formula 1 (given

in the abstract), as was guessed and checked by Baxter [1, Eq 5.3] using algebraic manipulations
on generating functions of maps weighted by their Tutte polynomials. The main result of this
article is a direct bijective proof of Formula (1), exemplified in Figure 1:

Theorem 1. There is a bijection between plane bipolar orientations with (i + 2) vertices and

(j + 2) faces, and non-intersecting triples of upright lattice paths on the grid Z
2 with respective

origins (−1, 1), (0, 0), (1,−1), and respective endpoints (i − 1, j + 1), (i, j), (i + 1, j − 1).

t

s

Figure 1. A plane bipolar orientation and the associated triple of non-
intersecting upright lattice paths.
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Figure 2. From a rooted map endowed with a bipolar orientation to a rooted
bicoloriented quadrangulation.

Formula (1) is easily derived from this theorem using Gessel-Viennot Lemma [8, 9] (classical
determinant-type formula to enumerate non-intersecting paths).

Overview. Our bijection relies on several steps. Counting plane bipolar orientations is first reduced
to counting quadrangulations endowed with specific edge-bicolorations. Then these edge-bicolored
quadrangulations are bijectively encoded by triples of words with some conditions on the prefixes.
The encoding draws its inspiration from a nice bijection found by Bonichon [3], between Schnyder
Woods of triangulations and pairs of non-crossing Dyck words. The final step of our bijection is
to translate each binary word of the triple to an upright lattice path; the prefix conditions of the
words are equivalent to the property that the three paths are non-intersecting.

2. Reduction to counting edge-bicolored quadrangulations

Let M be a rooted map; its quadrangulation Q is the bipartite map with vertex set consisting
of vertices and faces of M , and edges corresponding to incidences between these vertices and faces.
Q is naturally rooted with the same root vertex as M , as shown in Figure 2. From now on, rooted
quadrangulations are endowed with their unique bicoloration of vertices in black and white such
that the root vertex, called s, is black; the other outer black vertex is denoted by t.

If M is endowed with a bipolar orientation, this classical construction can be enriched in order
to transfer the orientation on Q; a rooted quadrangulation is said to be bicoloriented if the edges
are oriented and partitioned into red and blue edges such that the following conditions are satisfied,
see Figure 3:

• each inner vertex has exactly two outgoing edges, a red one and a blue one;
• around each inner black (resp. white) vertex, ingoing edges in each color follow the outgoing

one in clockwise (resp. counterclockwise) order;
• all edges incident to s are ingoing blue, and all edges incident to t are ingoing red.

t

s

Figure 3. Rules of bicolorientation around inner vertices and the two poles.

Any face f of a plane bipolar orientation (M, X) has two poles [5]; let us orient the two cor-
responding edges of Q from the white vertex f to the two black ones, and color the up-edge red
and the down-edge blue. Other edges incident to f are oriented and colored so as to satisfy the
circular order condition around f . This defines actually a bicolorientation of Q, and this mapping
from plane bipolar orientations to rooted bicoloriented quadrangulations is one-to-one, as proved
by an easy extension of [5, Theo 5.3]:
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Figure 4. Contour words of a bicoloriented quadrangulation.

Theorem 2. Plane bipolar orientations with i vertices and j faces are in bijection with rooted

bicoloriented quadrangulations with i black vertices and j white vertices.

This reduces the bijective encoding of plane bipolar orientations w.r.t. the numbers of vertices
and faces to the bijective encoding of rooted bicoloriented quadrangulations w.r.t. the numbers of
black vertices and white vertices.

3. Encoding a bicoloriented quadrangulation by a triple of words

Bicoloriented quadrangulations have an interesting property: as shown in [2, 6], blue (resp. red)
edges form two trees spanning all vertices except t (resp. s) and oriented toward s (resp. t).
Let Q be a rooted bicoloriented quadrangulation with (i + 2) black vertices and j white vertices,
and let Tblue be its blue tree. We define the contour word WQ of Q as the word on the alphabet
{a, a, b, b, c, c} obtained as follows (see Figure 4). Perform a clockwise traversal of the contour
of Tblue starting at the root edge, and write a letter a (resp. b) each time an edge e of Tblue is
traversed from a black to a white vertex (resp. from a white to a black one). Underline the letter if
this is the second traversal of e. Write a letter c each time a red edge is crossed at a white vertex,
and underline it if the edge is ingoing.

We shall consider three subwords of WQ: for any l in {a, b, c}, let Wl denote the word obtained
by keeping only the letters in the alphabet {l, l}. In order to describe the properties of these words,
we also introduce the tree-word Wt and the matching word Wm, that are respectively obtained by
keeping the letters in {a, a, b, b}, and in {a, a, c, c}.

3.1. The tree-word encodes the blue tree. Observe that Wt corresponds to a classical Dyck
encoding of Tblue, in which the two alphabets {a, a} and {b, b} are used alternatively to encode
the bicoloration of vertices. Hence Wt is just the shuffle of Wa and Wb at even and odd positions
respectively, and each prefix of Wt has at least as many non-underlined letters as underlined letters.

It is easily seen that Wa has j occurences of a and i occurences of a, shortly written Wa ∈
S(ajai), with the additionnal property that its first and last letters are a (because of the rightmost

branch of Tblue being reduced to an edge, see Figure 4). Similarly, Wb ∈ S(bibj), and its two last
letters are b.

Last, it is an easy exercise to show that the prefix condition on Wt translates to the following
property for the pair (Wa, Wb):

Property 1. For 1 ≤ k ≤ i, the number of a’s on the left of the kth occurence of a in Wa is

strictly larger than the number of b’s on the left of the kth occurence of b in Wb.
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3.2. The matching word encodes the red edges. Let us now focus on Wc and on the matching
word Wm. Clearly, any occurence of a c (resp. c) in WQ corresponds to a red edge with white
(resp. black) origin, see Figure 4. Hence Wc ∈ S(cjci). Moreover Wc starts and ends with a letter
c, corresponding to the two outer red edges.

Observe also that any occurence of a in Wm, which corresponds to the first visit to a white
vertex v, is immediately followed by a pattern clc, with l the number of ingoing red edges at v.
Hence Wm satisfies the regular expression ac(a∗ac∗c)∗, which uniquely defines Wm as a shuffle of
Wa and Wc.

Let us now consider a red edge with black origin; its origin (encoded by a letter a) has to be
encountered before its endpoint (encoded by a letter c). Hence planarity ensures that the restriction
of Wm to the alphabet {a, c} is a parenthesis word, which translates in the following way:

Property 2. For 1 ≤ k ≤ j, the number of a’s on the left of the kth occurence of a in Wa is at

least as large as the number of c’s on the left of the kth occurence of c in Wc.

Definition. A triple of words (Wa, Wb, Wc) in S(ajai)×S(bibj)×S(cjci) is said to be admissible

of type (i, j) if Wa (resp. Wc) ends with a letter a (resp. c) and the properties 1 and 2 are satisfied.

Observe that this implies in particular that Wa (resp. Wc) starts with a letter a (resp. c),
and that Wb ends with two letters b. To sum up, we have described a mapping Φ from rooted
bicoloriented quadrangulations with (i+2) black and j white vertices to admissible triples of words
of type (i, j). This mapping is proved to be bijective by defining an inverse mapping in a way that
naturally reverses the operations performed by Φ.

3.3. Inverse mapping (sketch). Starting from an admissible triple (Wa, Wb, Wc) of type (i, j),
form a so-called tree-word Wt as the shuffle of Wa and Wb at even and odd positions. Property 1
ensures that each prefix of Wt has not more underlined than non-underlined letters. Hence there
exists a (unique) tree, called Tblue, whose classical Dyck encoding is Wt. In addition, Tblue has
(i + 2) (black) vertices at even depth and j (white) vertices at odd depth.

The next step is to insert the red edges. Precisely we first insert red half-edges and then merge
them into complete red edges. Form a so-called matching word Wm as the unique shuffle of Wa and
Wc that satisfies the regular expression ac(a∗ac∗c)∗. For 1 ≤ k ≤ j, consider the kth white vertex v

in Tblue (with vertices ordered w.r.t. first visit), and let l ≥ 0 be the number of consecutive c’s that
follow the kth occurence of a in Wm. Insert l ingoing and one outgoing red half-edges (in clockwise
order) in the angle of Tblue traversed during the first visit to v. Then, add an outgoing red half-edge
to each black vertex v, in the angle traversed during the last visit to v. Next, we match outgoing
red half-edges at black vertices and ingoing red half-edges at white vertices following Property 2.
Finally it is easily shown that the red half-edges going out of white vertices can be completed in a
unique way to edges so as to form only quadrangular faces, as illustrated in the figure below.

a) b)

s

t

v v
′

By construction, the obtained figure is a quadrangulation endowed with a bicolorientation, and
the construction is inverse to Φ.

4. Representation as a triple of non-intersecting paths

Given Theorem 2 and the bijection presented in Section 3, proving Theorem 1 reduces to showing
that admissible triples of words of type (i, j) are in bijection with non-intersecting triples of upright
lattice paths with origins (−1, 1), (0, 0), (1,−1) and endpoints (i−1, j−1), (i, j−2), (i+1, j−3).
This section describes the correspondence, illustrated in Figure 5.

Consider an admissible triple of words (Wa, Wb, Wc) of type (i, j), and represent each word as
an upright lattice path starting at the origin, the binary word being read from left to right, and
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Figure 5. The triple of words translates to a non-intersecting triple of paths.

the associated path going up or right depending on the letter. Letters associated to up steps are
a, b and c. Clearly, as (Wa, Wb, Wc) ∈ S(ajai) × S(bibj) × S(cjci), the three paths end at (i, j).

Translation of Property 1 on the paths is: “for 1 ≤ k ≤ i, the kth horizontal step of Pa (ending
at abscissa k) is strictly above the kth horizontal step of Pb”. Hence, Property 1 is equivalent to
the fact that Pa and the right-shift of Pb are non-intersecting. Similarly, Property 2 is translated
to: “for 1 ≤ k ≤ j, the kth vertical step of Pa is weakly on the right of the kth vertical step of
Pc”. In other words, Pc is weakly on the left of Pa. Hence, Property 2 is equivalent to the fact
that Pa and the upleft-shift of Pc are non-intersecting. Let us now consider the redundant letters;
they correspond to two vertical steps in each path, and removing them leads to a triple of non
intersecting paths with origins and endpoints modified accordingly.
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