
A hierarchy for delimited continuations in

call-by-name

Alexis Saurin

PPS & INRIA πr2

saurin@pps.jussieu.fr

Abstract. Λµ-calculus was introduced as a Böhm-complete extension
of Parigot's λµ-calculus. Λµ-calculus, contrarily to Parigot's calculus, is a
calculus of CBN delimited control as evidenced by Herbelin and Ghilezan.
In their seminal paper on (CBV) delimited control, Danvy and Filinski
introduced the CPS Hierarchy of control operators (shifti/reseti)i∈ω.
In a similar way, we introduce in the present paper the Stream Hi-

erarchy, a hierarchy of calculi extending and generalizing Λµ-calculus.
The (Λn)n∈ω-calculi have Church-Rosser and Böhm theorems. We then
present sound and complete CPS translations for the hierarchy which
lead to a new CPS translation for Λµ and simpler completeness proofs.
Next, we investigate the operational content of the hierarchy through
its abstract machines, the (Λn)n∈ω-KAM. Finally, we establish that the
Stream hierarchy is indeed a CBN analogous to the CPS hierarchy.
Keywords: Λµ-calculus, delimited control, CPS hierarchy, Böhm theo-
rem, CPS translation, Abstract machine, Streams.

1 Introduction

Curry-Howard in Classical Logic, λµ-calculus and Separation. Curry-
Howard correspondence [17] was �rst designed as a correspondence between intu-
itionistic natural deduction (NJ) and simply typed λ-calculus. The extension of
the correspondence to classical logic resulted in strong connections with control
operators in functional languages as �rst noticed [15] by Gri�n and his anly-
sis the logical interpretation of Felleisen's C operator [12]. Shortly after Gri�n,
Parigot introduced λµ-calculus [27] as an extension of λ-calculus correspond-
ing to minimal classical natural deduction [26, 1] in which one can encode usual
control operators. λµ-calculus became one of the most widely studied classical
λ-calculi, both in the typed and untyped setting for several reasons: the fact
that it naturally extends λ-calculus while retaining most of λ-calculus standard
properties and intuitionistic natural deduction in a straightforward way. How-
ever, a fundamental property of pure λ-calculus, known as separation property
(or Böhm theorem [6]), does not hold for λµ-calculus [29, 9]. In a previous work,
we introduced Λµ-calculus, an extension to λµ-calculus, for which we proved
that separation holds [31].

Delimited control and the CPS hierarchy. Delimited control refers to a

class of control operators which are much more expressive than non-delimited
control operators (like call/cc for instance) in that they allow to simulate
various side-e�ects [13], the monadic side-e�ects. In their seminal paper on
shift/reset [7], Danvy and Filinski de�ned shift/reset delimited-control op-
erators by their CPS semantics. They also introduced a hierarchy of such control
operators, (shifti/reseti)i∈ω, which are obtained by iterating CPS transla-
tions and that is known as the CPS hierarchy. Delimited control and the CPS
hierarchy found applications in linguistics, normalization by evaluation, partial
evaluation or concurrency. While the emphasis was traditionally given to the
delimited-control languages in call-by-value, recent works [16, 21] have advocated
the reasons for studying CBN delimited control.

In this paper, we develop a CBN analogous to the CPS hierarchy, based on
Λµ-calculus. We develop our work on the strong connections between Λµ-calculus
and calculi with delimited continuations in call-by-name evidenced by Herbelin
and Ghilezan [16]. Moreover, we believe these results are good evidence of the
good design of Λµ-calculus since it can be uniformly extended in a hierarchy of
calculi which have very good properties.

Structure of the Paper. In Section 2, we �rst review Parigot's λµ-calculus
and Λµ-calculus as well as the main properties of those calculi. In Section 3, we
motivate and de�ne the (Λn)n∈ω-calculi which we refer to as the stream hier-
archy. We establish two essential results of its meta-theory: Church-Rosser and
Böhm theorems. Section 4 is concerned with translations of the stream hierar-
chy into λ-calculus which are sound and complete and we develop in Section 5
Krivine's style abstract machines [23] for the hierarchy. Finally, Section 6 makes
precise the relationships between the Stream hierarchy and the CPS hierarchy.
A long version of this paper, with appendices, can be found on the webpage of
the author [30].

2 Background and Notations: From λµ to Λµ.

In this section, we recall some background on Λµ-calculus: starting with Parigot's
λµ, we introduce Λµ-calculus via the property of Separation.

Parigot's Original Calculus: λµ. In 1992, Parigot proposed an extension of
λ-calculus providing �an algorithmic interpretation of classical natural deduc-
tion� [27]: λµ-calculus is in Curry-Howard correspondence [17] with classical
natural deduction [26, 27]. Although initially motivated by the correspondence
with classical logic, λµ-calculus is now widely studied in its untyped version as
we do in the rest of this paper.

De�nition 1. λµ-terms (t, u, v, · · · ∈ Σλµ) are de�ned by the following syntax:

Σλµ t, u ::= x | λx.t | (t)u | µα.(t)β

with x ∈ V and α, β ∈ Vc, V and Vc being two disjoint in�nite sets of variables.

2

In µα.(t)β, variable β is in the scope of µα. For t ∈ Σλµ, (t)α is not in Σλµ,
but we refer to such it as a named term and generically write n (and thus we
write µα.n). The set of closed λµ-terms is denoted by Σc

λµ.

Remark 1 The reader may have noticed that we use an alternative notation for
λµ-terms that we introduced and justi�ed in previous works [31, 33], writing (t)α
instead of the more common [α]t (this shall later be extended to the (Λi)i∈ω).

In this paper, we shall use Krivine's notation [22] for terms of λ-calculus
and its various extensions considered here: we write (t)u for λ-application (in-
stead of (MN)). As usual we consider λ-application to be left-associative, that
is (t)u1 . . . uk−1uk shall be read as (. . . ((t)u1) . . . uk−1)uk. This notation is ex-
tended to variables of Vc (and later on to the variables of the hierarchy). For
instance, we shall write µα.(t)uβ instead of µα.((t)u)β.

De�nition 2. λµ-reduction, written −→λµ, is induced by the following rules:

(λx.t)u −→β t {u/x} (µα.n)β −→ρ n {β/α}
(µα.n)u −→µ µα.n {(v)uα/(v)α} µα.(t)α −→θ t if α 6∈ FV (t)

n {(v)uα/(v)α} substitutes (without variable-capture) every named term (v)α
in n by (v)uα. This substitution is called structural substitution [27].

A λµ-calculus Satisfying Böhm Theorem: Λµ-calculus. λµ satis�es stan-
dard properties of λ-calculus such as con�uence [27, 29], subject reduction [27]
and SN [28]. However, Böhm theorem fails in λµ-calculus (more precisely in its
extensional version, λµη-calculus [29, 9]). This led us [31] to de�ne an extension
to λµη, Λµ-calculus, for which we proved Böhm theorem: the more liberal syntax
of Λµ makes new contexts available and thus achieves a Böhm Out.

De�nition 3. Λµ-terms (t, u, v · · · ∈ ΣΛµ) are de�ned by the following syntax:

ΣΛµ t, u ::= x | λx.t | (t)u | µα.t | (t)α

where x (resp. α) ranges over an in�nite set Vt (resp. Vs) of term (resp. stream)
variables. Vt and Vs are disjoint. The set of closed Λµ-terms is denoted by Σc

Λµ.

Remark 2 Since α 6∈ ΣΛµ, it is clear that notations (t)α and (t)u are not
ambiguous. Notice that Σλµ (ΣΛµ and that named terms of de�nition 1 are now
elements of ΣΛµ. Moreover, terms such as µα.µβ.t or λx.(t)αy are in ΣΛµ\Σλµ.

De�nition 4. Λµ-reduction, written −→Λµ, is induced by the following rules:

(λx.t)u −→βT t {u/x} λx.(t)x −→ηT t if x 6∈ FV (t)
(µα.t)β −→βS t {β/α} µα.(t)α −→ηS t if α 6∈ FV (t)

µα.t −→fst λx.µα.t {(v)xα/(v)α} if x 6∈ FV (t)

Remark 3 Notice that µ is not part of Λµ-calculus reduction system. It can
indeed be simulated by a sequence of fstand βT -reduction; see [31, 33] for details.
Names for reductions in Λµ come from the stream interpretation of Λµ: VS-
variables are place-holders for streams of Λµ-terms; see next section for details.

3

Böhm theorem for Λµ is stated with respect to a set of canonical normal
forms (corresponding βη-normal forms in λ-calculus):

De�nition 5. A Λµ-term t is in canonical normal form (CNF) if it is
βT ηTβSηS-normal and if it contains no subterm of the form (λx.u)α nor (µα.u)v.

Theorem 4 (Böhm theorem [31]). Let t, t′ ∈ Σc
Λµ in CNF. If t 6=Λµ t

′, then

there exists a context1 C[] st. C[t] −→?

Λµ λx.λy.x and C[t′] −→?

Λµ λx.λy.y.

Con�uence holds in Λµ [32, 34] under the same hypothesis as in λµη-calculus:

Theorem 5. ∀t, t′, t′′ ∈ Σc
Λµ, ∃u ∈ ΣΛµ s.t. t −→?

Λµ t
′, t′′ ⇒ t′, t′′ −→?

Λµ u.

3 λ, µ and Beyond: the Stream Hierarchy.

In the present section, we introduce the (Λn)n∈ω-calculi that we refer to as
the stream hierarchy. This hierarchy of calculi is intended to be a call-by-name
analogous to the CPS hierarchy. We �rst motivate our approach before de�ning
the hierarchy and focusing on the metatheory of (Λn)n∈ω-calculi (they satisfy
con�uence and separation). In the following sections, we shall then study CPS
translations and abstract machines for the hierarchy and �nally, we shall estab-
lish that the Stream Hierarchy is indeed a CBN analogous to the CPS hierarchy
in the �nal section of the paper.

3.1 Motivating the Stream Hierarchy.

Λµ-calculus, a CBN calculus of delimited control. Separation theorem
for Λµ-calculus can be seen as a consequence of the fact that Λµ-calculus ad-
mits more contexts than Parigot's λµ. As a consequence, it allows for a more
powerful exploration of terms. Typical contexts used in the separation proofs
are []u1 . . . umβuv1 . . . vnβv. This exploits the fact that a context of the form
[]u1 . . . umβu delimits the part of the environment that can be passed through
the left-most µ-abstracted variable (i.e. α) when term µα.µα′.t is placed in the
hole As a result, one can access to the second µ-abstracted variable α′ thanks
to the second portion of the context, v1 . . . vnβv.

Based on this fact, Herbelin and Ghilezan [16] evidenced strong connections
between Λµ-calculus and calculi with delimited continuations in the spirit of
Danvy and Filinski shift/reset operators [7] using the calculus λµt̂p. In its call-
by-value version, λµt̂p is equivalent to Danvy-Filinski's shift/reset operators
while in its call-by-name version the calculus is equationally correspondent to
Λµ-calculus. This led Herbelin & Ghilezan to assert that Λµ-calculus is a CBN
calculus of delimited control.

1 The context may be to be �stream applicative�, ie. of the form:
[]t1,1 . . . t1,n1α1 . . . tk,1 . . . tk,nkαk.

4

CPS Hierarchy. Delimited control operators are much more expressive than
non-delimited control operators (like call/cc for instance) in that they allow to
simulate various side-e�ects [13]. Delimited control found several applications in
linguistics, normalization by evaluation, partial evaluation or concurrency. More-
over, in their seminal paper on shift/reset [7], Danvy and Filinski introduced
a hierarchy of such control operators, (shifti/reseti)i∈ω, which are obtained
by iterated CPS translations. This is known as the CPS hierarchy. In the fol-
lowing, we shall refer to it as the CPS hierarchy or λSn and adopt Kameyama's
terminology [19]:

De�nition 6 (λSn).

ΣλSn t, u ::= x | λx.t | (t)u | 〈t〉i | Sik.t 1 ≤ i ≤ n
Eiv ::= [] | (Eiv)t | (V)Eiv | 〈Eiv〉j 1 ≤ j ≤ i

(λx.t)V −→ t {V/x}
〈V 〉i −→ V
〈Ej−1

v [Sjk.t]〉i −→ 〈t
{
λx.〈Ej−1

v [x]〉j/k
}
〉i

While the emphasis was traditionally given to the delimited-control languages
in call-by-value, recent works have advocated the interest of studying call-by-
name delimited control [16, 21], although CBN delimited control behaves quite
di�erently from call-by-value. In particular, in pursuing the investigation of call-
by-name delimited control, it is quite natural to wonder whether an analogous
to the CPS hierarchy exists in the call-by-name world.

Λµ-calculus, Streams and In�nitary λ-calculi. The fst-rule allows for an
operational interpretation of Λµ-calculus as a stream calculus with the ability
to abstract over streams of Λµ-terms. With this interpretation of VS-variables
as place-holders for streams of Λµ-terms:

� the e�ect of the fst-rule is to instantiate the �rst elements of a stream:

µα.t −→?
fst λx1 . . . λxn.µα.t {(v)x1 . . . xnα/(v)α}

� µα is considered as an abstraction over streams of terms (λxα1 . . . x
α
nt)

while (t)α can be seen as the construction passing a stream as an argu-

ment to t ((t)xα1 . . . x
α
n . . .);

� βS and ηS are respectively the corresponding of β-reduction and η-reduction
for streams (or an in�nite reduction sequence of β, resp η) and rule fst
corresponds to popping the �rst element of a stream (or matching it);

� actually, Λµ-calculus can be seen as a core functional language for stream,
this direction being investigated in a current work with M. Gaboardi (see
long version of the paper for details).

Parigot already noticed some (weak) form of this in his seminal paper where �the
operator µ looks like a λ having potentially in�nite number of arguments� [27].

5

Viewing µ as an operator iterating λ-abstraction until limit ordinal ω, the par-
allel with in�nitary λ-calculi is natural. Such in�nitary calculi have been con-
sidered in the literature [3, 4, 20] both to study in�nite structures arising in lazy
languages or to study consistency problems in λ-calculus. Though, in�nitary λ-
calculi have been designed in a much di�erent way from the in�nitary calculus
underlying Λµ-calculus: while a reduction sequence may have trans�nite length,
depths of terms are bounded by ω (that is any subterm of an in�nite term is at
�nite depth): subterms at trans�nite depths are considered meaningless. On the
contrary, with Λµ-calculus, limit ordinal ω is reached by one µ-abstraction which
is a limit ordinal construction: µα.µβ.λx.x would correspond to trans�nite term
λx0, x1 . . . xω, xω+1 . . . xω2.xω2 in which λxω2.xω2 is at depth ω2.

Even though we will not pursue this direction in this paper, this theme has
been extremely in�uential in developping the stream hierarchy. Indeed, once a
trans�nite calculus is unveiled, the question of the ordinal by which it is in-
dexed (if any) is pending: λ-calculus corresponds to ordinal ω while Λµ-calculus
corresponds to ordinal ω2 (see Appendix A for details about Böhm trees for
Λµ-calculus) but what about other ordinals such as ω3 for instance? The stream
hierarchy is actually related with this question.

3.2 De�nition of the Hierarchy of (Λn)n∈ω-calculi.

De�nition 7. Let V be a countable set of variables (x, y, · · · ∈ V). For any
i ∈ ω, one considers a copy of V, named Vi (xi, yi, . . . denoting the elements of
Vi), those copies being pairwise disjoint. Λω-terms (t, u, v, · · · ∈ ΣΛω) are de�ned
by the following grammar (closed Λω-terms are denoted by Σc

Λω):

ΣΛω t, u ::= x0 | λ0x.t | (t)u
| λix.t | (t)xi for any i > 0

In λix.t (resp xi), i is the level of the abstraction (resp. variable) and λix binds
every variable xi which is free in t. An α-equivalence straightforwardly follows.

De�nition 8 (ΣΛn , Σ
c
Λn). For n ∈ ω, Σc

Λn (resp. Σc
Λn) is the restriction of

ΣΛω (resp. Σc
Λω) to terms with binders and variables of level lower or equal to

n, for i ≤ n.

De�nition 9 (Reduction rules for Λn). For n ∈ ω, −→Λn is the reduction
on ΣΛn induced by rules:

(λ0x.t)u −→β0 t
{
u/x0

}
(λix.t)yi −→βi t

{
yi/xi

}
if 0 < i ≤ n

(λix.t)u −→µi/0 λ
ix.t

{
(v)uxi/(v)xi

}
if 0 < i ≤ n

(λix.t)yj −→µi/j λ
ix.t

{
(v)yjxi/(v)xi

}
if 0 < j < i ≤ n

De�nition 10 (−→Λnη
). For n ∈ ω, −→Λnη

is the reduction on ΣΛn induced by
rules:

6

(λ0x.t)u −→β0 t
{
u/x0

}
(λix.t)yi −→βi t

{
yi/xi

}
if 0 < i ≤ n

λix.(t)xi −→ηi t if xi 6∈ FV (t), 0 ≤ i ≤ n
λix.t −→fsti/j λ

jx.λix.t
{
(v)xjxi/(v)xi

}
if xj 6∈ FV (t) and 0 ≤ j < i ≤ n

Proposition 1. For any 0 ≤ j < i ≤ n, µi/j can be derived from fsti/j and βj.

De�nition 11. We consider the following subsystems of Λnη -reduction:

� β (resp. η) is the subsystem of reductions (βi)0≤i≤n (resp. (ηi)0≤i≤n);
� fst is the subsystem made of reductions (fsti/j)0≤j<i≤n;
� β0

var is the restriction of β0 to redex where the argument is a level-0 variable;
� βvar is the subsystem made of reductions β0

var and (βi)1≤i≤n.

Example 1. Λ0 and Λ1 are respectively λ-calculus and Λµ-calculus.
We shall consider here an example in Λi which is a CBN correspondent to

the level i Shift of the CPS-hierarchy S = λ0x.λiy.(x0)λ0z.(z0)yi.
Consider C<i = []ut1,1 . . . t1,n1x

j1
1 . . . tk,1 . . . tk,nkx

jk
k such that for all l ≤ k,

jl < i, we have C<i(S) −→?
Λi λ

iy.(u)λ0z.(z0)t1,1 . . . t1,n1x
j1
1 . . . tk,1 . . . tk,nkx

jk
k y

i

that is S stores any context of level strictly less than i in a continuation that
can later be manipulated (for instance it can be composed with itself if u =
λ0x.(u′)λ0y.(x0)(x0)y0). the �ow of control is given to u only once an argument
of level i (or higher) is reached, in which case λiy is destroyed.

3.3 Meta-theory of the Stream Hierarchy.

In this section, we establish two essential theorems of Λn-calculi: con�uence and
separation.

Con�uence theorem. Con�uence holds on closed terms. Such a restriction
is necessary: (λ2y.x)z2 reduces to x and to (λ0y.λ1y′.λ2y′′.x)z2 which cannot
reduce to the same term.

Theorem 6. For any n ∈ ω and any t, u, v ∈ Σc
Λn , if t −→?

Λnη
u, v then there

exists w ∈ Σc
Λn such that u, v −→?

Λnη
w.

Remark 1. Notice that the hypothesis on closed terms is a necessary restriction
considering that the term (λ2y.x)z2 may reduce to x or to (λ0y.λ1y′.λ2y′′.x)z2

and those terms cannot reduce to the same term.

Proof. We only sketch the main steps of the proof:

1. η is con�uent;
2. β is con�uent;
3. fst is con�uent;
4. β0 and βfst commute;
5. β0fst commutes with βfst (and with βvarfst), fst commutes with βfst;

7

6. βvarfst is con�uent and βvarfst and βfst commute;
7. βfst is con�uent;
8. βfst commutes with η.

From 1, 7 and 8 we conclude thanks to Hindley-Rosen lemma. ut

As a corollary, Λj is a conservative extension of Λi, for any i < j:

Corollary 1. Let i < j ∈ ω and t, u ∈ Σc
Λi . Then t =Λiη

u i� t =Λjη
u.

Böhm theorem. To state the separation theorem (aka Böhm theorem) for the
stream hierarchy, we �rst de�ne canonical normal forms for the hierarchy using
the notion of pre-redex.

De�nition 12. t ∈ ΣΛn is a pre-redex if it is of the form (λix.t)yj or (λix.t)u
for 0 ≤ i, j ≤ n.

Canonical normal forms (Λn-CNF) can be considered as those terms contain-
ing only fst-redexes such that a fst-reduction does not create any redex other
than fst-redexes:

De�nition 13. A Λn-CNF is a βη-normal form with no pre-redex.

We can now state the separation result: for any two closed canonical normal
forms which are not equated by the equational theory, there exists a context in
which the two terms reduce to arbitrarily distinct terms.

Theorem 7 (Separation of the stream hierarchy). Let n ∈ ω, t, u ∈
Σc
Λn . If t, u are non fst-equivalent Λn-CNF then there exists a context2 C[] st.
C[t] −→?

Λnη
λ0x, y.x0 and C[u] −→?

Λnη
λ0x, y.y0.

Rather than giving the proof of the theorem, we shall show brie�y on an
example of the proof works. Indeed, as often, the proof of Böhm theorem is
constructive and results in an algorithm which, given two distinct non-equivalent
canonical normal forms, can build a separating context.

De�nition 14 (W i,j
y0).

W i,j
y0 = λ0x.λiz.(x0)


λiz′.λjz′′.(x0)


λiw.(0)zi

y0

zi

λiw.(0)zi

zi

with 0 = λ0a.λ0b.b0 and i > j

2 The context can be chosen to be a stream applicative context

[]t1,1 . . . t1,n1x
i1
1 . . . tk,1 . . . tk,nkx

ik
k .

8

Consider W i,j
1 = W i,j

y0

{
1/y0

}
and W i,j

0 = W i,j
y0

{
0/y0

}
with 0 = λ0a.λ0b.b0

and 1 = λ0a.λ0b.a0 . These terms are the typical kind of terms on which sepa-
ration may fail, we will actually show that is it possible to �nd a context C in
which W i,j

1 reduces to 1 and W i,j
0 reduces to 0. It is actually a generalization of

David & Py's counter-example to separation in λµ-calculus which is itself a gen-
eralization of the di�cult case in the proof of Böhm theorem in pure λ-calculus.
The crucial point in this example is the fact that variable x0 occurs twice in head
position on the path through the tree structure that leads to the �rst di�erence
between the terms and that at each occurrence of the variable, the path follows a
di�erent direction. In order to achieve separation (through a Böhm-out process)
one shall thus need to pass a structured-enough term that can behave in two
di�erent ways depending on the context.

Our separating context will use in a crucial way a term of a particular shape
that we call a stream parametric pair:

De�nition 15 (Stream parametric pairs, 〈t, u〉ik). Let t, u be Λn-terms and
let 0 ≤ i ≤ n. The parametric pair of level i for t, u is the term:

〈t, u〉ik = λiy1 . . . λ
iyk.λ

0x.((x0)(t)yi1 . . . y
i
k)(u)y

i
1 . . . y

i
k

with x0, yi1, . . . , y
i
k 6∈ FV (t, u).

Proposition 2. the following holds:

(〈t, u〉ik+1)v −→Λn 〈(t)v, (u)v〉ik+1

(〈t, u〉ik+1)x
j −→Λn 〈(t)xj , (u)xj〉ik+1 (if j < i)

(〈t, u〉ik+1)x
i −→Λn 〈(t)xi, (u)xi〉ik

(〈t, u〉i0)λ0a, b.a0 −→Λn t
(〈t, u〉i0)λ0a, b.b0 −→Λn u

We can now de�ne the separating context:

Cij = []〈A,B〉i1ai0aiaibj1ai

where A = λ0v0, v1.λ
iw0, w1.v

0
1 and B = λ0x.λiy.λi.z.x0

In �gure 1, we display the reduction from Cij
[
W i,j
y0

]
to y0. Here are the

elements to be noticed concerning this reduction sequence:

� 〈A,B〉i1 is substituted to x0 and the pair stores the information relative to
both behaviours that the term in this position shall have in order to achieve
separation: (i) the role of B is to select the appropriate branch in the tree
of the λi-term, (ii) the role of A is to achieve separation by selecting y0;

� the di�erent behaviours of the parametric pair are selected by the rest of the
context made of []ai0aiaibj1ai:
• the left-most variable ai is stored in the pair and
• then argument 0 results in selecting the second component of the stream
parametric pair loading B in head position.

9

Cij
h
W i,j

y0

i
= (W i,j

y0
)〈A,B〉i1ai0aiaibj1ai

−→? (((〈A,B〉i1)λiz′.λjz′′.((〈A,B〉i1)λiw.(0)ai)y0ai)λiw.(0)ai)ai0aiaibj1ai

−→? (〈(((A)λiz′.λjz′′.((〈A,B〉i1)λiw.(0)ai)y0ai)λiw.(0)ai)ai,
(((B)λiz′.λjz′′.((〈A,B〉i1)λiw.(0)ai)y0ai)λiw.(0)ai)ai〉i0)0aiaibj1ai

−→? (((B)λiz′.λjz′′.((〈A,B〉i1)λiw.(0)ai)y0ai)λiw.(0)ai)aiaiaibj1ai

−→? (λiz′.λjz′′.((〈A,B〉i1)λiw.(0)ai)y0ai)aibj1ai

−→? ((〈A,B〉i1)λiw.(0)ai)y0ai1ai

−→? ((〈((A)λiw.(0)ai)y0ai, ((B)λiw.(0)ai)y0ai〉i0)1ai
−→? ((A)λiw.(0)ai)y0aiai

−→? y0

Fig. 1. Böhm out process for W i,j

y0
.

• The second left-most variable ai is erased by one of the abstractions of
B and then

• arguments ai and bj are used to consume the abstractions in order to
move the second occurrence of 〈A,B〉i1 in head position.

• After storing the appropriate number of arguments, the pair receives
argument 1 and thus returns the �rst component of the pair, A

• and �nally A returns y0, completing the Böhm out process.

4 Translating the Stream Hierarchy into λ-calculus.

We de�ne in this section sound and complete translations of the stream hier-
archy into λ-calculus with pairs. These translations are inspired by the recent
CPS translation for λµt̂p-calculus by Herbelin and Ghilezan [16]. Several trans-
lations into λ-calculus have been proposed for λµ-calculus in the literature. de
Groote [10] was the �rst to study CPS translations for λµ-calculus. Lafont, Reus
and Streicher [24] proposed a CPS translation for λ-calculus into λ-calculus with
pairs which later led to a continuation semantics for λµ-calculus[35] and is very
much related to CPS translations for λµ-calculus by Fujita [14] or Lassen [25].
A by-product of this section is to provide a sound and complete CPS translation
for Λµ-calculus. We recall the de�nition of the λ-calculus with pairs.

De�nition 16 (λ-calculus with pairs). Terms of λ-calculus with pairs
are given by the following syntax:

Σλπ t, u ::= x | λx.t | (t)u | 〈t, u〉 | (π1)t | (π2)t

De�nition 17. Equations of λπ are βη (equationally) plus the following:

(π1)〈t1, t2〉 =π1 t1
(π2)〈t1, t2〉 =π2 t2
〈(π1)t, (π2)t〉 =SP t

10

De�nition 18 (Translation for Λn). We assume that the set of variables of
λ-calculus with pairs is V = {k}] V0] · · ·] Vn and we de�ne a translation
[−] : ΣΛn −→ Σλπ as follows:

[
x0
]

= λk.(x0)k[
λix.t

]
= λk.((λxi. [t])(π1)n−i+1k)〈. . . 〈(π2)(π1)n−ik, (π2)(π1)n−i−1k〉 . . . , (π2)k〉 0 ≤ i ≤ n[

(t)xi
]

= λk.([t])〈. . . 〈〈xi, (π1)n−ik〉, (π2)(π1)n−i−1k〉 . . . , (π2)k〉 0 < i ≤ n
[(t)u] = λk.([t])〈. . . 〈〈[u] , (π1)nk〉, (π2)(π1)n−1k〉 . . . , (π2)k〉

Remark 8 In the previous de�nition, we abbreviated (πi)(πi) . . . (πi)t as (πi)nt.

The de�nition for [(t)u] when u = x0 corresponds to instantiating the de�-
nition for

[
(t)xi

]
with i = 0. An alternative de�nition for [(t)u] is thus possible:

[(t)u] =
[
(t)x0

] {
[u] /x0

}
if x0 6∈ FV (t), if clause for

[
(t)xi

]
is extended to i = 0.

Example 2. Consider t = λ1y0 . . . yn.(x0)t1 . . . tm ∈ ΣΛ1 . Then one has:

[t] −→?

λk.(x0)〈〈[t1] , . . . 〈[tm] , (π1)(π2)m+1k〉〉, (π2)m+2k〉
{
(π1)(π2)ik/y1

i , 0 ≤ i ≤ m
}

The translation is sound and complete with respect to Λnη -equational theory:

Theorem 9. For any n ∈ ω, t, u ∈ Σc
Λn , t =Λnη

u i� [t] =βηπSP [u] .

For the completeness part, we study the image of ΣΛn terms by the transla-
tion which is characterized by the terms T de�ned by the following grammar:

De�nition 19. The target of the CPS can be de�ned by the following grammar:

T,K0 ::= x0 | λk.(T)Kn+1 | (λxi.T)Ki | (π1)K1 (for 0 ≤ i ≤ n)
Ki ::= xi | 〈Ki−1,Ki〉 | (π2)Ki | (π1)Ki+1 (for 0 < i ≤ n)
Kn+1 ::= k | 〈Kn,Kn+1〉 | (π2)Kn+1

11

De�nition 20. The CPS can be inversed from the target language to Λn+1 by
the following function _] as follows:

T] :
x0] = x0

λk.(T)Kn+1
] = λn+1k.(Kn+1

])T]

(λx0.T1)T2
] = (λ0x.T1

])T2
]

(λxi.T)Ki
] = (Ki

])λix.T] for 0 < i.

(π1)K1
] = (K1

])λ0x.λ1y.x0

K1
] :

x1] = λ0y.(y0)x1

〈T,K1〉] = λ0y.(K1
])(y0)T]

(π2)K1
] = λ0y.(K1

])λ0x.λ1z.(y0)z1

(π1)K2
] = λ0y.(K2

])λ1x.λ2z.(y0)x1

Ki
] : (for 1 < i ≤ n)

xi
] = λ0y.(y0)xi

〈Ki−1,Ki〉] = λ0y.(Ki
])(Ki−1

])y0

(π2)Ki
] = λ0y.(Ki

])λi−1x.λiz.(y0)zi

(π1)Ki+1
] = λ0y.(Ki+1

])λix.λi+1z.(y0)xi

Kn+1
] :

k] = λ0y.(y0)kn+1

〈Kn,Kn+1〉] = λ0y.(Kn+1
])(Kn

])y0

(π2)Kn+1
] = λ0y.(Kn+1

])λnx.λn+1z.(y0)zn+1

Proof. Soundness is obtained by induction on the length of a proof of equality
between t and u.

Completeness is more involved. It mainly amounts to the following argu-
ments:

� one proves that the inverse translation preserves equality in Λn+1, and thus:
if [t] =βηπSP [u], then [t]] =Λn+1

η
[u]];

� one then shows that [t]] =Λn+1
η

t so that we can deduce that t =Λn+1
η

u and

� �nally we conclude thanks to the fact that Λn+1
η is a conservative extension

of Λnη (corollary 1): t =Λnη u. ut

Remark 10 It shall be noted that the proof of completeness is greatly simpli�ed
by the use of the hierarchy in the sense that the inverse translation translates
back to Λn+1 and not to Λn. Indeed, it can take advantage of the regularity of
the structure of the n+ 1th continuation used in the translation.

A sound and complete CPS translation for Λµ-calculus, []Λµ, is obtained by
instantiating the previous result with n = 1:

De�nition 21. We assume that the variables of λ-calculus with pairs is the
disjoint union of stream and term variables (V = Vt]Vs) and de�ne a translation

12

[]Λµ : ΣΛµ −→ Σλπ as:

[x]Λµ = λk.(x)k
[λx.t]Λµ = λk.((λx. [t]Λµ)(π1)2k)〈(π2)(π1)k, (π2)k〉 if k 6∈ FV (λx. [t]Λµ)
[(t)u]Λµ = λk.([t]Λµ)〈〈[u]Λµ , (π1)k〉, (π2)k〉 if k 6∈ FV (([t]Λµ) [u]Λµ)
[µα.t]Λµ = λk.((λα. [t]Λµ)(π1)k)(π2)k
[(t)α]Λµ = λk.([t]Λµ)〈α, k〉

We have the following corollary:

Corollary 2. For any t, u ∈ Σc
Λµ, t =Λµ u if, and only if, [t]Λµ =βηπSP [u]Λµ .

Remark 11 It shall be noted that the previous translation di�ers from CPS
translations which have been proposed for Λµ-calculus in previous works (De
Groote, Fujita...). Moreover, this translation allows for a simpler completeness
proof as noted above.

5 An Operational Investigation of the Stream Hierarchy.

In the �nal section of his seminal paper, Parigot outlined an abstract machine
for λµ-calculus. Later, de Groote [11] and Streicher and Reus [35] studied ab-
stract machines for λµ-calculus. We shall be interested in this section in abstract
machines for the Stream hierarchy.

We shall de�ne machines which compute Λn-head normal forms. In the follow-
ing, we do not consider extensionality rules which are not necessary to compute
head normal forms.

De�nition 22. Λn-head normal forms are de�ned by the following grammar:

h ::= g | λix.h for 0 ≤ i ≤ n
g ::= x0 | (g)t | (g)xi for 0 < i ≤ n, t denotes an arbitrary Λn-term

Since we wish to compute head normal forms, we will need to introduce
constants to represent variables which are parts of the stable structure of the
terms.

De�nition 23. Let 0 ≤ i ≤ n. Constants of level i are de�ned as

ci = xiρi | v(c
j)iρi

with x ∈ V, i < j and ρi a �nite sequence of integers k, 0 ≤ k < i (ε denotes
the empty sequence). We shall also consider particular constants which shall
represent empty contexts: ⊥i, 0 ≤ i ≤ n+1. The structure of constants takes into
account the need for treating the case of fst-rules. For instance xjε will represent
the variable xj in the left-hand side of λjx.t −→fstj/i λ

iy.λjx′.t′, while v(xjε)
i
ε

and xj[i] will respectively represent variable yi and x′
j
in the right-hand side.

13

Moreover, the following notions are needed to de�ne the machine:

De�nition 24. We de�ne by mutual recursion contexts of level i, 0 ≤ i ≤
n+ 1, closures and environments:

� a closure is a pair of a term t and an environment e, denoted t[e];
� an environment e is a partial function which, when de�ned, associates to a

variable of level i a context of level i;
� a context S0 of level 0 is de�ned as follows: S0 ::= ⊥0 | c0 | u[e];
� a context Si of level i (i ≥ 1) is de�ned as follows: Si ::= ⊥i | ci | Si−1 · Si.

We set ⊥i · Si+1 to be equal to Si+1, and (S1
i · . . . (Sni · ⊥i+1)) · (Si+1 · Si+2) to

(S1
i · . . . (Sni ·Si+1)) ·Si+2. These equalities allow us to assume that if S is of the

form (((S1
i · . . . (Sni · ⊥i+1)) · Si+2) . . . Sk), then either ∀j, i+ 2 ≤ j ≤ k, Sj = ⊥j

or it is of the form ((((((S1
i · . . . (Sni · ⊥i+1)) · ⊥i+2) . . .⊥j−1) · cjρ) · Sj+1) . . . Sk).

De�nition 25. We de�ne popi(Sn+1) and push(Si, Sn+1) as follows:

� push(Si, Sj) (with i < j):
• push(⊥i, Sj) = Sj;
• push(Si,⊥j) = ((Si · ⊥i+1) · · · · ⊥j) if Si 6= ⊥i;
• push(Si, cjρ) = ((Si · ⊥i+1) · · · · ⊥j−1) · cjρ if Si 6= ⊥i;
• push(Si, Si+1) = (Si · Si+1) if Si 6= ⊥i;
• push(Si, Sj · Sj+1) = (push(Si, Sj) · Sj+1) if Si 6= ⊥i.

� popi(Sn+1) = popi,n+1(Sn+1) with popi,j(Sj) (for i < j):
• popi,j(⊥j) = (⊥i,⊥j);
• popi,j(cjρ) = (v(cjρ)

i

ε
, cjρ·i);

• popi,j+1(((S1
i−1·. . . Sni−1·⊥i)·⊥i+1)·. . .⊥j+1) = (S1

i−1·. . . Sni−1·⊥i,⊥j+1);
• popi,j+1(((((S1

i−1 · . . . Sni−1 ·⊥i) · · · ·⊥k−1) · ckρ) ·Sk+1) · · · ·Sj+1) = (S1
i−1 ·

. . . Sni−1 · v(ckρ)iε, ((ckρ·i · Sk+1) . . . Sj+1)). Otherwise, one has:

• popi,j+1(Sj · Sj+1) = (S′i, S
′
j+1) if popi,j(Sj) = (S′i, S

′′
j) and S′j+1 =

push(S′′j , Sj+1).

We now de�ne the Λn-KAM:

De�nition 26. States of Λn-KAM have the form λi1x1
i1
ε λ

inxn
in
ε .〈t, [e], Sn+1〉

where t ∈ ΣΛn , e is an environment and Sn+1 is a context of level n+ 1. States
are abbreviated as

−→
λ 〈t[e] Sn+1〉 when the pre�x of abstractions is irrelevant.

An initial state of Λn-KAM is of the form 〈t, [∅],⊥n+1〉.

De�nition 27. The transitions of the machines are the following:

(1)
−→
λ 〈x0 [e] Sn+1〉 −→

−→
λ 〈t [e′] Sn+1〉 if e(x0) = t[e′]

(2)
−→
λ 〈(t)u [e] Sn+1〉 −→

−→
λ 〈t [e] S′n+1〉 with S′n+1 = push(u[e], Sn+1)

(3)
−→
λ 〈(t)xi [e] Sn+1〉 −→

−→
λ 〈t [e] S′n+1〉 with S′n+1 = push(e(xi), Sn+1)

(4)
−→
λ 〈λix.t [e] Sn+1〉 −→

−→
λ 〈t [e′] S′n+1〉 if popi(Sn+1) = (S′i, S

′
n+1), e

′ = [e, xi = S′i]
and S′i 6= S1

i−1 · . . . (Sni−1 · ⊥i)
(4′)
−→
λ 〈λix.t [e] Sn+1〉 −→

−→
λ λixiε.〈t [e′] ⊥n+1〉 if popi(Sn+1) = (S1

i−1 · . . . (Sni−1 · ⊥i),⊥n+1)
and e′ = [e, xi = S1

i−1 · . . . (Sni−1 · xiε)]

14

The only case when the machine cannot reduce is when the machine state
is in case λi1xi11ε. . . . λ

inxinnε.〈x0, [e], Sn+1〉 and x0 is associated by e to a variable
constant of level 0, c0, and not to a closure t[e′] since there is no rule for reducing
this case (it is easy to check that when the initial state is made of a closed term,
this is indeed the only case which can stop the machine). The �nal states of the
machine are thus of the form:

λi1xi11ε. . . . λ
inxinnε.〈c0, [e], Sn+1〉

In that case, we have reached the head variable and obtained the head normal
form, the pre�x of λixiε which has been gathered during the computation is the
pre�x of abstractions of the head normal form (up to some fst-reduction which
have been lazily performed in the term and shall be propagated during the
reconstruction of the Λn-term). One actually has the following:

Theorem 12. If t is a closed Λn-term, Λn-KAM stops after a computation from
initial state 〈t[∅],⊥n+1〉 if and only if t has a head normal form.

Moreover, from the constant of level 0 which is the left-component of the �nal
state, one can compute the head variable of the head normal form and recursively
the complete head normal form.

6 Relating the Stream Hierarchy and the CPS Hierarchy.

The aim of this section is to make clear how the Stream hierarchy relates to
Danvy & Filinski's CPS hierarchy and to actually show that the Stream hier-
archy is indeed a call-by-name analogous to the CPS hierarchy, that is a CBN
hierarchy of delimited continuations. For this purpose, we follow a method re-
cently developed by Herbelin and Ghilezan and investigate the λµt̂pn-calculi as
mediators between the two hierarchies.

6.1 λµt̂pn-calculi.

De�nition 28 (λµt̂pn-calculi). Let n ∈ ω. λµt̂pn-terms (t, u, v, · · · ∈ Σλµbtpn)
are de�ned by the following syntax:

Σλµbtpn t, u ::= x | λx.t | (t)u | µiq.ci
ci ::=

[
qi
]
t (1 ≤ i ≤ n)

q ::= α | t̂p

CBV and CBN λµt̂pn-calculi can be naturally considered: in the CBV case,
values and evaluation contexts are de�ned as V ::= x | λx.t and Eiv ::= [] |
(Eiv)t | (V)Eiv | µj t̂p.

[
qj
]
Eiv, 1 ≤ j < i while in the CBN case, every term is a

value and evaluation contexts are Ei ::= [] | (Ei)t | µj t̂p.
[
qj
]
Ei, 1 ≤ j < i.

15

De�nition 29 (CBV λµt̂pnequational theory).
Call-by-value evaluation contexts and values are de�ned as:

Eiv ::= [] | (Eiv)t | (V)Eiv | µj t̂p.
[
qj
]
Eiv, 1 ≤ j < i

V ::= x | λx.t

CBV λµt̂pn equational theory (written =
λµbtpcbvn) is de�ned by the following rules:

(βv) (λx.t)V = t {V/x}
(ηv) λx.(V)x = V if x 6∈ FV (V)
(ηibtpv) µit̂p.

[
t̂p
i
]
V = V

(ηiµ) µiα.
[
αi
]
t = t if αi 6∈ FV (t)

(µibtp)
[
t̂p
i
]
µit̂p.ci = ci

(µiv)
[
qi
]
Ei−1
v

[
µiα.ci

]
= ci

{[
qi
]
Ei−1
v [u]/

[
αi
]
u
}

(βiΩ) (λx.Eiv[x])µ
it̂p.ci = Eiv

[
µit̂p.ci

]
(µ′ibtp)

[
t̂p
l
]
µiα.ci =

[
t̂p
l
]
µit̂p.ci

{
t̂p
i
/αi
}

(i ≤ l)
(µilet) µ

jα.
[
qj
]
(λx.t)µit̂p.ci = (λx.µjα.

[
qj
]
t)µit̂p.ci (j ≤ i+ 1)

De�nition 30 (CBN λµt̂pnequational theory).
Call-by-name evaluation contexts are de�ned as:

Ei ::= [] | (Ei)t | µj t̂p.
[
qj
]
Ei, 1 ≤ j < i

CBN λµt̂pn equational theory (written =
λµbtpcbnn) is de�ned by the following rules:

(β) (λx.t)u = t {u/x}
(η) λx.(t)x = t if x 6∈ FV (t)
(µi)

[
βi
]
Ei−1

[
µiα.ci

]
= ci

{[
βi
]
Ei−1[u]/

[
αi
]
u
}

(ηiµ) µiα.
[
αi
]
t = t if αi 6∈ FV (t)

(µibtp)
[
t̂p
i
]
µit̂p.ci = ci

(ηibtp) µit̂p.
[
t̂p
i
]
t = t

6.2 Correspondence Between Λn and CBN λµt̂pn.

De�nition 31 (Translations between Λn and λµt̂pn).

|λix.t|Λ〉btp = µiαx.[t̂p
i
]|t|Λ〉btp |µit̂p.ci|btp〉Λ = |ci|btp〉Λ |µiα.ci|btp〉Λ = λixα.|ci|btp〉Λ

|(t)xi|Λ〉btp = µit̂p.[αix]|t|Λ〉
btp |[t̂pi]t|btp〉Λ = |t|btp〉Λ |[αi]t|btp〉Λ = (|t|btp〉Λ)xiα

Theorem 13. For any n ∈ ω, Λn is in equational correspondence with CBN
λµt̂pn:

� let t, u ∈ Σc
Λn , t =Λnη

u⇒ |t|Λ〉btp =
λµbtpcbnn |u|Λ〉btp

16

� let t, u ∈ Σc
λµbtpn , t =

λµbtpcbnn u⇒ |t|btp〉Λ =Λnη
|u|btp〉Λ

Proof. � Let n ∈ ω, t, u ∈ Σc
Λn , one proves that t =Λnη

u ⇒ |t|Λ〉btp =
λµbtpcbnn

|u|Λ〉btp by induction on the size of a proof of t =Λnη
u, that is by proving that

every equation of Λnη is validated in λµt̂p
cbn
n :

(β0) if t = (λ0x.v1)v2 =β0 v1
{
v2/x

0
}

= u, then

|t|Λ〉btp = (λx0.|v1|Λ〉btp)|v2|Λ〉btp =β |v1|Λ〉btp {|v2|Λ〉btp/x0
}

= |u|Λ〉btp;
(βi) , with i > 0 if t = (λix.v)yi =βi v

{
yi/xi

}
= u, then

|t|Λ〉btp = µit̂p.
[
αiy
]
µiαx.

[
t̂p
i
]
|v|Λ〉btp

=µi µ
it̂p.
[
t̂p
i
]
|v|Λ〉btp {αiy/αix}

=ηibtp |v|Λ〉
btp {αiy/αix}

= |u|Λ〉btp;
(ηi) if t = λix.(v)xi =ηi v = u, then if i = 0, |t|Λ〉btp = λxO.(|v|Λ〉btp)x0 =η

|v|Λ〉btp = |u|Λ〉btp. Otherwise, |t|Λ〉btp = µiαx.
[
t̂p
i
]
µit̂p.

[
αix
]
|v|Λ〉btp =µibtp

µiαx.
[
αix
]
|v|Λ〉btp =ηiµ

|v|Λ〉btp = |u|Λ〉btp, since freshness conditions are sat-
is�ed.

(fsti/j) if t = λix.v =fsti/j λ
jx.λix.v

{
(w)xjxi/(w)xi

}
= u then if j = 0 then

|t|Λ〉btp = µiαx.
[
t̂p
i
]
|v|Λ〉btp

=η λx0.(µiαx.
[
t̂p
i
]
|v|Λ〉btp)x0

=ηiµ
λx0.µiαx.

[
αix
]
(µiαx.

[
t̂p
i
]
|v|Λ〉btp)x0

=µi λx
0.µiαx.

[
t̂p
i
]
|v|Λ〉btp {[αix](w)x0/

[
αix
]
w
}

= |u|Λ〉btp
Otherwise, 0 < j < i and

|t|Λ〉btp = µiαx.
[
t̂p
i
]
|v|Λ〉btp

=ηj µ
jαx.

[
αjx
]
µiαx.

[
t̂p
i
]
|v|Λ〉btp

=µjbtp µ
jαx.

[
t̂p
j
]
µj t̂p.

[
αjx
]
µiαx.

[
t̂p
i
]
|v|Λ〉btp

=ηiµ
µjαx.

[
t̂p
j
]
µiαx.

[
αix
]
µj t̂p.

[
αjx
]
µiαx.

[
t̂p
i
]
|v|Λ〉btp

=µi µ
jαx.

[
t̂p
j
]
µiαx.

[
t̂p
i
]
|v|Λ〉btp {[αix]µj t̂p.[αjx]w/[αix]w}

= |u|Λ〉btp
� Let n ∈ ω, t, u ∈ Σc

λµbtpn , one proves that t =
λµbtpcbnn u⇒ |t|btp〉Λ =Λnη

|u|btp〉Λ

17

(β) if t = (λx.v1)v2 =β v1
{
v2/x

0
}

= u, then

|t|btp〉Λ = (λ0x.|v1|btp〉Λ)|v2|btp〉Λ =β0 |v1|btp〉Λ {|v2|btp〉Λ/x0
}

= |u|btp〉Λ;

(η) if t = λx.(v)x =η v = u, then

|t|btp〉Λ = λ0x.(|v|btp〉Λ)x0 =η0 |v|btp〉Λ = |u|btp〉Λ;

(µi) if cti =
[
αi
]
Ei−1[µiβ.c′i] =µi c

′
i

{[
αi
]
Ei−1[w]/

[
βi
]
w
}

= cui , then

|cti|
btp〉Λ = (|Ei−1|btp〉Λ[λixbeta.|c′i|

btp〉Λ])xiα
=fsti/jβj ,j<i (λixβ .|c′i|

btp〉Λ {(|Ei−1|btp〉Λ[w])xiβ/(w)xiβ
}

)xiα

=βi |c′i|
btp〉Λ {(|Ei−1|btp〉Λ[w])xiα/(w)xiβ

}
= |cui |

btp〉Λ
(ηiµ) If t = µiα.

[
αi
]
v =ηiµ

v = u then

|t|btp〉Λ = λixα.(|v|btp〉Λ)xiα =ηi |v|
btp〉Λ = |u|btp〉Λ

(µibtp) If cti =
[
t̂p
i
]
µit̂p.c′i =µibtp c′i = cui , then

|cti|
btp〉Λ = |c′i|

btp〉Λ = |cui |
btp〉Λ

(ηibtp) If t = µit̂p.
[
t̂p
i
]
v =ηibtp v = u, then

|t|btp〉Λ = |v|btp〉Λ = |u|btp〉Λ
ut

Moreover, one has the following proposition:

Proposition 3. Let t ∈ Σc
Λn and u ∈ Σc

λµbtpn ,
� t = ||t|Λ〉btp|btp〉Λ
� u =

λµbtpcbnn ||u|btp〉Λ|Λ〉btp

6.3 Correspondence Between λSn and CBV λµt̂pn.

De�nition 32 (Translations between λSn and λµt̂pn).

|〈t〉i|S〉btp = µit̂p.[t̂p
i
]|t|S〉btp

|Sik.t|S〉btp = µiα.[t̂p
i
](λk.|t|S〉btp)λx.µit̂p.[αi]x

|µit̂p.ci|btp〉S = 〈|ci|btp〉S〉i
|µiα.ci|btp〉S = Sikiα.|ci|

btp〉S
|[t̂pi]t|btp〉S = |t|btp〉S
|[αi]q|btp〉S = (kiα)|t|btp〉S

18

In order to study the correspondence with CPS hierarchy, we recall Kameyama's
axiomatization of λSn [19]:

De�nition 33. Kameyama's axiomatization for the CPS hierarchy, =λSn is de-
�ned as:

(βv) (λx.t)V = t {V/x}
(ηv) λx.(V)x = V if x 6∈ FV (V)
(βΩ) (λx.E0

v [x])t = E0
v [t] if x 6∈ FV (E0

v)
(Reset− V alue) 〈V 〉i = V
(Reset− lift) 〈(λx.t)〈u〉i〉j = (λx.〈t〉j)〈u〉i j ≤ i
(S − reset) Sik.〈t〉i = Sik.t
(S − elim) Sik.(k)〈t〉i−1 = 〈t〉i−1 k 6∈ FV (t)
(S − lift) 〈Ej−1

v [Sjk.t]〉i = 〈t
{
λx.〈Ej−1

v [x]〉j/k
}
〉i x 6∈ FV (kEj−1

v)

Theorem 14. For any n ∈ ω, CBV λµt̂pn simulates λSn: let t, u ∈ Σc
λSn ,

t =λSn u⇒ |t|S〉
btp =

λµbtpcbvn |u|S〉btp.
Remark 15 If we have only a simulation here and not an equational corre-
spondence, it solely because λµt̂pn makes use of structural substitution and thus
some reductions are anticipated in λµt̂pn compared to the reduction in λSn. This
already occurs at the �rst level of the hierarchy [16] and is analyzed in [2].

Proof. Let n ∈ ω, t, u ∈ Σc
λSn . We prove that t =λSn u implies |t|S〉btp =

λµbtpcbvn
|u|S〉btp by induction on a derivation of t =λSn u.

(βv) if t = (λx.v1)V2 =βv v1 {V2/x} = u, then

|t|S〉btp = (λx.|v1|S〉btp)|V2|S〉btp =βv |v1|S〉
btp {|V2|S〉btp/x} = |u|S〉btp

(the translation of a λSn-value is a λµt̂pn-value)
(ηv) if t = (λx.(V)x =ηv V = u, then

|t|S〉btp = λx.(|V |S〉btp)x =ηv |V |S〉
btp = |u|S〉btp

(βΩ) if t = (λx.E0
v [x])v =βΩ E0

v [v] = u, then

|t|S〉btp = (λx.|E0
v |S〉

btp[x])|v|S〉btp =β0
Ω
|E0
v |S〉

btp[|v|S〉btp] = |u|S〉btp
(〈〉i-Value) if t = 〈V 〉i =(〈〉i-Value) V = u, then

|t|S〉btp = µit̂p.
[
t̂p
i
]
|V |S〉btp = ηibtp|V |S〉btp = |u|S〉btp

(〈〉i-Lift) if t = 〈(λx.v1)〈v2〉i〉j =〈〉i-Lift (λx.〈v1〉j)〈v2〉i = u, then

|t|S〉btp = µj t̂p.
[
t̂p
j
]
(λx.|v1|S〉btp)µit̂p.[t̂pi]|v2|S〉btp

=βiΩ
(λx.µj t̂p.

[
t̂p
j
]
(λx.|v1|S〉btp)x)µit̂p.[t̂pi]|v2|S〉btp

=βv (λx.µj t̂p.
[
t̂p
j
]
|v1|S〉btp)µit̂p.[t̂pi]|v2|S〉btp

= |u|S〉btp

19

(Si-Reset) if t = Sik.〈v〉i =Si-Reset Sik.v = u, then

|t|S〉btp = µiα.
[
t̂p
i
]
(λk.µit̂p.

[
t̂p
i
]
|v|S〉btp)λx.µit̂p.[αi]x

=βv µiα.
[
t̂p
i
]
µit̂p.

[
t̂p
i
]
|v|S〉btp {λx.µit̂p.[αi]x/k}

=βv µiα.
[
t̂p
i
]
µit̂p.

[
t̂p
i
]
(λk.|v|S〉btp)λx.µit̂p.[αi]x

=µibtp µiα.
[
t̂p
i
]
(λk.|v|S〉btp)λx.µit̂p.[αi]x

= |u|S〉btp
(Si-Elim) if t = Sik.(k)〈v〉i−1 =Si-Elim 〈v〉i−1 = u, then

|t|S〉btp = µiα.
[
t̂p
i
]
(λk.(k)µi−1t̂p.

[
t̂p
i−1
]
|v|S〉btp)λx.µit̂p.[αi]x

=βv µiα.
[
t̂p
i
]
(λx.µit̂p.

[
αi
]
x)µi−1t̂p.

[
t̂p
i−1
]
|v|S〉btp

=µilet
(λx.µiα.

[
t̂p
i
]
µit̂p.

[
αi
]
x)µi−1t̂p.

[
t̂p
i−1
]
|v|S〉btp

=µibtp (λx.µiα.
[
αi
]
x)µi−1t̂p.

[
t̂p
i−1
]
|v|S〉btp

=ηiµ
(λx.x)µi−1t̂p.

[
t̂p
i−1
]
|v|S〉btp

=β0
Ω
µi−1t̂p.

[
t̂p
i−1
]
|v|S〉btp

= |u|S〉btp
(Si-Lift) if t = 〈Ej−1

v [Sjk.v]〉i =Si-Lift 〈v
{
λx.〈Ej−1

v [x]〉j/k
}
〉i = u, then

|t|S〉btp = µit̂p.
[
t̂p
i
]
|Ej−1
v |S〉btp[µjα.[t̂pj](λk.|v|S〉btp)λx.µj t̂p.[αj]x]

=ηjµ
µit̂p.

[
t̂p
i
]
µjα.

[
αj
]
|Ej−1
v |S〉btp[µjα.[t̂pj](λk.|v|S〉btp)λx.µj t̂p.[αj]x]

=µj µit̂p.
[
t̂p
i
]
µjα.

[
t̂p
j
]
(λk.|v|S〉btp)λx.µj t̂p.[αj]|Ej−1

v |S〉btp[x]
=βv µit̂p.

[
t̂p
i
]
µjα.

[
t̂p
j
]
|v|S〉btp {λx.µj t̂p.[αj]|Ej−1

v |S〉btp[x]/k}
=µ′ibtp µit̂p.

[
t̂p
i
]
µj t̂p.

[
t̂p
j
]
|v|S〉btp {λx.µj t̂p.[t̂pj]|Ej−1

v |S〉btp[x]/k}
=µ′ibtp µit̂p.

[
t̂p
i
]
µjβ.

[
βj
]
|v|S〉btp {λx.µj t̂p.[t̂pj]|Ej−1

v |S〉btp[x]/k} (?)

=ηiµ
µit̂p.

[
t̂p
i
]
|v|S〉btp {λx.µj t̂p.[t̂pj]|Ej−1

v |S〉btp[x]/k}
= |u|S〉btp

(?) is obtained by considering some variable βj which does not occur free in

|v|S〉btp {λx.µj t̂p.[t̂pj]|Ej−1
v |S〉btp[x]/k}.

ut

7 Conclusion.

This paper introduced a new hierarchy of calculi, the (Λn)n∈ω-calculi, that we
refer to as the stream hierarchy. This hierarchy generalizes both λ-calculus and

20

Λµ-calculus. (Λn)n∈ω-calculi have layered, or hierarchical, abstractions as well as
variables with levels and its reduction system naturally extends the one for Λµ-
calculus. The main related works are the CBV studies of delimited continuations
and of the CPS hierarchies and most notably works by Danvy, Filinski, Hasegawa
and Kameyama [5, 8, 13, 18, 19] and the works on CBN delimited control by
Ghilezan, Herbelin and Kiselyov [16, 21]. The main results of the paper are:

� we introduced a hierarchy of new calculi which extends both λ-calculus and
Λµ-calculus, with layered variables and abstractions;

� we established con�uence and Böhm theorem for the hierarchy which ensures
that the hierarchy is well-structured;

� we de�ned a sound and complete CPS translation for the hierarchy. The
completeness proof strongly rely on conservativity results between di�erent
layers of the hierarchy allowing for simpler completeness proofs compared to
more traditional translations as Fujita's CPS adapted to Λµ-calculus;

� we investigated the operational semantics of the hierarchy by constructing
abstract machines, the Λn-KAM. The Λn-KAM are inspired from Krivine
abstract machine for λ-calculus. The Λn-KAMs compute head-normal forms
in Λn, and not only weak-head normal forms;

� �nally, we established that the stream hierarchy is indeed a hierarchy of
delimited continuations in call-by-name, by mediating between the CPS hi-
erarchy and the stream hierarchy thanks to the λµt̂pn-calculi.

As a conclusion, we have developed a(n almost) complete study of the stream
hierarchy. Our contribution evidences that the Stream hierarchy is a CBN hi-
erarchy of delimited continuations and that fruitful connections exist between
delimited control and in�nitary calculi which underly Λµ-calculus and the entire
stream hierarchy. However, some more developments are still to be done, which
are left for future work:

� the CPS translations for the hierarchy can be used for a semantical study
of the hierarchy. However, we are also interested in developping Böhm tree
semantics for Λµ-calculus and the stream hierarchy (see Appendix A);

� the CPS translations and the abstract machines considered in this paper
have many similarities. It would be of interest to study how the abstract
machines can be generated from the CPS semantics;

� the Λn-KAM has a structure (states and reductions) very similar to abstract
machines for the CPS hierarchy [8, 5]. We shall make this relation clear;

� we developed an untyped study of the stream hierarchy but a typed study
of the hierarchy would also be of interest;

� the stream hierarchy that we considered here is indexed by ω. However, it
can straightforwardly be made more general by indexing the hierarchy by a
larger ordinal while presevring most results. We limited our presentation to
ω for two reasons: for simplicity, �rst, but also because the CPS hierarchy
is itself limited to ω. We conjecture that the CPS hierarchy can as well be
extended above ω which could actually be interesting for several applications

21

of the hierarchy where it might be of interest to have a delimiter that can
delimit an in�nite number of di�erent shift operators;

� the Stream interpretation of Λµ-calculus and the links with in�nitary calculi
have been very in�uential. We shall develop these directions in future works.

Finally, we think that the ability to develop the stream hierarchy as a natural
generalization of Λµ-calculus is a hint of the fact that Λµ-calculus is a calculus
with a strong structure: this hierarchical extension could not have been developed
based on Parigot's syntax for instance (but for adding a dynamically bound
variable as we did with λµt̂pn-calculi).

Acknowledgments: The author wishes to thank Hugo Herbelin, Luca Paolini,
Mauro Piccolo, Kazushige Terui and Simona Ronchi della Rocca for helpful dis-
cussions and fruitful comments as well as the anonymous reviewers of a previous
version of this work.

References

1. Z. Ariola and H. Herbelin. Minimal classical logic and control operators. In
ICALP'03, volume 2719 of Lecture Notes in Computer Science. Springer, 2003.

2. Z. Ariola and H. Herbelin. Control Reduction Theories: the Bene�t of Structural
Substitution. In JFP, 2007. Includes a Historical Note by Matthias Felleisen.

3. A. Berarducci. In�nite λ-calculus and non-sensible models. Logic and Algebra

1994, no 180 in Lect. Notes in Pure and App. Math. Series. Marcel Dekker, 1996.
4. A. Berarducci and M. Dezani. In�nite λ-calculus and types. TCS, 212, 1999.
5. M. Biernacka, D. Biernacki, and O. Danvy. An operational foundation for delimited

continuations in the CPS hierarchy. Logical Meth. in Comp. Science, 1(2), 2005.
6. C. Böhm. Alcune proprietà delle forme βη-normali nel λK-calcolo. Publicazioni

dell'Istituto per le Applicazioni del Calcolo, 696, 1968.
7. O. Danvy and A. Filinski. Abstracting control. In LISP and Funct. Prog., 1990.
8. O. Danvy and Z. Yang. An operational investigation of the CPS hierarchy. In

ESOP 99, LNCS, pages 224�242. Springer, 1999.
9. R. David and W. Py. λµ-calculus and Böhm's theorem. J. of Symb. Logic, 2001.
10. P. de Groote. A CPS-translation of the λµ-calculus. Proceedings of CAAP'94,

Edinburgh, U.K., volume 787 of LNCS, pages 85�99. Springer-Verlag, 1994.
11. P. de Groote. An environment machine for the λµ-calculus. MSCS, 8, 1998.
12. M. Felleisen, D. P. Friedman, E. E. Kohlbecker, and B. F. Duba. A syntactic theory

of sequential control. TCS, 52:205�237, 1987.
13. A. Filinski. Representing monads. In POPL'94, pages 446�457. ACM, 1994.
14. K. Fujita. A sound and complete cps-translation for λµ-calculus. In TLCA, 2003.
15. T. Gri�n. A formulae-as-types notion of control. In POPL. IEEE, 1990.
16. H. Herbelin and S. Ghilezan. An approach to CBN delimited continuations. In

POPL. ACM Sigplan, 2008.
17. W. A. Howard. The formulae-as-type notion of construction, 1969. In Essays in

Comb. Logic, λ-Calculus, and Formalism, pages 479�490. Academic Press, 1980.
18. Y. Kameyama and M. Hasegawa. A Sound and Complete Axiomatization of De-

limited Continuations. ICFP 2003, pages 177�188. SIGPLAN Notices, 2003.
19. Y. Kameyama. Axioms for control operators in the cps hierarchy. HOSC, 2007.

22

20. R. Kennaway, J. W. Klop, M. R. Sleep, and F-J. de Vries. In�nitary lambda
calculus. TCS, 175(1):93�125, 1997.

21. O. Kiselyov. Call-by-name linguistic side e�ects. In ESSLLI 2008 Workshop on

Symmetric calculi and Ludics for the semantic interpretation, 2008.
22. J-L. Krivine. Lambda-calculus, Types and Models. Ellis Horwood, 1993.
23. J-L. Krivine. A call-by-name lambda-calculus machine. HOSC, 2005.
24. Y. Lafont, B. Reus, and T. Streicher. Continuations semantics or expressing im-

plication by negation. Tech. Rep. 9321, Ludwig-Maximilians-Universität, 1993.
25. S. Lassen. Head normal form bisimulation for pairs and the λµ-calculus. In Logic

In Computer Science, IEEE Computer Society Press, 2006.
26. M. Parigot. Free deduction: An analysis of "computations" in classical logic. In

Proceedings of RCLP, volume 592 of LNAI, pages 361�380, 1991. Springer.
27. M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduc-

tion. In Proceedings of LPAR 1992, volume 624 of LNCS, 1992. Springer.
28. M. Parigot. Proofs of strong normalisation for second order classical natural de-

duction. Journal of Symbolic Logic, 62(4):1461�1479, december 1997.
29. W. Py. Con�uence en λµ-calcul. PhD thesis, Université de Savoie, 1998.
30. A. Saurin. A hierarchy for delimited continuations in call-by-name. long version

at http://www.pps.jussieu.fr/~saurin/Publi/LM_hierarchy_long.pdf.
31. A. Saurin. Separation with streams in the Λµ-calculus. In LICS, 2005. IEEE.
32. A. Saurin. On the relations between the syntactic theories of λµ-calculi. In CSL

2008, LNCS. Springer, September 2008.
33. A. Saurin. Une étude logique du contrôle, appliquée à la programmation fonction-

nelle et logique. PhD thesis, École Polytechnique, 2008.
34. A. Saurin. Typing streams in the Λµ-calculus. ACM ToCL, 2009. to appear.
35. T. Streicher and B. Reus. Classical logic, continuation semantics and abstract

machines. Journal of Functional Programming, 8(6):543�572, 1998.

A Böhm trees for Λµ-calculus and the Stream Hierarchy.

The following paragraphs report some work in progress on Böhm trees for Λµ-
calculus and the Stream Hierarchy. They will generically be refered to as Λn-BT).

By doing so, we aim at making clearer the connections between Λµ-calculus,
the Stream Hierarchy and trans�nitary λ-calculi. Moreover, those Böhm trees
(and their corresponding Nakajima Trees, Λn-NT) are promising in two direc-
tions:

� getting more precise characterizations of separability for non-normalizing
terms in the spirit of Barendregt-Dezani-Ronchi della Rocca results, semi-
separability being characterized as compatibility of Nakajima trees.

� developing a Böhm model for Λµ-calculus and the Stream hierarchy.

We believe, those Böhm trees can be helpful in characterizing di�erences between
languages by analyzing their characteristic ordinal. This might be a starting
point for a classi�cation of the expressivity of those calculi by means of in�nitary
calculi (in particular to study the frontier between Λµ-calculus and λµ-calculus,
that is between delimited and non-delimited control in call-by-name).

23

De�nition 34. Böhm trees for Λµ-calculus are inductively de�ned as follows:

B ::= Ω | λ(xi)i∈µ∈ω2 .(y)(Bj)j∈λ∈ω2

Those Böhm trees are obtained by considering direct approximant of Λµ-
terms and then developping completely the fst-redexes of the terms.

Böhm trees for the hierarchy are a uniform generalization of the previous
Böhm trees:

De�nition 35. Λn-BT are de�ned by the following inductive de�nition:

B ::= Ω | λ(xi)i∈µ∈ωn+1 .(y)(Bj)j∈λ∈ωn+1

Notice that the previous de�nition extends the de�nition for Λµ-Böhm trees
(n = 1) as well as for λ-Böhm trees (n = 0).

B More Details on In�nitary λ-calculi

In�nitary λ-calculus has been introduced independently by Berarducci [3] and
by Kennaway et al. [20].

B.1 Berarducci's in�nite λ-calculus

Berarducci was interested in studying models of (�nitary) λ-calculus which do
not identify all the unsolvable terms (a non-sensible model). For this, he designs
objects which are more precise than Böhm trees in the sense that they do not
necessarily identify two unsolvable terms. This leads him to the de�nition of
an in�nitary version of λ-calculus built on in�nite λ-trees and possibly in�nite
β-reduction sequences which converge in the following sense:

De�nition 36. Let (ti)i∈ω a sequence of (possibly in�nite) terms such that for
any i ∈ ω, ti −→β ti+1. We say that (ti)i∈ω converges to a term t if

� for any integer k, there exists an n such that every ti for i ≥ n is identical
to t up to depth k;

� the depth of the reduction ti −→β ti+1 (ie. the depth of the β-redex) tends to
in�nity.

Interestingly, Berarducci notices that there is no Böhm out technique for his
in�nite calculus.

B.2 Kennaway et al's in�nite λ-calculus

On the other hand, Kennaway et al. developed an in�nitary version of λ-calculus
as a generalization of their theory of in�nitary rewriting of �rst-order in�nitary
terms. Their study is motivated by in�nite structures which may occurs with
lazy functional languages. Here, the de�nition of an in�nite term depends on a
de�nition of a depth on terms de�ned as follows (the de�nition of positions goes
as usual in λ-calculus):

24

De�nition 37 (Depths Dabc). Let a, b, c be elements in {0, 1}. Let t be a term
and u be a position of t. Depth Dabc(t, u) of th subterm of t at position u is
de�ned as:

� Dabc(t, 〈〉) = 0;
� Dabc(λx.t, 1 · u) = a+Dabc(t, u);
� Dabc((t1)t2, 1 · u) = b+Dabc(t1, u);
� Dabc((t1)t2, 2 · u) = c+Dabc(t2, u).

To a depth measure Dabc is associated a distance dabc and the corresponding set
of �nite and in�nite terms for this distance is noted Λabc.

This approach identi�es eight variants of in�nite terms:

Λ000, Λ001, Λ010, Λ011, Λ100, Λ101, Λ110, Λ111

Berarducci calculus is Λ111, the calculus associated with the lazy λ-calculus is
Λ101. The calculus associated with Parigot's λµ-calculus would correspond to
Λ11?.

B.3 Λµ-calculus and the Stream Hierarchy

The case of Λµ-calculus and the calculi of the stream hierarchy is slightly di�erent
from the previous calculi. While the calculi by Berarducci and Kennaway et al.
allow for trans�nite reduction sequences (for instance reduction sequences of
length ω2 + 1), they only allow for in�nite terms in which every subterm occurs
at �nite depth. On the contrary, Λµ-calculus and the stream hierarchy would
lead to the consideration of terms of trans�nite depths.

As Parigot observed, �the operator µ looks like a λ having potentially in�nite
number of arguments� [27]. Phrased di�erently, the operator µ looks like an
in�nitary λ-abstraction while the construction (t)α looks like the application of
t to an in�nite number of arguments:

� µα.t is considered as an abstraction over in�nite streams of terms

µ(xαi)i∈ω.t = λxα1 . . . x
α
nt

while
� (t)α is considered as the application of a term t to an in�nite stream

of arguments:
(t)[xαi]i∈ω = (t)xα1 . . . x

α
n . . .

The occurrence of terms of trans�nite depth comes from the possibility, in Λµ-
calculus, to consider terms of the form µα.µβ.λx.x. this term would correspond
to the trans�nite term λx0, x1 . . . xω, xω+1 . . . xω2.xω2.

Moving to the setting of the stream hierarchy, we can reach higher trans-
�nite depth. For instance, λ2x.λ0y.λ1z.λ2x′.λ1z′.λ0y′.(y0)y′0 would correspond
to λ(xi)i∈ω22+ω+1.(xω2)xω22+ω.

25

