
Summary of PhD dissertation:�Une étude logique du 
ontr�le appliquée à laprogrammation fon
tionnelle et logique�∗Alexis SaurinDefended on the 30th of september 2008Introdu
tionProof theory and Programming languages theory are strongly related ar-eas of study. Re
ent developments in proof theory have led to major advan
esin the theory of programming languages. The modelling of 
omputation us-ing proofs impa
ted deeply the foundational studies of programming languagesas well as many of their pra
ti
al issues by providing formal tools to analyzeprograms properties. De
larative programming languages have been relatedmainly in two ways to the mathemati
al theory of proofs: on the one hand,the �
omputation as proof normalization� paradigm provided a foundation forfun
tional programming languages through the well-known Curry-Howard 
or-responden
e [How80℄. On the other hand the �
omputation as proof sear
h�paradigm stands as a foundation for logi
 programming: the 
omputation of aprogram is the sear
h for a proof in some dedu
tive system.
• From the �
omputation as proof normalization� viewpoint, 
ut-eliminationin natural dedu
tion (and more re
ently in sequent 
al
ulus) provided aparti
ularly strong and useful theoreti
al foundation to fun
tional pro-gramming by drawing a 
orresponden
e between (i) logi
 formulas anddata/program types, (ii) intuitionisti
 dedu
tion and program, (iii) 
ut-redu
tion and 
omputation step and �nally (iv) 
ut-free proof and resultsof the 
omputation, or values.This also allowed to transfer proof-theoreti
al results towards theory ofprogramming and was an opportunity to develop formal tools to analyzepre
isely those languages by using well-established and powerful logi
almethods. Crossing the bridge between proofs and 
omputations in theother dire
tion was also very fruitful by renewing many questions proof-theorists were 
onsidering with respe
t to 
ut-elimination results; for is-ntan
e, questions related to the e�
ien
y of those proof transformations
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emerged, dire
tly related to 
onsiderations 
onne
ted to program 
om-plexity.
• In another kind of thoughts, questions related to the (automated, me
han-i
al) sear
h for proofs have originated a programming paradigm in theseventies, namely logi
 programming, Prolog being its most well-knownexample. If the automated sear
h for proofs 
ould originally be motivatedby the will to help the mathemati
ian in its a
tivity, proof sear
h as amodel of 
omputation is mu
h more interested in the very stru
ture ofproofs, the dynami
s of proof 
onstru
tion and the way this may serve asa universal model of 
omputation.In the �eld of �
omputation as proof sear
h�, one saw also 
ontribu-tions 
rossing the logi
/
omputation bridge in both dire
tions, in addi-tion to the fa
t that the very model of 
omputation was histori
ally in-spired by logi
. For instan
e, the introdu
tion of the notion of uniformproofs [MNPS91℄ or fo
ussed proofs in linear logi
 [And92℄ whi
h are fun-damental stru
tures in sequent 
al
ulus proof theory (very mu
h relatedto Kleene and Curry works on permutabilities of inferen
e rules in theearly �fties [Kle52, Cur52℄) were inspired by the will to better understandthe pro
edurality of proof sear
h.The two programming paradigms mentionned above, fun
tional programmingand logi
 programming, are also interesting be
ause their relationships with logi
is of a di�erent kind and that this di�eren
e �nds its root with the notion of
ut �rst introdu
ed by Gentzen [Gen69℄:
• with fun
tional programming, or �
omputation as proof normalization�, aprogram is a proof and the dynami
s of 
omputation is to be found in theelimination of the 
uts (both in the frameworks biult on natural dedu
tionor on sequent 
al
ulus). On the other hand, the result of the 
omputationis a 
ut-free proof. This paradigm, whi
h is the one of (typed) λ-
al
ulus,relies on the 
ut-elimination viewpoint of Gentzen's Hauptsatz;
• with logi
 programming, or �
omputation as proof sear
h�, a program isa 
olle
tion of formulas (a sequent) and a 
omputation step is the redu
-tion of a sequent into a (set of) sequent(s) by applying an inferen
e rule(bottom-up proof 
onstru
tion). Here, the dynami
s of 
omputation is tobe found in the sear
h pro
ess of a 
ut-free proof and the �nal result ofa 
omputation is proof. A proof sear
h has a 
han
e to be e�e
tive onlyif ones never used the 
ut inferen
e rule whi
h is the only inferen
e rulein sequent 
al
ulus that truly requires the imagination of the mathemati-
ian whi
h is re�e
ted in the non-analy
ity of the 
ut-rule. In this waytoo, proof sear
h relies in a fundamental way on Gentzen's Hauptsatz,but in the 
ut-admissibility viewpoint of the Hauptsatz: the result of a
omputation is a
tually a 
ut-free proof.Another interesting di�eren
e between those two paradigms is the histori
al
onne
tion they have with logi
: whereas logi
 programming originated fromlogi
al 
onsideration, the 
onne
tion between logi
 and fun
tional programming
ame afterwards. 2



Even though the two paradigms have mu
h to do with Gentzen's Hauptsatzand despite the fa
t that the results of a 
omputation are similar 
ut-free proofs,it is di�
ult to draw a link between their dynami
s.The 
onne
tions between logi
 and 
omputation a
tually be
omes mu
hmore 
omplex when 
ertain 
omponents of real programming languages are
on
erned.Most of programming languages allow the programmer to user 
onstru
tionsto 
ontrol the exe
ution �ow:
• in fun
tional programming one may think of ex
eptions management (
on-stru
tions su
h as try ... with and raise), or managing the 
ontinu-ation of the 
omputation (one may think of the 
all/

 for instan
e);
• in logi
 programming one may think of ba
ktra
king me
hanisms, 
utpredi
ate (! in Prolog), or other extra-logi
al predi
ates that may alterthe ba
ktra
king behaviour.One just show the example of 
all/

:

E[(call/cc)λk.t] −→ E[t {⋆E/k}]
E[(⋆E′)t] −→ E′[t]where E is the 
omputational environment. The e�e
t of 
all/

, by the 
re-ation of ⋆E 
an be understood as a rei�
ation of the 
omputational environmentwithin the programming language.This very fa
t is part of the explanation why it has revealed to be so di�
ult tounderstand logi
ally the 
ontrol 
onstru
tions. However, 
ontrol 
onstru
tionsare often 
auses of errors in programming and it is thus parti
ularly importantthat the formal analysis of programs 
an treat these elements. The di�
ul-ties in providing a logi
al a

ound of 
ontrol in programming laguages 
an beunderstood as follows:

• it took over twenty years to extend the Curry-Howard 
orresponden
efrom intuitionisti
 logi
 to 
lassi
al logi
, this extension being the key ofa start of logi
al understanding of 
ontrol in those languages (see gri�n'swork [Gri90℄ or Parigot's λµ-
al
ulus [Par92℄).
• there is no satisfying solution to adress ba
ktra
king and 
ut predi
ateproof-theoreti
ally in proof sear
h.The resear
h we present in this dissertation are at the border of proof theoryand programming languages theory and we present 
ontributions both in puretheory and in theoreti
al 
omputer s
ien
e.The dissertation is organized in three parts:
• the �rst part is dedi
ated to the �
omputation as proof normalization�approa
h. We study Λµ-
al
ulus, an extension of Parigot's λµ-
al
ulus.
• the se
ond part is dedi
ater to the �
omputation as proof sear
h� approa
hwith 
ontributions to the understanding of fo
alization in linear logi
.3



• the last and third part suggests a radi
ally new look by introdu
ing aframework for �proof sear
h by 
ut-elimination� in whi
h we 
an 
onne
tthe two approa
hes of the Hauptsatz. This study is 
arried out in thesetting of Ludi
s [Gir01℄.There are several themes that are in�uen
ial all along the dissertation:
• First and foremost, the understanding of 
ontrol me
hanism is our �rstmotivation for this study;
• Separation property is originally a topologi
al property that entered the�eld of proof theory and 
omputation with the work of Böhm on λ-
al
ulusin the late sixties [Bö68℄. This is 
ertainly an in�uential notion: beingour starting point on λµ-
al
ulus, separation is also an essential propertyin the development of Ludi
s theory. Moreover, separation is related to
anoni
ity of formal system and thus with fo
alization property (whi
h isa
tually one of the key of the Separation theorem in Ludi
s);
• The understanding of the relationships between the 
ut-elimination andproof-sear
h appora
hes is also one of the deep stru
turing ideas of ourwork.Introdu
tory PartChapter 1: Notions de théorie de la démonstrationTitle: Introdu
tion to proof theoryChapter 2: Notions de λ-
al
ul et de λµ-
al
ulTitle: Introdu
tion to λ-
al
ulus and λµ-
al
ulusIn these two introdu
tory 
hapters, we provide the reader with the ne
essaryba
kground on proof theory (espe
ially sequent 
al
ulus theory) and Chur
h's

λ-
al
ulus [Chu41℄. In the �rst 
hapter, we emphasize the study of sequent 
al-
ulus (
lassi
al sequent 
al
ulus LK, intuitionisti
 sequent 
al
ulus LJ and linearsequent 
al
ulus LL) and we emphasize the presentation of several key-
on
epts:
onstru
tive proofs, 
ut rule and 
ut-elimination, Kleene/Curry permutabilitiesof inferen
es, and proof sear
h through a presentation of Gödel 
ompletenesstheorem for �rst-order LK. The se
ond 
hapter, dealing with λ-
al
ulus, is alsointrodu
ing Parigot's λµ-
al
ulus [Par92℄, an extension of λ-
al
ulus that al-lows to 
arry the Curry-Howard 
orresponden
e between proofs and programsto 
lassi
al logi
. This se
ond 
hapter also 
ontains a detailed a

ount of sepa-ration property in pure λ-
al
ulus (also known as Böhm theorem [Bö68℄) whi
hwill be a 
ru
ial notion in the rest of the dissertation.Part I: Λµ-
al
ulTitle: Λµ-
al
ulus 4



In this part, we investigate Λµ-
al
ulus, an extension of Parigot's λµ-
al
uluthat satis�es a separation property. We develop the meta-theory of the 
al
u-lus (
on�uen
e, simple types) and propose an analysis of 
omputations in Λµ-
al
ulus thanks to extensions of proof nets [Gir87, Lau03℄. Finally, we developa stream interpretation for Λµ-
al
ulus and related this 
al
ulus with delimited
ontrol operators.Chapter 3: de λµ à ΛµTitle: From λµ to ΛµDavid and Py [DP01℄ proved that separation property whi
h holds in λ-
al
ulus is not satis�ed in Parigot's λµ-
al
ulus. Indeed, they 
ould witness two
anoni
al λµ-normal forms whi
h are not λµ-equivalent but whi
h 
annot beseparated by any 
ontext.In this 
hapter, we start by studying the non-separation result of λµ-
al
ulusand by dis
ussing whi
h heuristi
s 
an be adopted when separation fails in a
al
ulus su
h a λ-
al
ulus or λµ-
al
ulus. Our analysis then leads us to proposean extension of Parigot's λµ-
al
ulus, whi
h we 
all Λµ-
al
ulus, for whi
h sep-arability is re
overed. Indeed, Λµ-
al
ulus will have more separating 
ontextsthan λµ-
al
ulus. This new 
al
ulus is introdu
ed in the last part of the 
hapterwhile the proof of separation is left for the following 
hapter.Chapter 4: Théorème de Böhm pour le Λµ-
al
ulTitle: Böhm Theorem for Λµ-
al
ulusThis 
hapter is dédi
ated to the proof of the analogous of Böhm theorem in
Λµ-
al
ulus. Our proof is inspired by Joly's proof [Jol00℄ for λ-
al
ulus ratherthan by more standard proofs [Kri90℄. The key element in the separation proofis the more liberal syntax of Λµ-
al
ulus whi
h allows to 
onsider terms of theform:

〈t, u〉k = µα1 . . . µαk.λx.((x)(t)α1 . . . αk)(u)α1 . . . αkwhi
h are used in the separation pro
ess.We also dis
uss other heuristi
s that 
ould be used in order to obtain sepa-ration in λµ-
al
ulus.Chapter 5: Con�uen
e du Λµ-
al
ulTitle: Con�uen
e theorem for Λµ-
al
ulusIn this 
hapter, we establish a 
on�uen
e theorem for Λµ-
al
ulus. It isindeed important to have 
on�uen
e for the separation of the previous 
hapterto be signi�
ant.The proof uses 
ommutations arguments and a labelling te
hnique (a poten-tial of fst-expansion) whi
h ensure that the fst-redu
tion terminates.A by-produ
t of our proof is a simpli�ed proof of 
on�uen
e for λµη-
al
ul.It is also an o

asion to develop the synta
ti
al meta-theory of Λµ-
al
ulus.5



Chapter 6: Λµ-
al
ul simplement typéTitle: Simply typed Λµ-
al
ulusIn 
hapter 6, we study type systems for Λµ-
al
ul. We �rst 
onsider a typesystem whi
h uses a 
lassi
al logi
 typing derived from the one for λµ-
al
ulus.However, this approa
h is questionnable by 
onsidering that whole 
lassesof terms, among whi
h are terms whi
h are 
ru
ial in the proof of separation,
annot be typed. We thus propose another type system, an extended typesystem, ΛS , whi
h allows to type more Λµ-terms. In parti
ular, ΛS allows totype terms of the shape whi
h is used in the proof of separation of 
hapter 4and that 
ould not be typed in the 
lassi
al type system. This type system ispe
uliar in several aspe
t and in parti
ular in the fa
t that there is an equivalen
erelation on the grammar of types 
orresponding to an asso
iativity property ontype 
onstru
tors and that express the fa
t that some terms 
an both be appliedto a term and a stream variable. We study relationships between ΛS and a typesystem independantly developped by Herblin and Ghilezan [HG08℄ whi
h doesnot use asso
iativity.Finally, we pursue the investigation of ΛS by proving that the standardtheorems hold, namely type preservation and strong normalization of the typed
al
ulus and we 
on
lude by proposing some remarks on a type system withse
ond-order quanti�
ation.Chapter 7: Une analyse du Λµ-
al
ul via des réseauxTitle: An analysis of Λµ-
al
ulus Computations Through Proof-NetsWe study in this 
hapter the redu
tions of Λµ-
al
ulus via an en
odingina parti
ular 
lass of proof nets, Streams Asso
iative Nets (SANE). One �rstde�ne Streams Asso
iative Nets, whi
h are intermediate nets in between usual
MELLproof nets [Gir87℄ and Laurent's polarized nets [Lau02℄. The 
onne
tionbetween MELL nets and polarized nets is obtained by an asso
iativity relationsalready mentionned above about the type system ΛS . Here, it will 
onsist ina real asso
ivity rule between two sorts of O 
onne
tive. We study propertiesof redu
tions in Streams Asso
iative Nets whi
h is a
tually 
on�uent (in a waywhi
h is more lo
al than Λµ-
al
ulus) and we then en
ode pure Λµ-
al
ulususing a pro
ess whi
h is similar to the one used to en
ode pure λ-
al
ul using
MELLnets; this en
oding allows us to obtain a simulation result of Λµ-
al
ulby Streams Asso
iative Nets. We �nally prove a separation theorem for StreamsAsso
iative Nets.Chapter 8: λµ-
al
uls, streams et 
ontr�leTitle: λµ-
al
uli, Streams and 
ontrolIn this last 
hapter dealing with Λµ-
al
ulus, we dis
uss several results therelationships between Λµ-
al
ulus and other λµ-
al
uli, results whi
h are builton the results of the previous 
hapters.First, we shall 
ompare di�erent version of 
all-by-name λµ-
al
uli that ween
outered throughout the dissertation: λµ, λµη, λµǫ and Λµ. We also shall6



develop more formally the stream interpretation of Λµ-
al
ul and of the paral-lelism with delimited 
ontrolvia the 
orresponden
e with λµt̂p. In parti
ular,this is established via the de�nition of an abstra
t ma
hine for Λµ, that we 
all
Λµ-KAM, and a variant of λ-
al
ulus whi
h possess a 
onstru
tion of streams,the ΛS-
al
ulus.Part II: Fo
alisation en Logique LinéaireTitle: Fo
alization in Linear Logi
This part is dedi
ated to the investigation of the fo
alization property in Lin-ear Logi
 whi
h is a fundamental theorem of linear logi
 with many appli
ationsand most importantly, to 
omputation-as-proof-sera
h and to Ludi
s. We �rstpropose a proof of the fo
alization theorem that is stru
tured in su
h a way thatit 
an be esaily extended to broader setting; this is a
hieved by de�ning an ab-stra
tion on linear logi
 sequent proofs, fo
alization graphs. Fo
alization graphsnaturally lead us to introdu
ing an generalization of the fo
alization dis
iplin,whi
h we 
all multifo
alization and for whi
h we study 
anoni
ity properties by
omparing this approa
h to MLL proof nets.Chapter 9: Une preuve modulaire de la fo
alisationTitle: A Modular Proof of Fo
alizationIn this 
hapter, we propose a new proof of Andreoli's fo
alization theoremin linear logi
 [And90, And92℄. Our method is modular and relies on a pre
iseanalysis of the properties of permutabilities of inferen
e rules in linear logi
.The proof is built on the notion of fo
alization graphs, whi
h are an abstra
-tion of linear logi
 proof retaining only the relevant information to determinewht 
an be taken as a fo
us. Using this abstra
tion, it be
omes simple to 
arrythe proof. moreover, one 
an develop a detailed study of how to polarize theatomi
 biases in order to treat them in a fo
ussed way.We illustrate the modularity of this proof in two ways: we �rst establish theresult for MALL and then extend it full linear logi
. On the other hand, weexplain how to obtain a fo
alization result for Elementary Linear Logi
.Chapter 10: Multifo
alisationTitle: Multifo
alizationIn this 
hapter we 
onsider an extension to the fo
ussed system whi
h isnaturally suggested by the use of fo
alization graphs: multifo
alization. Thebasi
 idea is to repla
e the using fo
ussing dis
iplin by a dis
iplin in whi
h onemay fo
uss on several formulas:

⊢ F1, . . . Fk : ∆ ⇓ F i1
1

, . . . F ik

k , F ′
1
, . . . F ′

l

⊢ F1, . . . Fk : ∆, F ′
1
, . . . F ′

l ⇑ ·
MultiFoc ij ≥ 0We then prove that it is possible to de�ne a notion of maximality amongmultifo
ussed proofs whi
h provides proofs with 
anoni
ity. We give an illustra-7



tion of the previous fa
t by enlightening the relationships between maximallymultifo
ussed proofs and MLL proof nets.Part III: Programmation LudiqueTitle: Ludi
s ProgrammingWe present a setting for proof sear
h by 
ut-elimination: proof sear
h willnot anymore be guided by a seuqent 
al
ulus and an en
oding of a program asa sequent, but as a series of tests that will 
onstrain the 
onstru
tion of a proofobje
t whi
h is required to intera
t with all the tests (that is the 
ut-eliminationhave to normlize). This investigation is developped in Ludi
s [Gir01℄ and thisapproa
h by proofs and 
ounter-proofs allows us to treate intera
tively, that islogi
ally, the ba
ktra
king phenomenon.Chapter 11: Introdu
tion à la LudiqueTitle: Introdu
tion to Ludi
sWe introdu
e in this 
hapter the basi
 notion a Ludi
s, an intera
tive theoryintrodu
ed by Girard in 2001 [Gir01, Gir06℄. Ludi
s is built on an abstra
tion ofMALL fo
ussed proofs, the designs, whi
h are equipped with an orthogonalityrelation. The equivalents of formulas, in Ludi
s, are behaviours, that is sets ofdesigns whi
h are 
losed by bi-orthogonality.Chapter 10: Vers une Programmation Ludique: Re
her
hede Preuve Intera
tiveTitle: Towards Ludi
s Programming: Intera
tive Proof Sear
hWe propose in this 
hapter a framework for a �intera
tive proof sear
h� thatis a proof sear
h whi
h is not guided by a sequent and by sear
h instru
tionsanymore, but guided by an intera
tion: this is proof sear
h by 
ut-elimination.We �rst motivated our approa
h by the will to obtain a uniform approa
h toproof sear
h and then give informal examples in a 
al
ulus whi
h is obtained byslightly modifying MALL sequent 
al
ulus before moving to Ludi
s and de�ningan abstra
t ma
hine for an intera
tive 
onstru
tion of designs, the SLAM.In parti
ular, using the SLAM allors to treat the ba
ktra
king in an inter-a
tive way, ie. by using only proof obje
ts.Referen
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