Summary of PhD dissertation:
«Une étude logique du controle appliquée a la
programmation fonctionnelle et logique»*

ALEXIS SAURIN

Defended on the 30th of september 2008

Introduction

Proof theory and Programming languages theory are strongly related ar-
eas of study. Recent developments in proof theory have led to major advances
in the theory of programming languages. The modelling of computation us-
ing proofs impacted deeply the foundational studies of programming languages
as well as many of their practical issues by providing formal tools to analyze
programs properties. Declarative programming languages have been related
mainly in two ways to the mathematical theory of proofs: on the one hand,
the “computation as proof normalization” paradigm provided a foundation for
functional programming languages through the well-known Curry-Howard cor-
respondence [How8(]. On the other hand the “computation as proof search”
paradigm stands as a foundation for logic programming: the computation of a
program is the search for a proof in some deductive system.

e From the “computation as proof normalization” viewpoint, cut-elimination
in natural deduction (and more recently in sequent calculus) provided a
particularly strong and useful theoretical foundation to functional pro-
gramming by drawing a correspondence between (i) logic formulas and
data/program types, (ii) intuitionistic deduction and program, (iii) cut-
reduction and computation step and finally (iv) cut-free proof and results
of the computation, or values.

This also allowed to transfer proof-theoretical results towards theory of
programming and was an opportunity to develop formal tools to analyze
precisely those languages by using well-established and powerful logical
methods. Crossing the bridge between proofs and computations in the
other direction was also very fruitful by renewing many questions proof-
theorists were considering with respect to cut-elimination results; for is-
ntance, questions related to the efficiency of those proof transformations

*English title: A Logical Study of Control, Applied to Functional Programming and Logic
Programming.

emerged, directly related to considerations connected to program com-
plexity.

e In another kind of thoughts, questions related to the (automated, mechan-
ical) search for proofs have originated a programming paradigm in the
seventies, namely logic programming, Prolog being its most well-known
example. If the automated search for proofs could originally be motivated
by the will to help the mathematician in its activity, proof search as a
model of computation is much more interested in the very structure of
proofs, the dynamics of proof construction and the way this may serve as
a universal model of computation.

In the field of “computation as proof search”, one saw also contribu-
tions crossing the logic/computation bridge in both directions, in addi-
tion to the fact that the very model of computation was historically in-
spired by logic. For instance, the introduction of the notion of uniform
proofs [MNPSA1] or focussed proofs in linear logic [And92] which are fun-
damental structures in sequent calculus proof theory (very much related
to Kleene and Curry works on permutabilities of inference rules in the
early fifties [KIe52, [Cur52]) were inspired by the will to better understand
the procedurality of proof search.

The two programming paradigms mentionned above, functional programming
and logic programming, are also interesting because their relationships with logic
is of a different kind and that this difference finds its root with the notion of
cut first introduced by Gentzen [Gen69):

e with functional programming, or “computation as proof normalization”, a
program is a proof and the dynamics of computation is to be found in the
elimination of the cuts (both in the frameworks biult on natural deduction
or on sequent calculus). On the other hand, the result of the computation
is a cut-free proof. This paradigm, which is the one of (typed) A-calculus,
relies on the cut-elimination viewpoint of Gentzen’s Hauptsatz;

e with logic programming, or “computation as proof search”, a program is
a collection of formulas (a sequent) and a computation step is the reduc-
tion of a sequent into a (set of) sequent(s) by applying an inference rule
(bottom-up proof construction). Here, the dynamics of computation is to
be found in the search process of a cut-free proof and the final result of
a computation is proof. A proof search has a chance to be effective only
if ones never used the cut inference rule which is the only inference rule
in sequent calculus that truly requires the imagination of the mathemati-
cian which is reflected in the non-analycity of the cut-rule. In this way
too, proof search relies in a fundamental way on Gentzen’s Hauptsatz,
but in the cut-admissibility viewpoint of the Hauptsatz: the result of a
computation is actually a cut-free proof.

Another interesting difference between those two paradigms is the historical
connection they have with logic: whereas logic programming originated from
logical consideration, the connection between logic and functional programming
came afterwards.

Even though the two paradigms have much to do with Gentzen’s Hauptsatz
and despite the fact that the results of a computation are similar cut-free proofs,
it is difficult to draw a link between their dynamics.

The connections between logic and computation actually becomes much
more complex when certain components of real programming languages are
concerned.

Most of programming languages allow the programmer to user constructions
to control the execution flow:

e in functional programming one may think of exceptions management (con-
structions such as try ... with and raise), or managing the continu-
ation of the computation (one may think of the call/cc for instance);

e in logic programming one may think of backtracking mechanisms, cut
predicate (! in Prolog), or other extra-logical predicates that may alter
the backtracking behaviour.

One just show the example of call/cc:

E[(call/cc)Ak.t] — Et{xg/k}|
El(xe)] — E'[i]

where E is the computational environment. The effect of call/cc, by the cre-
ation of xg can be understood as a reification of the computational environment
within the programming language.

This very fact is part of the explanation why it has revealed to be so difficult to
understand logically the control constructions. However, control constructions
are often causes of errors in programming and it is thus particularly important
that the formal analysis of programs can treat these elements. The difficul-
ties in providing a logical accound of control in programming laguages can be
understood as follows:

e it took over twenty years to extend the Curry-Howard correspondence
from intuitionistic logic to classical logic, this extension being the key of
a start of logical understanding of control in those languages (see griffin’s
work [Gri90] or Parigot’s Au-calculus [Par92)).

e there is no satisfying solution to adress backtracking and cut predicate
proof-theoretically in proof search.

The research we present in this dissertation are at the border of proof theory
and programming languages theory and we present contributions both in pure
theory and in theoretical computer science.

The dissertation is organized in three parts:

e the first part is dedicated to the “computation as proof normalization”
approach. We study Au-calculus, an extension of Parigot’s Au-calculus.

e the second part is dedicater to the “computation as proof search” approach
with contributions to the understanding of focalization in linear logic.

e the last and third part suggests a radically new look by introducing a
framework for “proof search by cut-elimination” in which we can connect
the two approaches of the Hauptsatz. This study is carried out in the
setting of Ludics [Gir(1].

There are several themes that are influencial all along the dissertation:

e First and foremost, the understanding of control mechanism is our first
motivation for this study;

e Separation property is originally a topological property that entered the
field of proof theory and computation with the work of B6hm on A-calculus
in the late sixties [Bo68]. This is certainly an influential notion: being
our starting point on Au-calculus, separation is also an essential property
in the development of Ludics theory. Moreover, separation is related to
canonicity of formal system and thus with focalization property (which is
actually one of the key of the Separation theorem in Ludics);

e The understanding of the relationships between the cut-elimination and
proof-search apporaches is also one of the deep structuring ideas of our
work.

Introductory Part

Chapter 1: Notions de théorie de la démonstration

Title: Introduction to proof theory

Chapter 2: Notions de)M-calcul et de Au-calcul

Title: Introduction to A-calculus and Ap-calculus

In these two introductory chapters, we provide the reader with the necessary
background on proof theory (especially sequent calculus theory) and Church’s
A-calculus [Chu4i]. In the first chapter, we emphasize the study of sequent cal-
culus (classical sequent calculus LK, intuitionistic sequent calculus LJ and linear
sequent calculus LL) and we emphasize the presentation of several key-concepts:
constructive proofs, cut rule and cut-elimination, Kleene/Curry permutabilities
of inferences, and proof search through a presentation of Godel completeness
theorem for first-order LK. The second chapter, dealing with A-calculus, is also
introducing Parigot’s Au-calculus [Par92|, an extension of A-calculus that al-
lows to carry the Curry-Howard correspondence between proofs and programs
to classical logic. This second chapter also contains a detailed account of sepa-
ration property in pure A-calculus (also known as Bohm theorem [Bo68]) which
will be a crucial notion in the rest of the dissertation.

Part I: Ap-calcul

Title: Ap-calculus

In this part, we investigate Apu-calculus, an extension of Parigot’s Au-calculu
that satisfies a separation property. We develop the meta-theory of the calcu-
lus (confluence, simple types) and propose an analysis of computations in Au-
calculus thanks to extensions of proof nets [Gir&7, [Lan03]. Finally, we develop
a stream interpretation for Au-calculus and related this calculus with delimited
control operators.

Chapter 3: de \p a Ap
Title: From Ay to Ap

David and Py [DP0OI] proved that separation property which holds in A-
calculus is not satisfied in Parigot’s Au-calculus. Indeed, they could witness two
canonical Ap-normal forms which are not Ap-equivalent but which cannot be
separated by any context.

In this chapter, we start by studying the non-separation result of Au-calculus
and by discussing which heuristics can be adopted when separation fails in a
calculus such a A-calculus or Au-calculus. Our analysis then leads us to propose
an extension of Parigot’s A\uy-calculus, which we call Apu-calculus, for which sep-
arability is recovered. Indeed, Ap-calculus will have more separating contexts
than Ap-calculus. This new calculus is introduced in the last part of the chapter
while the proof of separation is left for the following chapter.

Chapter 4: Théoréme de B6hm pour le Ap-calcul
Title: B6hm Theorem for Ap-calculus

This chapter is dédicated to the proof of the analogous of B6hm theorem in
Ap-calculus. Our proof is inspired by Joly’s proof [Lol00] for A-calculus rather
than by more standard proofs [Kri90]. The key element in the separation proof
is the more liberal syntax of Ap-calculus which allows to consider terms of the
form:

(tuyg = poq .. pag e ((2)(B)ag . .oag)(w)ag . ..oy

which are used in the separation process.
We also discuss other heuristics that could be used in order to obtain sepa-
ration in Ap-calculus.

Chapter 5: Confluence du Ap-calcul

Title: Confluence theorem for Ap-calculus

In this chapter, we establish a confluence theorem for Ap-calculus. It is
indeed important to have confluence for the separation of the previous chapter
to be significant.

The proof uses commutations arguments and a labelling technique (a poten-
tial of fst-expansion) which ensure that the fst-reduction terminates.

A by-product of our proof is a simplified proof of confluence for Aun-calcul.
It is also an occasion to develop the syntactical meta-theory of Ap-calculus.

Chapter 6: Apu-calcul simplement typé
Title: Simply typed Ap-calculus

In chapter 6, we study type systems for Au-calcul. We first consider a type
system which uses a classical logic typing derived from the one for Au-calculus.

However, this approach is questionnable by considering that whole classes
of terms, among which are terms which are crucial in the proof of separation,
cannot be typed. We thus propose another type system, an extended type
system, Ag, which allows to type more Au-terms. In particular, Ag allows to
type terms of the shape which is used in the proof of separation of chapter 4
and that could not be typed in the classical type system. This type system is
peculiar in several aspect and in particular in the fact that there is an equivalence
relation on the grammar of types corresponding to an associativity property on
type constructors and that express the fact that some terms can both be applied
to a term and a stream variable. We study relationships between As and a type
system independantly developped by Herblin and Ghilezan [HGO8] which does
not use associativity.

Finally, we pursue the investigation of As by proving that the standard
theorems hold, namely type preservation and strong normalization of the typed
calculus and we conclude by proposing some remarks on a type system with
second-order quantification.

Chapter 7: Une analyse du Ap-calcul via des réseaux

Title: An analysis of Au-calculus Computations Through Proof-Nets

We study in this chapter the reductions of Apu-calculus via an encodingin
a particular class of proof nets, Streams Associative Nets (SANE). One first
define Streams Associative Nets, which are intermediate nets in between usual
MELLproof nets [Gir87] and Laurent’s polarized nets [Lau02]. The connection
between M E LL nets and polarized nets is obtained by an associativity relations
already mentionned above about the type system As. Here, it will consist in
a real associvity rule between two sorts of ® connective. We study properties
of reductions in Streams Associative Nets which is actually confluent (in a way
which is more local than Ap-calculus) and we then encode pure Ap-calculus
using a process which is similar to the one used to encode pure A-calcul using
M E L Lnets; this encoding allows us to obtain a simulation result of Ap-calcul
by Streams Associative Nets. We finally prove a separation theorem for Streams
Associative Nets.

Chapter 8: \u-calculs, streams et controéle

Title: A\u-calculi, Streams and control

In this last chapter dealing with Ap-calculus, we discuss several results the
relationships between Ap-calculus and other Au-calculi, results which are built
on the results of the previous chapters.

First, we shall compare different version of call-by-name Au-calculi that we
encoutered throughout the dissertation: A, Aun, Aue and Au. We also shall

develop more formally the stream interpretation of Ap-calcul and of the paral-
lelism with delimited controlvia the correspondence with Autp. In particular,
this is established via the definition of an abstract machine for Ay, that we call
Ap-KAM, and a variant of A-calculus which possess a construction of streams,
the AS-calculus.

Part II: Focalisation en Logique Linéaire

Title: Focalization in Linear Logic

This part is dedicated to the investigation of the focalization property in Lin-
ear Logic which is a fundamental theorem of linear logic with many applications
and most importantly, to computation-as-proof-serach and to Ludics. We first
propose a proof of the focalization theorem that is structured in such a way that
it can be esaily extended to broader setting; this is achieved by defining an ab-
straction on linear logic sequent proofs, focalization graphs. Focalization graphs
naturally lead us to introducing an generalization of the focalization disciplin,
which we call multifocalization and for which we study canonicity properties by
comparing this approach to MLL proof nets.

Chapter 9: Une preuve modulaire de la focalisation
Title: A Modular Proof of Focalization

In this chapter, we propose a new proof of Andreoli’s focalization theorem
in linear logic [And90), [And92]. Our method is modular and relies on a precise
analysis of the properties of permutabilities of inference rules in linear logic.

The proof is built on the notion of focalization graphs, which are an abstrac-
tion of linear logic proof retaining only the relevant information to determine
wht can be taken as a focus. Using this abstraction, it becomes simple to carry
the proof. moreover, one can develop a detailed study of how to polarize the
atomic biases in order to treat them in a focussed way.

We illustrate the modularity of this proof in two ways: we first establish the
result for MALL and then extend it full linear logic. On the other hand, we
explain how to obtain a focalization result for Elementary Linear Logic.

Chapter 10: Multifocalisation
Title: Multifocalization

In this chapter we consider an extension to the focussed system which is
naturally suggested by the use of focalization graphs: multifocalization. The
basic idea is to replace the using focussing disciplin by a disciplin in which one
may focuss on several formulas:

FE,. . F: AVFEY, . F* Fl. .. F
! b VI k 1 L MultiFoc 1; >0
Py, Fy AV F A

We then prove that it is possible to define a notion of maximality among
multifocussed proofs which provides proofs with canonicity. We give an illustra-

tion of the previous fact by enlightening the relationships between maximally
multifocussed proofs and MLL proof nets.

Part III: Programmation Ludique

Title: Ludics Programming

We present a setting for proof search by cut-elimination: proof search will
not anymore be guided by a seuqent calculus and an encoding of a program as
a sequent, but as a series of tests that will constrain the construction of a proof
object which is required to interact with all the tests (that is the cut-elimination
have to normlize). This investigation is developped in Ludics [Gir(1] and this
approach by proofs and counter-proofs allows us to treate interactively, that is
logically, the backtracking phenomenon.

Chapter 11: Introduction a la Ludique

Title: Introduction to Ludics

We introduce in this chapter the basic notion a Ludics, an interactive theory
introduced by Girard in 2001 [Gir(1l [Gir06]. Ludics is built on an abstraction of
MALL focussed proofs, the designs, which are equipped with an orthogonality
relation. The equivalents of formulas, in Ludics, are behaviours, that is sets of
designs which are closed by bi-orthogonality.

Chapter 10: Vers une Programmation Ludique: Recherche
de Preuve Interactive

Title: Towards Ludics Programming: Interactive Proof Search

We propose in this chapter a framework for a «interactive proof search» that
is a proof search which is not guided by a sequent and by search instructions
anymore, but guided by an interaction: this is proof search by cut-elimination.

We first motivated our approach by the will to obtain a uniform approach to
proof search and then give informal examples in a calculus which is obtained by
slightly modifying MALL sequent calculus before moving to Ludics and defining
an abstract machine for an interactive construction of designs, the SLAM.

In particular, using the SLAM allors to treat the backtracking in an inter-
active way, ie. by using only proof objects.

References

[And90] Jean-Marc Andreoli. Proposition pour une synthése des paradigmes
de la programmation logique et de la programmation par objets.
Theése de doctorat, Université Paris VI, June 1990.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in
linear logic. Journal of Logic and Computation, 2(3):297-347, 1992.

[B668]

[Chu4l]

[Cur52]

[DPO1]

[Gen69]

[Gir87]

[Gir01]

[Gir06]

[Gri90]

[HGO8]

[How80]

[Jol00]

[Kle52]

[Kri90]
[Lau02]

[Lau03]

Corrado Bohm. Alcune proprieta delle forme Sn-normali nel \K-
calcolo. Publicazioni dell’Istituto per le Applicazioni del Calcolo, 696,
1968.

Alonzo Church. The Calculi of Lambda-Conversion. Princeton Uni-
versity Press, 1941.

Haskell B. Curry. The permutability of rules in the classical inferen-
tial calculus. Journal of Symbolic Logic, 17(4):245-248, 1952.

René David and Walter Py. Au-calculus and Béhm’s theorem. Jour-
nal of Symbolic Logic, 2001.

Gerhard Gentzen. Investigations into logical deductions. In M. E.
Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68—
131. North-Holland, Amsterdam, 1969.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1—
102, 1987.

Jean-Yves Girard. Locus solum. Mathematical Structures in Com-
puter Science, 11:301-506, 2001.

Jean-Yves Girard. Le Point Aveugle: Cours de logique. Tome 1, Vers
la perfection; Tome 2, Vers l'imperfection. Hermann, 2006.

Timothy Griffin. A formulae-as-types notion of control. In Principles
of Programming Languages. IEEE Computer Society Press, 1990.

Hugo Herbelin and Silvia Ghilezan. An approach to call-by-name
delimited continuations. In Principles of Programming Languages.
ACM Sigplan, January 2008.

William A. Howard. The formulae-as-type notion of construction,
1969. In J. P. Seldin and R. Hindley, editors, To H. B. Curry: Essays
in Combinatory Logic, Lambda Calculus, and Formalism, pages 479—
490. Academic Press, New York, 1980.

Thierry Joly. Codages, séparabilité et représentation de fonctions en
A-calcul simplement typé et dans d’autres systemes de types. Thése
de doctorat, Université Paris VII, January 2000.

Stephen Cole Kleene. Permutabilities of inferences in Gentzen’s cal-
culi LK and LJ. Memoirs of the American Mathematical Society,
10:1-26, 1952.

Jean-Louis Krivine. Lambda-calcul: Types et Modéles. Masson, 1990.

Olivier Laurent. Etude de la polarisation en logique. Thése de doc-
torat, Université Aix-Marseille IT, March 2002.

Olivier Laurent. Polarized proof-nets and Au-calculus. Theoretical
Computer Science, 290(1):161-188, 2003.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.

[Par92]

Uniform proofs as a foundation for logic programming. Annals of
Pure and Applied Logic, 51:125-157, 1991.

Michel Parigot. Ap-calculus: an algorithmic interpretation of clas-
sical natural deduction. In Proceedings of the 1992 International
Conference on Logic Programming and Automated Reasonning, vol-
ume 624 of Lecture Notes in Computer Science, London, UK, 1992.
Springer-Verlag.

10

