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A B S T R A C T

We propose graph-of-words as an alternative document representation to the
historical bag-of-words that is extensively used in text mining and retrieval. We
represent textual documents as statistical graphs whose vertices correspond
to unique terms of the document and whose edges represent co-occurrences
between the terms within a fixed-size sliding window over the full processed
document. The underlying assumption is that all the words present in a docu-
ment have some relationships with one another, modulo a window size outside
of which the relationship is not taken into consideration. This representation
takes better into account word dependency compared to traditional unigrams
and even n-grams and can be interpreted as a network of features that captures
the relations between terms at the document level or even at the collection level
when considering a giant graph-of-words made of the aggregation of multiple
smaller graph-of-words, one for each document of the collection.

In our work, we capitalized on the graph-of-words representation to retrieve
more relevant information, extract more cohesive keywords and learn more dis-
criminative patterns with successful applications in ad hoc information retrieval,
single-document keyword extraction and single-label multi-class text catego-
rization. Experiments conducted on various text datasets with ground truth
data, including a Web-scale collection of 25M documents, and using standard
evaluation metrics for each task (e. g., MAP, P@10, accuracy and macro-average
F1-score) resulted in statistically significant improvements in effectiveness for
little to no additional cost in efficiency.

The main findings of our research are: (1) for ad hoc information retrieval,
when assessing a query term’s weight in a document, rather than considering the
overall term frequency of a word and then applying a concave transformation
to ensure a decreasing marginal gain in relevance, one should instead consider
for each word the number of distinct contexts of co-occurrence with other
words so as to favor terms that appear with a lot of other terms, i. e. consider
the node degree in the corresponding unweighted graph-of-words; (2) for
keyword extraction, humans tend to select as keywords not only central but
also densely connected nodes in the corresponding weighted graph-of-words,
property captured by reducing the graph to its main core using the concept
of graph degeneracy; and (3) for text categorization, long-distance n-grams –
defined as subgraphs of unweighted graph-of-words – are more discriminative
features than standard n-grams, partly because they can capture more variants
of the same set of terms compared to fixed sequences of terms and therefore
appear in more documents.
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R É S U M É

Nous proposons la représentation de documents par graphe-de-mots comme
alternative à la représentation par sac-de-mots qui est largement utilisée en
fouille de données et recherche d’information dans les textes. Nous représentons
les documents à l’aide de graphes statistiques dont les nœuds correspondent aux
uniques termes du document et dont les arêtes représentent les co-occurrences
entre les termes dans une fenêtre glissante de taille fixe. L’hypothèse sous-jacente
étant que tous les mots d’un document sont en lien, modulo la taille de la fenêtre
en dehors de laquelle le lien n’est pas pris en compte. Cette représentation prend
mieux en compte la dépendance entre les mots qu’avec une représentation
plus traditionnelle se basant sur les unigrammes et même les n-grammes et
peut être interprétée comme un réseau de variables qui stocke les relations
entre les termes à l’échelle du document ou même à l’échelle d’une collection
de documents lorsque l’on considère un graphe-de-mots construit à partir de
plusieurs graphe-de-mots plus petits, un par document de la collection.

Au cours de nos travaux, nous avons tiré profit de la représentation par
graphe-de-mots pour mieux rechercher les informations les plus pertinentes à
une requête, pour extraire des mots-clés plus cohésifs et pour apprendre des mo-
tifs plus discriminants, avec des applications en recherche ad hoc d’information,
en extraction de mots-clés et en classification de textes. Les expériences me-
nées sur de nombreux jeux de données dont on connaît la vérité terrain, parmi
lesquels une collection de 25M de pages Web, et en utilisant les mesures stan-
dards d’évaluation pour chaque tâche (MAP, P@10, taux de bonne classification
et macro-average F1-score) ont conduites à des améliorations statistiquement
significatives en qualité pour peu voire pas de coût supplémentaire en efficacité.

Les principaux résultats de notre recherche sont : (1) en recherche ad hoc
d’information, lorsque l’on évalue le poids d’un terme de la requête dans
un document, au lieu de considérer la fréquence globale du terme et ensuite
lui appliquer une transformation concave pour s’assurer d’un gain marginal
en pertinence décroissant, on devrait plutôt considérer pour chaque mot le
nombre distinct de contexte de co-occurrences avec les autres mots de façon à
favoriser les mots qui apparaissent avec le plus grand nombre de mots différents,
c’est-à-dire considérer le degré du nœud dans le graphe-de-mots non pondéré
correspondant ; (2) en extraction de mots-clés, les humains ont tendance à
sélectionner les nœuds non seulement centraux mais aussi connectés densément
aux autres nœuds dans le graphe-de-mots pondéré correspondant, propriété
qui se retrouve lorsque l’on réduit un réseau à son core principal en utilisant
le principe de dégénérescence de graphe ; et (3) en classification de textes, les
n-grammes dits de longue distance – définit comme des sous-graphes de graphe-
de-mots – sont plus discriminants que les n-grammes standards, en partie parce
qu’ils couvrent plus de variantes du même ensemble de termes comparés à des
séquences fixes de termes et ainsi ils apparaissent dans plus de documents.
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Research is to see what everybody else has seen,
and to think what nobody else has thought.

— Albert Szent-Györgyi de Nagyrápolt

P R E FA C E

Three years ago, in summer 2012, I decided to embark on a Ph.D. journey that
would take me to the frontiers of computer science and in particular to those
of data science and natural language processing. During these past years, I
have had the chance to be a data miner, an information retriever and a machine
teacher. I may not have witnessed machines expressing human intelligence
explicitly but I have definitely seen them show some sort of understanding of
our world and not just memorization of it. Artificial intelligence has always
been a dream if not a fantasy for many of us and I am happy to say that I came
closer to achieving that dream during my Ph.D. When it comes to understanding
natural language as we do, machines have still a long way to go but eventually
they will get there, thanks to a representation of text that encompasses every
subtlety we, as humans, decided to put in and that they can finally interpret
and later generate on their own. I did not find that ultimate representation but
hopefully the one I explored during my research was in the right direction and
can help the community go forward.

To me, the core part of a Ph.D. revolves around two main components:
(1) learning a new field, i. e. “seeing what everybody else has seen”, and
(2) contributing to it, i. e. “thinking what nobody else has thought”. I think
it is important to really master the tools beforehand in order to be able to build
new things with them and propose novel ideas with sound foundations. It does
take some time to delve in a field or a particular concept, but it is worth every
second invested. I feel like I spent most of my Ph.D. time trying to find the
right resources to understand things, i. e. the ones that were not only accurate
but that also fit my way of understanding things, and it is in that spirit that I
wrote this dissertation, trying to be as didactic as possible. I would definitely
recommend teaching a field while learning it to make sure you understand it
enough to pass on the knowledge and also to highlight the parts you thought
you understood but you are actually unsure about – ideally to a class of students
as teaching assistant but interns and friends will also do. Additionally, you will
gain confidence in knowing what you know and what you don’t.

Finally, I would like to share the recipe I found working best when tackling
a new research issue. I think it can be useful especially for students starting
a Ph.D. or a research internship. Start by gathering a few relevant research
papers – maybe they were given to you by your advisor or you found them
from keyword search. You do not need to read them entirely and in a sequence.
Actually, I find it better to read them in parallel as follows. First, read all the
introductions so as to get familiar with the task and its applications. That way,

1
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you can also discard false positives early on – these papers seemed relevant from
their title or abstract but they are not. Then, jump to the experimental sections
(excluding the results) to understand how any proposed solution is evaluated
and on which datasets, regardless of how the methods actually work. Try to
cross-reference the evaluation metrics and the datasets between the papers as
much as possible, so as to know which are the standard ones and which aren’t –
you can keep track of the information in a table if it helps. If you need more
papers to reach an amount significant enough, you can start reading the related
work sections. Soon, you will start building this mental citation network in
your head that should help you decide which paper to read next. If a paper
has been referenced in several papers you have been reading so far then it is
probably a good candidate. If you stumble upon a good paper, in the sense of
well-written and clear, prioritize the papers that are referenced (earlier ones) as
well as the papers that referenced it (future ones). Finding the original work(s)
that introduced the concept you are interested in is important and you should
cite it when you are doing the write-up, but it might not be the best resource
for you to understand it. Note that until then, you have not read the core parts
of any paper. It may seem counter-intuitive but it avoids the common pitfall of
getting stuck on one paper because of complex notions or, worst, complicated
formulations. Basically, you do not know any of the solutions to the problem
but it should now be well-defined in terms of input, output, evaluation metrics
and datasets. You are now ready to delve in the proposed solutions, prioritizing
the most common baselines and state-of-the-art methods. Try to reproduce their
results on the datasets and using the evaluation metrics you have previously
found to be standard before attempting something on your own. Once this
framework is in place, it is now easier for you to explore novel ideas because
you know what has been done before and what the performances were. It also
avoids overfitting to one particular dataset or a non-standard one where your
method performs better by chance or because of the wrong metric. If you are
lucky enough to tackle a well-known research issue, there might be one or more
textbooks that will take you through all these steps without requiring you to
read all the papers beforehand, e. g., Introduction to Information Retrieval from
Manning, Raghavan, et al. (2008) for text mining and retrieval, which I found
to be the best. This is the recipe I followed for my own research during my
Ph.D., the one I advised my interns to use and the reason why I structured my
dissertation the way it is. Happy reading!
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1
I N T R O D U C T I O N

Since the invention of writing in Mesopotamia circa 3200 BCE, text has
rapidly become the preferred means of information storage and knowl-
edge transfer if not the only one over long periods of time. Even in our

modern and hyper-connected world, this asynchronous means of communi-
cation still trumps speech, the other common form of natural language (e. g.,
text messages over phone calls, emails over meetings or research papers over
conference talks). The radio, the television, the cinema and nowadays more
generally the podcasts and videos do play an important role and their use has
certainly grown exponential in the past decades but they have their own research
challenges beyond the scope of this dissertation. Moreover, many real-world
applications combine both oral and written communications and thus the need
for a better text processing in any case, e. g., text normalization for speech
synthesis or language modeling for automatic captioning.

The unstructured nature of text makes the task of understanding and gener-
ating it harder for the machine than with other types of data with pre-defined
structures such as relational databases, networks or numerical outputs of var-
ious sensors. Natural Language Processing (NLP) and at a higher-level Text
Mining (TM) emerged in the 1950s has research fields, aiming at filling the gap
between between machines and humans in terms of language comprehension
and deriving information from text. Sixty years later, they are still active fields
of research with countless problems that the machine seems miles away from
solving in the near future, e. g., grasping the concepts of sarcasm, metaphor or
paraphrase. Actually, even “simpler” tasks such as Keyword Extraction (KwE) or
Text Categorization (TC) that a human would perform trivially are still on-going
research topics.

That being said, with the tremendous amount of data available today – the
so-called big data era – and text being no exception to its ever increasing scale,
machines have become relatively good at tasks that humans cannot even per-
form anymore because of the daunting scale and the information overload,
e. g., Information Retrieval (IR) with Web search engines that index billions of
documents and Machine Learning (ML) with spam filters that discard automati-
cally billions of junk emails everyday: two striking examples of the potential of
machines, the limits of humans and thus the need for intelligent machines. It is
in this spirit that we started the Ph.D., aiming at providing machines with an
alternative representation of text, one that could make them better at IR, ML,
NLP and more generally TM.
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introduction

1.1 scope

In this dissertation, we introduce graph-of-words as an alternative document
representation to the historical bag-of-words that is extensively used in text
mining and retrieval. We represent textual documents as statistical graphs
whose vertices correspond to unique terms of the document and whose edges
represent co-occurrences between the terms within a fixed-size sliding window
over the full processed document. The underlying assumption is that all the
words present in a document have some relationships with one another, modulo
a window size outside of which the relationship is not taken into consideration.
This representation takes better into account word dependency compared to
traditional unigrams and even n-grams and can be interpreted as a network of
features that captures the relations between terms at the document level or even
at the collection level when considering a giant graph-of-words made of the
aggregation of multiple smaller graph-of-words.

In our work, we capitalized on the graph-of-words representation to retrieve
more relevant information, extract more cohesive keywords and learn more dis-
criminative patterns with successful applications in ad hoc IR, single-document
KwE and single-label multi-class TC. Experiments on various text datasets with
ground truth data, including a Web-scale collection of 25M documents, and
using standard evaluation metrics for each task (e. g., MAP, P@10, accuracy and
macro-average F1-score) resulted in statistically significant improvements in
effectiveness for little to no additional cost in efficiency.

The main findings of our research presented in this dissertation are: (1) in
TM, the seminal TF-IDF and BM25 scoring functions differ only by the concave
transformation and the order of composition between all the term frequency
normalizations but they satisfy in the same way a set of heuristic retrieval
constraints; (2) for ad hoc IR, when assessing a query term’s weight in a
document, rather than considering the overall term frequency of a word and
then applying a concave transformation to ensure a decreasing marginal gain
in relevance, one should instead consider for each word the number of distinct
contexts of co-occurrence with other words so as to favor terms that appear
with a lot of other terms, i. e. consider the node degree in the corresponding
unweighted graph-of-words; (3) for KwE, humans tend to select as keywords not
only central but also densely connected nodes in the corresponding weighted
graph-of-words, property captured by reducing the graph to its main core
using the concept of graph degeneracy; (4) for TC, long-distance n-grams –
defined as subgraphs of unweighted graph-of-words – are more discriminative
features than standard n-grams, partly because they can capture more variants
of the same set of terms compared to fixed sequences of terms and therefore
appear in more documents; and (5) for short document similarity or when little
training data is available, smoothing the implicit delta word kernel behind the
traditional n-gram linear kernel by taking account distances between terms in
word embeddings results in significantly better performances.
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1.2 software and libraries

1.2 software and libraries

Most of the code pertaining to the projects presented in this dissertation has
been developed in Java 1.6.0_65 and Python 2.7.6. For ad hoc IR, we extended
the academic search engine Terrier version 3.5 (Ounis et al., 2006) and we
used the Java JUNG library (O’Madadhain et al., 2005) for graph representation
and computation. For ML, we worked with the Python scikit-learn library
(Pedregosa et al., 2011) along with the igraph library (Csardi and Nepusz,
2006) for graph representation and computation. Additionally, we modestly
contributed to the Python networkx library (Hagberg et al., 2008) after getting
familiar with the concept of graph degeneracy. We used R (R Core Team, 2012)
for plotting, in particular using the ggplot2 library (Wickham, 2009), and the
Ipe extensible drawing editor for manual drawings (Schwarzkopf, 1995).

1.3 notations, acronyms and index

Throughout the dissertation, we will be using various notations and acronyms
summarized at the end of the manuscript. We refer to page 155 for an overview
of the notations we adopted in linear algebra, machine learning and text mining.
Generally, for mathematical variables, bold font will indicate vectors while
normal font scalars. We refer to page 157 for a list of the acronyms we used, all
of them being standard. We added an index of the most important topics we
cover in page 159.

1.4 outline

The rest of the dissertation is organized as follows. Chapter 2 is addressed
to anyone, including people less familiar with the field, who wishes to under-
stand the foundations upon which we built our work in terms of standard text
representation, various applications of text mining and evaluation procedures
to test and validate our proposed approaches. Chapter 3 presents in details
the adopted document representation, namely graph-of-words, our motivation
behind it and the related work in the literature. Chapter 4 deals with our very
first application, ad hoc IR, and we will see how graph-based term weights
appear to be more meaningful for search than traditional term frequencies, in
particular in terms of concave transformation. Chapter 5 covers the retention
of so-called corewords from our graph-of-words as a way to extract not only
central but also densely connected set(s) of keywords for single-document KwE.
Chapter 6 shed some new light on the common task of TC by considering
subgraphs of graph-of-words as features and the task as a graph classification
problem for better prediction performances as well as taking into account word
similarity to overcome some sparsity issues. Finally, Chapter 7 concludes the
dissertation and mentions potential extensions of the work presented here.
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2
B A C K G R O U N D

In this chapter, we describe the foundations upon which we conducted our
research. Since we were essentially interested in mining and extracting
information from textual content, i. e. tackling the field of Text Mining

(TM), we discuss in details (1) the standard text representation commonly
used in the literature so that machines can “understand” or at least process
natural language; (2) the various real-world applications we considered and
their challenges; and (3) the evaluation procedures we used in our experiments
to measure quantitatively the performances of a given method and its significant
improvement (or not) over another one.

2.1 standard text representation

Machines still fail to understand natural language as we do or, more precisely,
humans have failed to teach them how to do it yet. In any case, in order to
perform tasks that we cannot longer do because of the ever-growing scale of
the data, machines need to process automatically text and therefore they need a
common way to represent text as presented in this section.

2.1.1 Collection, document, word and vocabulary

In TM, a dataset is usually referred to as a collection, denoted by D hereinafter,
and each data point of the dataset or example is referred to as a document,
denoted by d hereinafter. Throughout the rest of this dissertation, N will be
the number of documents in the collection. A document corresponds to some
piece of raw text: it can be a full Web page or just one paragraph, a tweet, a user
review, etc. depending on the task at hand. For instance, when filtering spam,
each email is a document; when detecting sub-events in a Twitter stream, the
set of tweets from the past minute is the incoming document. In any case, a
document can be seen as a sequence of words:

d = (w1, w2, ..., w|d|) (2.1)

where each word wi belongs to a common vocabulary V (a. k. a. dictionary or
lexicon), potentially of infinite dimension (e. g., the set of words in all Web pages –
past, present and future). The process of converting a document into a sequence
of words, known as tokenization, is out of the scope of this dissertation and
assumed to be a solved problem. For European languages, other than Finnish
and Hungarian, especially English, this is fairly straightforward and done
by splitting on spaces and punctuation characters (with the exception of the
apostrophe and the hyphen whose processing depends on the application).
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2.1.2 Bag-of-words document representation

The unstructured nature of text makes it harder for subsequent automated
tasks to use documents as such, hence the definition of a common document
representation, i. e. a set of features to represent a document. From a Machine
Learning (ML) perspective, this corresponds to the feature extraction step. This
need for an automated translation of text into a format that the machine can
understand is at the basis of the field of Natural Language Processing (NLP).
The most widely adopted document representation is known as the Bag-Of-
Words (BOW) (Harris, 1954). In Computer Science (CS), a bag is a multiset, i. e.
a set that also stores the multiplicity of each of its elements. Hence, a document
is transformed into a multiset of words and their associated frequencies t f (·) in
the document:

d = {(wi, t f (wi))}i=1...n′ (2.2)

where n′ is the number of unique words in the document.

2.1.2.1 Term independence assumption

At first glance, the loss in information seems rather important since documents
like “Mary is quicker than John” and “John is quicker than Mary” would be
projected to the same image in the new space. However, for numerous TM tasks,
the term independence assumption behind the bag-of-words representation
has been shown to work already quite well in practice. The main contribution
of this dissertation is an alternative document representation, namely graph-of-
words, that we will present in great details in Chapter 3 and that allows to take
into account some word dependence, word order, word inversion and subset
matching at a relatively small additional cost in efficiency (in the order of the
other standard NLP pre-processing steps).

2.1.2.2 Word versus term: a matter of dimensionality reduction

In practice, not all words are treated equally, e. g., very frequent words – the
so-called stop words (Manning, Raghavan, et al., 2008, p. 22) – may be removed,
and some of them might be “merged” together depending on the application
(e. g., stemming or lemmatization). From a ML perspective, this can be seen as a
form of dimensionality reduction (respectively feature selection for stop word
removal and lemmatization and feature transformation for stemming). We refer
to Cunningham (2007) for an excellent summary on dimensionality reduction.
Therefore, it is common to make a distinction between a word and a term – the
latter being the processed version of the former. By abusing the definition, most
of the time a bag-of-words is in fact a bag-of-terms:

d = {(ti, t f (ti))}i=1...n (2.3)

where n (< n′) is the number of unique terms in the document.
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2.1 standard text representation

Actually, terms do not need to correspond to single words. Indeed, for some
applications like text categorization or language modeling, taking into account
some word order and word dependency by encoding not only words but also se-
quences of words has proven to be quite successful. In the literature, a sequence
of n words is referred to as an n-gram. Generally speaking, it is a sequence of
n linguistic units (e. g., word, syllable or character) but in this dissertation, we
only consider words – the alternative denomination is w-shingle for sequences
of w words (Broder et al., 1997). A word is a unigram, two consecutive words
form a bigram, three words a trigram and then 4-gram, 5-gram, etc. A docu-
ment is therefore represented as a set of terms that are sequences of processed
words and, from an ML perspective, as a feature vector. Even though they
correspond to different data structures, a bag is still represented as a vector so
as to have a common representation shared between documents, in particular
when considering the collection as a document-term matrix for subsequent ML
tasks.

2.1.3 Term, document and collection frequencies

A bag-of-words stores along with each term its term frequency, i. e. the
number of times the term occurs in the document (t f (·, d)). It is also informative
to have that kind of information at the collection level, leading to the definition
of the collection frequency, i. e. the total number of occurrences of a term
in the collection (c f (·) = ∑d t f (·, d)) and the document frequency, i. e. the
total number of documents of the collection in which a term occurs (d f (·) =
∑d 1t f (·,d)>0); regardless of the number of times (still positive) the term appears
in each document.

The idea of using term frequencies to encode the importance of a term in-
side a document dates back to Luhn (1957) while the idea of using document
frequencies as a measure of the specificity of a term across a collection comes
from Spärck Jones (1972). Actually, it is the inverse of the latter, the so-called
Inverse Document Frequency (IDF), that became popular along with the Term
Frequency (TF) to form the well-known concept of TF×IDF, in particular for
term weighting as we will see later on with scoring functions in ad hoc IR
(Section 4.1) and also feature values in text categorization (Joachims, 1998).

The collection frequency has been somewhat less used, mostly because of its
redundancy with the term frequency to some extent. Still, it is sometimes used
to define stop words and also as a valid alternative to the document frequency,
e. g., to compute the Maximum Likelihood Estimate (MLE) of the probability of
occurrence of a term in a document given a class in text categorization when
assuming a multinomial distribution for the probability of a document given a
class (as opposed to a Bernoulli distribution that would require the document
frequency). We will come back later on in the dissertation (Equation 6.11) on
that notion when describing Naive Bayes (NB), a simple yet effective generative
model commonly used in spam filtering for instance.
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2.2 applications

In this section, we present the three main real-world applications we consid-
ered in our work: ad hoc information retrieval (e. g., Web search engine), text
categorization (e. g., spam filtering) and keyword extraction (e. g., word cloud).

2.2.1 Ad hoc information retrieval

Information Retrieval (IR) is defined as the task of retrieving data relevant
to an information need. The term was coined by Mooers (1951). As noted by
Lancaster (1968), “an information retrieval system does not inform (i.e. change
the knowledge of) the user on the subject of his inquiry. It merely informs
on the existence (or non-existence) and whereabouts of documents relating to
his request”. The information need can either be dynamic or static, present or
absent, etc. When the need is not known in advance, changes dynamically and
is typically expressed explicitly through a one-off user-initiated natural language
query, e. g., via a search engine bar or voice action, the subtask is referred to as
ad hoc information retrieval (in Latin “ad hoc” means “for this”, i. e. tailored
– here to a specific need) (Manning, Raghavan, et al., 2008, p. 5). When the
need is static, e. g., wanting to not receive any spam or to be updated on novel
content specified via a standing query, the subtask is referred to as information
filtering (Belkin and Croft, 1992) or routing (Hull et al., 1996). Finally, if there is
no particular need, the subtask is referred to as information browsing, which
achieves some kind of serendipity (Ford, 1999), e. g., Web pages skim-reading but
also by extension some types of passive content recommendation and suggestion.

2.2.1.1 Problem definition

The problem of ad hoc IR can be defined as finding a ranked list of the most
relevant documents among a collection of documents with regards to an input
query q. In terms of user experience, this translates into a user entering a query
in a search engine bar or asking it to its smartphone with his voice and getting
in return a Search Engine Results Page (SERP).

In ad hoc IR, we usually consider that all documents in the collection can
be judged as either relevant or non-relevant w. r. t. q, similarly to any binary
classification task in ML. All documents in the results list are pertinent to
some extent and the degree of pertinence should be reflected in the rank. Most
of time, including in our research, we assume document independence and
estimate separately the relevance r of each document d w. r. t. q using a scoring
function r̂ (a. k. a. retrieval model). This assumption is often violated in real-
world applications since as the user goes through the list of results, the marginal
relevance of a new document might decrease, in particular for similar results
(Carbonell and Goldstein, 1998). In practice, modern (Web) search engines
usually cluster together these similar results and try to propose diverse top
results. In our research in ad hoc IR, we did not consider diversity and novelty
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though nor any sort of diminishing marginal return that would depend on how
many other relevant documents are available and how many have been already
consulted (Clarke, Kolla, et al., 2008; Chandar and Carterette, 2010). We focused
on the scoring aspect to propose alternative ways to assess the relevance of
a document and hopefully retrieve more and rank better relevant documents.
We did work on novelty detection in streams of documents and by extension
in SERP but this work (Karkali, Rousseau, et al., 2013) is out of the scope of
this dissertation. Note that in the real world, search engines use more than a
hundred parameters in addition to relevance to score and rank web pages.

2.2.1.2 Scoring function

The query is usually interpreted as a (short) document itself that shares the
same document representation as the documents of the collection. Therefore, the
relevance can be interpreted as a measure of similarity between two documents
assessed through a scoring function. Moreover, in the case of a bag-of-words
representation and the term independence assumption, the document relevance
can be aggregated from the relevance of each query term taken separately. It
is usually defined as the sum of each query term’s weights in the query, the
document and the collection. How much each query term contributes to the
overall relevance of the document w. r. t. the query is what makes IR a 60-year
old research field.

retrieval constraints Fang et al. (2004, 2011) formalized the problem by
proposing a set of heuristic retrieval constraints that any scoring function should
satisfy. These constraints are quite intuitive, e. g., documents matching more
query terms than others should be favored or longer documents should be penal-
ized to some extent because they simply have more chance of containing a query
term. Note that all these constraints should be interpreted independently of each
other, considering everything else being equal. The beauty of this axiomatic ap-
proach is that it applies directly to the vector space model (TF-IDF (Singhal, Choi,
et al., 1999)), the probabilistic (BM25 (Robertson, Walker, et al., 1994)), language
modeling (Dirichlet prior (Zhai and Lafferty, 2001)) and information-based (SPL
(Clinchant and Gaussier, 2010)) approaches and the divergence from randomness
framework (PL2 (Amati and van Rijsbergen, 2002)), basically all the state-of-
the-art methods to assess the relevance of a document w. r. t. a query in ad hoc
IR. Moreover, as the research community finds additional constraints, they can
benefit (almost) immediately to all these approaches. For instance, Lv and Zhai
(2011b) proposed two additional constraints to prevent longer documents from
being too much penalized compared to shorter documents that would contain
less query terms or none at all and extended all these approaches accordingly.

successive normalizations In practice, these constraints translate into
successive normalizations to apply on the raw term frequency and document
frequency. Early in the Ph.D. (Rousseau and Vazirgiannis, 2013a), we proposed
function composition as the natural mathematical operator to combine these
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normalizations and showed in particular that TF-IDF and BM25 differ only from
the order of composition and the concave transformation used but meet the
same retrieval goals. We will come back in great details to these notions in
Section 4.1.

2.2.1.3 Indexing vs. query time

In practice, the task of ad hoc IR is a two-step process: (1) at indexing time,
i. e. offline, each document of the collection is processed and indexed by the
terms it possesses and (2) at query time, i. e. online, each query is processed so as
to retrieve the relevant documents using the previously built index. In the first
process, we have (almost) all the time we want to do any pre-processing needed
but the space and the access time of the final index, the so-called inverted
index, are limited (see the work of Cutting and Pedersen (1990) for techniques
to optimize the access and update of the index). In the second process, time
is of the essence since users want results as fast as possible and therefore
nothing expensive can be performed. We refer to the survey of Zobel and Moffat
(2006) for an in-depth review on how the whole pipeline works, from indexing
documents to answering queries.

2.2.2 Single-label multi-class text categorization

Text Categorization (TC), a. k. a. text classification, is defined as the task
of automatically predicting the class label, a. k. a. category of a given input
textual document. It finds applications in a wide variety of domains, from news
filtering and document organization to opinion mining and spam filtering. In
this dissertation, we only consider the case for which we want to predict a single
label per document but not necessarily restricted to a binary choice – hence
the “single-label multi-class” denomination (multi-label text categorization is
usually referred to as topic spotting where we want to predict probability
weights for each pre-defined topic). Compared to other application domains
of the general ML task of classification, its specificity lies in its high number
of features, its sparse feature vectors, its multi-class scenario and its skewed
category distribution. For instance, when dealing with collections of thousands
of news articles, it is not uncommon to have millions of n-gram features, only
a few hundreds actually present in each document, tens of class labels – some
of them with thousands of articles and some others will only a few hundreds.
These particularities have to be taken into account when considering feature
selection, learning algorithms and evaluation metrics as well as alternative
document representations like in our research.

various approaches We refer to Sebastiani (2002) for an in-depth review
of the earliest works in the field and Aggarwal and Zhai (2012) for a survey
of the more recent works that capitalize on additional meta-information. Most
considered approaches were first used with unigrams as features and then
extended to n-grams. The difference rather lies in the type of classifiers used.
We note in particular the seminal work of Joachims (1998) who was the first to
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propose the use of a linear Support Vector Machine (SVM) (cf. Section 6.1.2.5), a
geometric classifier, with TF×IDF unigram features for the task. This approach
is one of the standard baselines because of its simplicity yet effectiveness (un-
supervised n-gram feature mining followed by standard supervised learning).
Logistic Regression (LR) (cf. Section 6.1.2.4) and Linear Least Square Fit (LLSF)
have been far less used for TC compared to other ML applications domains; we
still note the works of Y. Yang and Chute (1992), Zhang and Oles (2001), and
Genkin et al. (2007). Another popular approach is the use of Naive Bayes (NB)
(cf. Section 6.1.1.2), a probabilistic classifier, and its multiple variants (McCallum
and Nigam, 1998), in particular for the subtask of spam filtering (Metsis et al.,
2006). Finally, k-Nearest Neighbors (kNN), an example-based classifier, has also
been considered in the literature (Creecy et al., 1992; Y. Yang, 1994; Larkey and
Croft, 1996). More recently, deep learning has started to be used for solving the
task as well (Sarikaya et al., 2011).

2.2.3 Single-document keyword extraction

Keywords have become ubiquitous in our everyday life. We use them to look
up information on the Web (e.g., via a search engine bar), to find similar articles
to a blog post we are reading (e.g., using a tag cloud) or, even without realizing
it, through online ads matching the content we are currently browsing (e.g.,
through the AdWords platform). Researchers use them when they write a paper
for better indexing but also when they consult or review one to get a gist of the
content before reading it. Actually, it is likely that they found or were assigned
a paper because of its keywords in the first place. Traditionally, keywords have
been manually chosen by the authors or some experts. However, the vast and
growing majority of textual documents, especially on the Web (e. g., news articles
but really any Web page), do not possess a list of pre-defined keywords to help
the users determine the relevance of their content. Since manual keyword
annotation is time-consuming and costly, Keyword Extraction (KwE) as an
automated process naturally emerged as a research issue to satisfy that need. Its
applications are numerous: summarization, classification (e. g., filtering in a stream
of news or an RSS feed), clustering (e. g., group together similar documents),
indexing and even query expansion (e. g., suggestion of additional keywords to
refine a search engine query based on the ones associated with the top results).

Generally speaking, a keyword corresponds to a special term of the document,
one that captures (some part of) its main message and that represents it well. It
does not have to be a unigram and actually, in practice, authors tend to choose
higher order n-grams to characterize a document as observed empirically (cf.
Section 5.2.2.2). Therefore it is common in the literature to make a distinction
between the methods that extract keywords (as in unigrams) (Ohsawa et al., 1998;
Matsuo et al., 2001b; Mihalcea and Tarau, 2004; Litvak and Last, 2008) and
those that extract keyphrases (n-grams) (Frank et al., 1999; Turney, 1999; Witten
et al., 1999; Barker and Cornacchia, 2000; Hulth, 2003). Mihalcea and Tarau
(2004) suggested “reconciling” the extracted keywords in keyphrases as a post-
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processing step by looking in the original text for adjacent unigrams in order to
compare both types of methods. However, it is not clear in the literature how to
penalize a method that, given a golden bigram to extract for instance, would
return part of it (unigram) or more than it (trigram). Evaluations based on exact
matches would artificially lower the effectiveness and explain the low results
presented in the papers that deal with extracting keyphrases. Hence, for ease
of evaluation and in all fairness to all methods, we advocate for an evaluation
based on keywords while still a real-world system based on keyphrases (cf.
Section 5.2.3.1).

The notion of KwE is closely related to the one of summarization. Indeed, sev-
eral techniques for document summarization rely on sentence or even keyword
extraction to build the document summary. For instance, Luhn (1958), which is
probably one of the earliest works in automatic summarization, capitalizes on
TF to first extract the most salient keywords before using them to detect the most
salient sentences. Later, the research community extended it with additional
features such as IDF when dealing with a corpus of documents to summarize
and then turned the task into a supervised learning problem. In particular, we note
the seminal works of Turney (1999) with his GenEx system based on genetic
algorithms and of Witten et al. (1999) with their KEA system based on Naive
Bayes. We refer to the work of Nenkova and McKeown (2011) for an in-depth
review on automatic summarization and by extension on KwE.

types of keyword extraction The published works make several dis-
tinctions for the general task of keyword extraction: (1) single- (Witten et al.,
1999; Turney, 1999; Hulth, 2003) vs. multi-document (McKeown et al., 2005;
Meladianos et al., 2015a) depending on whether the input is from a single
document (e. g., a research paper) or multiple ones (e. g., a stream of news),
(2) extractive (Turney, 1999; Witten et al., 1999; Hulth, 2003) vs. abstractive
(Blank et al., 2013) depending on whether the extracted content has to appear
in the original text or not (e. g., use of a thesaurus or the closest documents to
enrich the keywords), (3) generic (Turney, 1999; Witten et al., 1999; Hulth, 2003)
vs. query-biased (Turpin et al., 2007; Bohne et al., 2011) vs. update (Karkali,
Plachouras, et al., 2012) depending on whether the extracted keywords are
generic or biased towards a specific need (e. g., expressed through a query) or
dependent of already-known information (e. g., browsing history) and finally (4)
unsupervised (Mihalcea and Tarau, 2004; Litvak and Last, 2008) vs. supervised
(Turney, 1999; Witten et al., 1999; Hulth, 2003) depending on whether the extrac-
tion process involves a training part on some labeled inputs. In this dissertation,
we only consider the task of generic extractive single-document keyword extraction –
basically, given a document, what are its keywords?

ir or text classification problem? The task of keyword extraction
resembles a problem of information filtering in the sense that it also tries to
alleviate the information overload that users are subject to. Similarly to filtering
out unwanted pieces of news from an RSS feed, extracting keywords from a
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document gives the user the interesting bits. However, it is a retrieval problem
at the document level and not at the collection level in the sense that we want
to retrieve the terms that are the most relevant to our summarization need rather
than the documents that are the most relevant to our information need.

The task of keyword extraction can also be seen as a binary classification
problem where terms of a document are either keywords or not. It is the
approach followed by the supervised methods aforementioned (Turney, 1999;
Witten et al., 1999; Hulth, 2003). Compared to the task of text categorization
previously introduced, it is a classification problem at the document level and not
at the collection level though. Indeed, the terms – regardless of the documents
they belong – are the actual examples to classify and no longer the features.
Moreover, the number of considered features per term is actually quite small:
its term frequency, its inverse document frequency, the index of its first relative
occurrence in the document and maybe some Part-Of-Speech (POS) information.

2.3 evaluation

Now that we have concrete applications on which we want the machines to
perform well, or at least as good as the humans in terms of quality, we need
to define ways to evaluate their performance. We assume a classification task
for which we have ground truth data, a. k. a. a gold standard for the expected
outcome. For instance, it could be the set of truly relevant documents for a query
in ad hoc IR, the true class labels in text categorization or the set of manually
annotated keywords associated to a document in keyword extraction. In practice,
a lot of these tasks have binary outcomes (e. g., relevant/non-relevant, spam/non-
spam or keyword/non-keyword) and we refer to one of the two outcomes as
the “positive”, usually the one corresponding to the task (the other alternative
being the default or the “negative” one). Even for other multi-class tasks such
as text categorization, we can always successively consider one class as positive
and the rest as negative and then average the metrics as we will see later on.

2.3.1 Types of predictions and confusion matrix

In this context, given a binary classification task with positive and negative
examples, we want to evaluate how well a system fares in terms of prediction
effectiveness. There are four types of possible predictions (Swets, 1963):

(1) True Positive (TP) – the system correctly predicts a positive class for a
positive example, resulting in a hit

(2) True Negative (TN) – the system correctly predicts a negative class for a
negative example, resulting in a correct rejection

(3) False Positive (FP) – the system wrongly predicts a positive class for a
negative example, resulting in a false alarm

(4) False Negative (FN) – the system wrongly predicts a negative class for a
positive example, resulting in a miss
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This information is usually presented in a 2x2 confusion matrix, a. k. a. contin-
gency table, as follows:

Predicted class

positive negative

A
ct

ua
l

cl
as

s positive TP FN

negative FP TN

Table 2.1 – Confusion matrix for a binary classification task.

We note in particular that there are in total TP + TN + FP + FN examples,
TP + FN being actual positive examples and TP + FP being predicted positive
examples.

2.3.2 Simple evaluation metrics

Based on these ratios, we can first define point estimate metrics to measure
quantitatively the performances in prediction of a single system for a single task
on a single dataset.

2.3.2.1 Accuracy

Intuitively, we would want a system that maximizes TP and TN, i. e. to judge
a system on the fraction of its predictions that are correct, which is referred to
as Accuracy (Acc) and defined as:

Acc =
TP + TN

TP + TN + FP + FN
(2.4)

illusion Accuracy is a very common metric for classification tasks in ML
but far less in Text Mining because of the imbalanced class distribution in many
scenarios that lead to artificially high accuracies. Indeed, consider the extreme
case where 99.9% of the examples are negative and a system that always predicts
the negative class, then its accuracy is of 99.9%! This phenomenon, known as
the accuracy paradox, happens more than one would think, in particular in the
applications we are interested in. For instance, in ad hoc IR, for a given query,
almost all the Web pages are non-relevant and therefore a search engine that
never returns any results would have a very high accuracy. Same goes for spam
emails in text categorization and non-keyword terms in keyword extraction.
Therefore, the research community has defined other metrics in addition to
accuracy to overcome this pitfall.
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2.3.2.2 Precision and recall

Focusing on the positive class, we have seen that there are two kinds of errors:
misses and false alarms, which most of time act as opposite forces – the more
positive predictions the system makes, the less misses but the more false alarms
and vice-versa (Cleverdon, 1972; Heine, 1973; Bookstein, 1974).

precision In spam filtering, a false alarm is detrimental since it means
tagging a real email as junk and therefore hiding it from the user, which
translates into wanting to reduce FP w. r. t. TP, leading to the definition of a
metric known as Precision (P):

P =
TP

TP + FP
(2.5)

basically the fraction of correct predictions restricted to the positive class (which
alleviates the pitfall of accuracy when the negative examples belong to the
majority class).

recall Conversely, consider a lawyer that uses a specialized search engine
to retrieve all materials relevant to its case – finding a precedent is so crucial
that no miss can be tolerated, which translates into wanting to reduce FN w. r. t.
TP, leading to the definition of a metric known as Recall (R), a. k. a. sensitivity:

R =
TP

TP + FN
(2.6)

basically the fraction of positive examples captured by the system.

terminology The notions of precision and recall were first introduced by
Kent et al. (1955) for IR although precision was referred to as pertinency then
relevance ratio in the literature of the ASLIB Cranfield project (Cleverdon and
Mills, 1963) and the term itself only appeared later in (Swets, 1963) before
gaining widespread acceptance in the IR community and then the TM and ML
communities.

2.3.2.3 F-measure and F1-score

As aforementioned, depending on the task at hand and the context, sometimes
the sole precision matters or only the recall is of interest but in general both
precision and recall are important. However, it is hard to compare two systems
where one has a better precision and the other one a better recall. Therefore, the
research community devised a combined measure of precision and recall. van
Rijsbergen (1979, pp. 173–176) proposed a measure of effectiveness E to capture
the trade-off between precision and recall and it is actually its complement F
(= 1− E) that became popular, known as F-measure (Fβ):

Fβ =
1

α/P + (1−α)/R
= (1 + β2)

P× R
β2P + R

, α =
1

1 + β2 (2.7)
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α controls the relative weight we want to give to precision w. r. t. recall. When we
consider that precision and recall are of equal importance (i. e. α = 1/2, β = 1),
the metric is usually referred to as F1-score (F1):

F1 = 2
P× R
P + R

(2.8)

which corresponds to the harmonic mean of precision and recall. Note that
if the precision and recall are equal then a fortiori they are also equal to the
F1-score.

interpretation Van Rijsbergen provides an extensive theoretical discussion,
which shows how adopting a principle of decreasing marginal relevance (at some
point a user will be unwilling to sacrifice a unit of precision for an added unit of
recall) leads to the harmonic mean being the appropriate method for combining
precision and recall rather than the arithmetic mean for instance. Intuitively,
the harmonic mean is suited for averaging ratios of constant numerators (TP in
the case of P and R) while the arithmetic mean is suited for averaging ratios of
constant denominators. Think for instance of average speed (a ratio of distance
over time) over trips of equal distance (harmonic mean) vs. of equal duration
(arithmetic mean).

2.3.3 Averaged evaluation metrics

To assess the robustness of a system, it is often better to test it under various
circumstances, be it a range of parameters’ values or multiple categories for
instance.

2.3.3.1 Precision/recall curve and average precision

Often, the classification model behind the system has one or more parameters
that can control how much precision/recall we will get, e. g., a threshold on
the probability of the example being positive given the data or the number of
keywords to extract. By varying that parameter, we get multiple pairs (R, P)
that we can plot altogether as a Precision/Recall (P/R) curve. The further away
from the origin, the better a P/R curve is (upper right corner). Therefore, if the
curve of a system A is consistently over the curve of a system B then we can say
that system A is better w. r. t. that metric (cf. Figure 5.4 for an illustration).

average precision If the superiority of one system over the other is less
clear (crossing curves) then usually the Area Under the Curve (AUC) is preferred
and used as a metric to compare systems. It corresponds to the Average
Precision (AP) and is very common in ranked retrieval problems such as ad
hoc IR where we consider a ranked sequence of documents and we compute
a precision at each relevant document, considering all the documents ranked
above as retrieved – basically a precision at a fixed level of recall. Note that in
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practice, we stop considering documents after a fixed rank (typically 1000 in
Text REtrieval Conference (TREC) settings, maybe much lower in a live system).

precision at k Alternatively, for tasks such as Web search, it is more impor-
tant to know how many documents are relevant among the top 10 results than
how many documents are relevant among the top results up to the 10

th relevant
document. Hence, another common way of measuring effectiveness in ad hoc IR
is to compute precision at a fixed Document Cut-off Value (DCV) (Hull, 1993),
leading to the definition of precision at k and more specifically Precision at
10 (P@10), which corresponds to the precision of a search engine on its usual
first SERP and thus the precision that the user perceives.

interpretations AP and P@10 have substantial different interpretations:
precision at a fixed recall vs. at a fixed document cut-off value, i. e. for a given
performance vs. for a given user effort, and which one is better depends on
the application, e. g., patent search vs. Web search. In the literature, when
proposing a novel retrieval model, it is common to report both so as to show
which applications are better suited for the approach.

program In our experiments, we used the standard program trec_eval 1

for evaluating IR systems, which computes many measures of ranked retrieval
effectiveness including the ones aforementioned. It was developed by Chris
Buckley for the TREC evaluations.

relations with other curves Davis and Goadrich (2006) explained
why the linear interpolation between the points of a P/R curve is incorrect and
also its relation with the Receiver Operating Characteristic (ROC) curve (Green
and Swets, 1966) used in signal processing and detection theory that plots the
recall against the fallout (false alarm probability). The further away from the
(0, 1) point, the better a ROC curve is (upper left corner). Additionally, Martin
et al. (1997) proposed the Detection Error Trade-off (DET) curve that plots the
1−recall (miss probability) against the fallout. The closer from the origin, the
better a DET curve is (lower left corner). ROC and DET curves are generally
more frequent in detection tasks as opposed to decision tasks where P/R curves
are preferred.

2.3.3.2 Micro-averaged vs. macro-averaged metrics

Precision, recall and F1-score are defined for a given class of a given clas-
sification task. We have already seen that averaging precision over multiple
recall values or ranks is closer to the user’s perception of the system. For
generalization purposes, it can also be useful to assess the average prediction
effectiveness over multiple classes or tasks, e. g., all categories in text catego-

1. http://trec.nist.gov/trec_eval/
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rization or multiple queries in ad hoc IR. By multiple tasks, we do not mean
switching from keyword extraction to text categorization but rather either using
a different dataset (e. g., a different document in single-document keyword
extraction) or changing the goal (e. g., a different query in ad hoc IR). Indeed, it
seems rather intuitive to average the performances over multiple queries to get
a better estimate of a search engine’s effectiveness.

two approaches There are two ways to average a metric: by micro-averaging
it, i. e. by pooling per-example decisions across classes or tasks and then com-
pute the metric on the pooled contingency table, and by macro-averaging it,
i. e. by taking the arithmetic mean of the metric over all classes or tasks. The
differences between the two methods can be large. Macro-averaging gives equal
weight to each class/task, whereas micro-averaging gives equal weight to each
per-example decision. Because the F1-score ignores true negatives and its mag-
nitude is mostly determined by the number of true positives, large classes/tasks
dominate small classes/tasks in micro-averaging.

mean average precision Therefore, for multiple tasks, it is more common
to use macro-averaged metrics since you do not want to favor for instance
documents with more keywords or queries with more relevant documents
(assuming the tasks are indeed independent). This is why in ad hoc IR another
standard metric is the macro-averaged AP known as Mean Average Precision
(MAP) that has no useful micro-averaged equivalent. Conversely, for multi-class
classification, micro-averaged metrics can give an estimate of how the system
fares generally (performing badly on a class with only a few examples would
artificially lower the macro-averaged metric but not the micro-averaged one).

equations Assuming n classes or tasks and i the index of a particular class
or task (hence TPi being the number of true positives for class or task i for
instance), micro-average and macro-average precisions, recalls and F1-scores are
defined as follows:

micro-avg P =
∑i TPi

∑i TPi + ∑i FPi
(2.9)

micro-avg R =
∑i TPi

∑i TPi + ∑i FNi
(2.10)

micro-avg F1 = 2
micro-avg P×micro-avg R
micro-avg P + micro-avg R

(2.11)

macro-avg P =
1
n

n

∑
i=1

Pi (2.12)

macro-avg R =
1
n

n

∑
i=1

Ri (2.13)

macro-avg F1 =
1
n

n

∑
i=1

F1i (2.14)
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pitfall In particular, the macro-average F1-score is not the harmonic mean
of the macro-average precision and recall – this is a common mistake seen in
some papers (T.-Y. Wang and Chiang, 2007; Moreira-Matias et al., 2012) and
other forums like Kaggle competitions 2 and Stack Exchange answers 3. Indeed,
consider a binary classification task with 1M positive examples and 1 negative
example, and a system that always predicts the negative class except for one
positive example for which it correctly predicts its class. This is a pretty bad
system and the metric should reflect that. For the positive class, the precision
equals 1 and the recall is close to 0 (10

−6) so an F1-score of 0 (10
−6). For the

negative class, the precision is close to 0 (10
−6) and the recall equals 1 so an F1-

score of 0 (10
−6). Macro-average precision and recall are both of 0.5 (arithmetic

mean between 0 and 1) but the macro-average F1-score is 0 (arithmetic mean
between 0 and 0) and not 0.5 (harmonic mean between 0.5 and 0.5). The counter-
intuitive F1-score below both the precision and recall is actually a good indicator
of an unstable system, which in this case has very high precision/low recall for
one class and very high recall/low precision for the other one.

relation with accuracy Note that in single-label classification (binary
or multi-class), the micro-average precision, the micro-average recall and a
fortiori the micro-average F1-score are all equal to the accuracy since the total
number of false positives is equal to the total number of false negatives as
noted by Manning, Raghavan, et al. (2008, p. 281). Indeed, a miss for a class
is a false alarm for another one. This is not true in general for multi-label
classification (except if we fix the number of labels per document and all labels
are predicted the same number of times) or when averaging over multiple tasks
(e. g., a non-relevant document for one query is not bound to be relevant for
another query or a non-keyword term for one document does not have to be a
keyword in another document).

2.3.4 Statistical significance of improvement

When comparing two systems (let’s say A and B, in our case a novel method
(A) w. r. t. to a baseline (B)), we need a method to decide whether system A
performs better than system B w. r. t. a chosen evaluation metric. Obviously, we
assume that there is an improvement, i. e. a positive difference in evaluation
scores in favor of system A. We then need to quantify the improvement and
decide if we consider it meaningful or simply due to chance. This decision
could be made using an informal rule, e. g., in the early days of IR, Spärck Jones
and Bates (1977, p. A25) deemed an improvement of at least 5% significant
(“noticeable” by the user) and of at least 10% very significant (“material”). It is
probably the only way to make such a decision for an individual class or task
since we only have a single point estimate for the metric.

2. https://www.kaggle.com/c/lshtc/details/evaluation
3. http://stats.stackexchange.com/q/44261
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significance testing However, when evaluation measures are averaged
over a number of classes or tasks, we can obtain an estimate of the error with
that measure and statistical significance testing becomes applicable. Intuitively,
the decision to consider an improvement significant is strengthened (1) when
the difference values are relatively high; or (2) when these values are, more or
less, always in favor of one system; and (3) when the sample size grows (Hull,
1993). In the case of ad hoc IR, given a set of queries large enough, we would
prefer for instance a system that achieves higher AP or P@10 than the other one
on most queries. Indeed, the overall average could hide the fact that on most
queries the system performs actually worse (by only a little) but on some queries
it performs way better (hence a higher macro-average but not a significant one).

null hypothesis The preliminary assumption, or null hypothesis H0, is
that the systems are equivalent in terms of performances (i. e. the observed
improvement is due to chance). The significance test will attempt to disprove
this hypothesis by determining a p-value, i. e. a measurement of the probability
that the observed improvement could have occurred by chance. Under H0, each
test computes a statistic T and calculates the achieved significance level of this
test, which is the probability of observing a value at least as extreme as T when
H0 holds: p = P(X ≥ T) where X is the random variable for the statistic and P

the assumed probability distribution, typically the standard normal distribution.
If this probability is less than a pre-defined significance level α (typically 0.05 or
0.01 to be more conservative), which corresponds to the Type I error rate we are
willing to accept, we may reject the null hypothesis with 1− α (i. e. 95% or 99%)
confidence and conclude that the two systems are significantly different, i. e.
that the alternative hypothesis is at least more likely than the null hypothesis.
The effect size on the other hand measures the magnitude of the improvement
and relates in that sense more to the idea of noticeable and material changes
from Spärck Jones and Bates (1977).

distribution assumptions Significance tests fall into a number of differ-
ent categories, in particular parametric vs. non-parametric (a. k. a. distribution-
free) depending on whether we make specific assumptions about the distri-
bution of the measurements and their errors. We considered in our experi-
ments two paired tests: sign test (Conover, 1980, pp. 122–129) and Student’s
t-test (Conover, 1980, pp. 290–292). Paired tests (as opposed to independent
tests) are the most suitable for comparing values produced by two systems for
the same set of independent observations (in our case queries or documents at
the macro-level and classification decisions at the micro-level) and also because
there is no risk of “contamination” between the two automated systems (as
opposed to let’s say having each patient taking the drug and the placebo). These
tests are from far the most used in TM and IR (Hull, 1993; Savoy, 1997; Y. Yang
and X. Liu, 1999).
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micro- vs . macro-averaged metrics We considered micro- and macro-
averaged metrics, which means than when comparing two systems, we can
perform a pairwise comparison of respectively the per-example binary deci-
sions and the per-class/per-task metrics. Per-example binary decisions (e. g.,
relevant/non-relevant, keyword/non-keyword or spam/non-spam) can only tell
us if the two systems differ and if so, which one was right. Per-class/per-task
metric (e. g., F1-score for a given category or AP for a given query) can also help
us quantify the magnitude of the difference.

sign test vs. t-test The sign test looks only at which system performed
better: if one system performs better than the other far more frequently than
would be expected on average, then this is strong evidence that it is superior. The
sign test can be used for both micro- and macro-averaged metrics. The Student’s
t-test compares the magnitude of the difference between systems to the variation
among the differences. If the average difference is large compared to its standard
error, then the systems are significantly different. The t-test assumes that the
difference follows the normal distribution, but it often performs well even when
this assumption is violated (Hull, 1993; Savoy, 1997; Y. Yang and X. Liu, 1999).
Since we are considering binary classification decisions, the t-test only makes
sense for macro-averaged metrics where we can measure the magnitude of the
difference between real-valued metrics.

notations Let’s denote by ai (resp. bi) the measure of success for system
A (resp. B) on the ith decision (micro-level) or ith task (macro-level) and n the
number of times that ai and bi differ (therefore ties reduce the number of trials).
For instance, ai is equal to 1 at the micro-level if system A correctly classified
the ith example (0 otherwise) and to 0.82 at the macro-level if system A achieved
that precision or whatever metric is of interest on the ith class or query.

sign test For the sign test, we consider k to be the number of times that
ai > bi (the number of successes). H0 corresponds then to k following a binomial
distribution Bin(n, p = 0.5) – we would expect on average k to be 0.5n, i. e. half
the times system A and B differ, system A is better than system B. Under H0,
the one-sided p-value can thus be expressed as:

p = P(X ≥ k) =
n

∑
i=k

(
n
i

)
× 0.5n (2.15)

For n > 12, the one-sided p-value can be approximately computed using
the standard normal distribution and the complementary of its Cumulative
Distribution Function (CDF):

p = P(Z ≥ T) = 1− 1√
2π

∫ T

−∞
e−t2/2 dt, T =

k− 0.5n
0.5
√

n
(2.16)

T corresponds to the standard score (a. k. a. z-score) of k (= (k−µ)/σ) since we
want to measure where the statistic falls on the standard normal distribution.
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p = 0.06
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Figure 2.1 – Standard normal distribution – example of T value (dashed line)
and the corresponding p-value = P(Z ≥ T) (black shaded area).

And for a binomial distribution Bin(n, p), the mean is np (= 0.5n) and the
standard deviation

√
np(1− p) (= 0.5

√
n).

illustration Figure 2.1 above illustrates this process for n > 12. In this
example, a T statistic of 1.62 yields a p-value of 0.06, which corresponds to the
value of the black shaded area under the curve, i. e. the probability of observing
a value at least as extreme as T under H0.

example 1 Consider a binary classification task with 1000 examples (500

positive and 500 negative), a system B that always predicts the negative class
(accuracy of 50%) and a system A that achieves 55% in accuracy. System
A performs better than system B, by 10%, but is it significant? As noted in
Section 2.3.3.2, accuracy corresponds to micro-averaged F1-score so we should
compare per-example binary decisions. (1) Let’s say that system A always
predicts the positive class except for 50 negative examples (hence the additional
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5% in accuracy compared to B). In that scenario, n = 950 and k = 500 leading
to a T value of 1.62 and a p-value of 0.06 (as shown on Figure 2.1), value too
high to declare system A significantly better than system B (assuming α = 0.05).
(2) Let’s now say that system A always predicts the negative class like system
B except for 50 positive examples. In that scenario, n = 50 and k = 50 leading
to a T value of 7.07 and a p-value of 10

−15, low enough to declare system A
significantly better than system B! Intuitively, in the second scenario, system A is
objectively strictly better than system B because it does not make mistakes that
system B does not and it makes less mistakes than system B does. In the first
scenario, system A makes a lot of mistakes that system B does not and therefore
the 50 mistakes that system A does not compared to B is not as significant.
Indeed, in terms of significance, the difference between 0 and 50 is much higher
than between 450 and 500.

student’s t-test For the t-test, we consider d the set of differences di =

ai − bi for i = 1...n between the two systems on each macro-level metric value
(e. g., in text categorization the difference in F1-score between the two systems
on each category or in ad hoc IR the difference in AP on each query). We
denote by d the arithmetic sample mean of d (which is the unbiased estimate of
the population mean) and s.e.(d) (=sn−1/√n) the standard error of d where sn−1

(=
√

1
n−1 ∑i (di − d)2) is the unbiased estimate of the population variance of d.

H0 corresponds then to each di following a normal distribution of mean 0. Under
H0, the one-sided p-value can be computed using the Student’s t-distribution
with ν = n− 1 degrees of freedom and the complementary of its CDF:

p = P(X ≥ T) =
1
2

I ν
ν+T2

(
ν

2
,

1
2

)
, T =

d
s.e.(d)

(2.17)

where I is the regularized incomplete beta function (Pearson, 1968, p. ix). For
n > 40, similarly to the sign test, the p-value can be approximately computed
using the standard normal distribution (as the degrees of freedom increase, the
Student’s t-distribution gets closer to the standard normal distribution).

example 2 Consider an ad hoc IR task with n = 1000 queries, a system B
that always yields for any given query an AP of 0.5 (MAP of 0.5) and a system
A that achieves a MAP of 0.55. System A performs better than system B, by
10% (d = 0.05), but is it significant? (1) Let’s say that we have sn−1 = 0.98
meaning a residual sum of squares of 950 over the 1000 queries – for instance a
difference in AP of almost 1 on each query one way or the other, which is quite
substantial. The corresponding T value would be of 1.62 and thus a p-value of
0.06, probability too high to reject the null hypothesis. (2) Let’s now say that
we have sn−1 = 0.22 meaning a residual sum of squares of 50 over the 1000

queries and leading to a T value of 7.07 and a p-value of 10
−15, probability low

enough to reject the null hypothesis and consider system A significantly better
than system B. Intuitively, system A is on average better than system B and in
the second scenario consistently since the residual sum of squares is rather low.
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The variance in the first scenario is way higher hence a non-significant overall
improvement.

program For all our experiments, we used the R implementation for the
t-test (t.test {stats}) and we implemented the sign test using R’s binomial
test (binom.test {stats}) with “greater” as value for the alternative parameter
(default is “two-sided”). We recommend the G*Power tool (Faul et al., 2007)
for understanding and visualizing the various statistical tests and the statistical
power we are assuming based on the chosen significance level α, sample size
and obtained effect size.

additional tests The Wilcoxon signed-rank test (Conover, 1980, pp. 280–
288) has also been considered as an alternative non-parametric paired signifi-
cance test by the IR research community. It replaces each difference with the
rank of its absolute value among all differences. These ranks are then multiplied
by the sign of the difference and the sum of the ranks of each group is compared
to its expected value under the assumption that the two groups are equal. It
was however discarded by the community (Sanderson and Zobel, 2005; Smucker
et al., 2007) and thus not used in our experiments even though a recent paper
advocates its use again (Urbano et al., 2013). In ML, another paired significance
test used for binary classification is McNemar’s chi-squared test (McNemar,
1947). Using the same notation as for the sign test, its T statistic is (2k−n)2/n and
the p-value is computed using the χ2-distribution with 1 degree of freedom. Just
like the sign test, it can be used for both micro- and macro-averaged results.

statistical reform Sakai (2014) recently advocated for a true statistical
reform in the field of ad hoc IR, recognizing the efforts made in the past decade
in terms of reporting p-values and statistical significance for MAP and P@10

results but also asking the IR research community to go further by reporting
effect sizes and confidence intervals as well, following other communities from
the fields of medicine, psychology and ecology (Fidler et al., 2004). Surprisingly,
significance testing is far less present in NLP and ML papers when reporting
accuracy and macro-average F1-score (assuming enough classes or tasks) but we
think these fields should also adhere to these standards and start undertaking
their own statistical reform. Even more recently, Leek and Peng (2015) stated
that “p-values are just the tip of the iceberg” when it comes to assess the validity
of a whole data science pipeline, from the experimental design to the final
predictions.
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3
C H A L L E N G I N G T H E H I S T O R I C A L B A G - O F - W O R D S

In this chapter, we introduce graph-of-words as an alternative document
representation to the historical bag-of-words. Motivated by the idea that
neighboring words in a document share some special relationship worth

capturing for subsequent text mining applications, we explored a way of en-
coding word dependencies while relaxing the exact matching condition behind
document similarity based on n-grams, the natural extension of words to se-
quences of words. We trace first the history of works that led from simple
multiset representations of text to graph-based ones. We then present our ap-
proach in details, its variants and various properties and their interpretations.
Actual applications are left to the next three chapters.

3.1 motivation

Harris (1954) stated that words that occur in the same contexts tend to have
similar meanings, property known as the distributional hypothesis. Firth (1957,
p. 179) then popularized the underlying idea that a word is characterized
by “the company it keeps”, which was tested empirically by Rubenstein and
Goodenough (1965). It is for instance at the heart of the Vector Space Model
(VSM) from Salton, Wong, et al. (1975) for vectorized document similarity and of
the Latent Semantic Indexing (LSI) technique introduced by Deerwester et al.
(1990) for topic modeling, basically Singular Value Decomposition (SVD) on the
document-term matrix. In these early works, the context in question was the
document, which naturally gave birth to the (unigram) Bag-Of-Words (BOW)
representation for text: regardless of their respective positions in the document,
all the words of a document share some common relationship.

3.1.1 Going beyond unigram bag-of-words

Nevertheless, as the text collections became heterogeneous, especially in
document length and vocabulary, the research community started exploring
additional representations and more fine-grained contexts of co-occurrence than
the full document, challenging the well-established unigram bag-of-words.

long documents On one hand, as the document length increases, the re-
lationship between words at the beginning and at the end of the document
might start to fade. Therefore, in more recent works, a second context has
been considered so as to better capture the interactions between neighboring
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words, typically over a window of 2 (bigram) to 10 words (10-gram), which is
commonly referred to as a phrase. For instance, somewhat recently, word2vec 1,
a 300-dimensional word embedding, was trained over billions of such phrases
extracted from Google News using either the Skip-gram or the Continuous
Bag-Of-Words model (Mikolov, Chen, et al., 2013), predicting respectively sur-
rounding words given the current word and the current word based on the
context. Classically, people have been considering n-grams, i. e. sequences of n
words, rather than simple unigrams to try to capture some word dependency
and word order at the phrase level, be it for (1) Text Categorization (TC) with
additional features (Cavnar and Trenkle, 1994; Fürnkranz, 1998); (2) Keyword
Extraction (KwE) considering keyphrases (Witten et al., 1999; Turney, 1999);
(3) ad hoc Information Retrieval (IR) with phrasal indexing (Salton, C.-S. Yang,
et al., 1975) or proximity search (van Rijsbergen, 1977; Tao and Zhai, 2007);
(4) statistical machine translation with phrase-based approaches (Koehn et al.,
2003); or (5) language modeling with higher order n-gram models (Brown,
deSouza, et al., 1992).

Going further, Mitra et al. (1997) opposed syntactic phrases to statistical
phrases (i. e. based on co-occurrences) for ad hoc IR as used by Fagan (1987),
which allow for gaps between words in the original text (e. g., skipping ad-
jectives) because the sequences are considered over dependency tree sentence
representations for instance. Goodman (2001) and Guthrie et al. (2006) discussed
how subsequences of initial n-grams, so-called skip grams, can help overcome
the sparsity issue in MLE estimation. Similarly, Bassiou and Kotropoulos (2010)
introduced the notion of long-distance bigrams to enhance word clustering.
Through these extensions, the research community still wanted to capture the
word dependencies but the exact matching on the sequences might be to rigid
to improve document similarity and therefore should be relaxed, considering
subsequences like in these works or better, considering subsets to capture some
word inversion for instance; at least that was our initial thought behind a graph
representation. Indeed, as we will see later on in Section 3.2.3, we will be able
to interpret subgraphs of our graph-of-words as sets of co-occurring words that
we will refer to as long-distance n-grams.

short documents On the other hand, with very short documents such as
tweets, queries or comments that have become numerous thanks to the rapid
growth of the Web 2.0, there can be some sparsity issue due for instance to word
synonymy and some documents with similar meaning will be found to have no
overlapping words and therefore low similarity if only looking at exact “surface
matching” as explained by F. Wang et al. (2014). This notion of surface is to be
opposed to the underlying concepts that could be used to compare words instead
of the naive exact matching. We tackled this particular issue during the Ph.D. (J.
Kim et al., 2015), capitalizing on word embeddings to define polynomial word
kernels as opposed to the implicit delta word kernels behind the traditional
linear document kernel in the n-gram feature space. We will come back to this
work in Section 6.4.

1. https://code.google.com/p/word2vec/
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hard vs . soft matching Long or short documents, in any case, the idea
is to relax the definition of a match between pairs of n-grams while still captur-
ing some word dependency at the phrase level, be it by comparing sets of words
instead of sequences or using some word similarity (and by extension phrase
similarity) to soften the matching. In this dissertation, we will deal with both
aspects focusing more on the first one since the statistical graph-based repre-
sentation only helped for documents with at least a hundred words. Indeed,
there are little word repetitions in sentences in practice and therefore statistical
graphs-of-words lose in effectiveness as opposed to similar representations that
encode in addition syntax or semantics for instance. This is actually why we
represented multiple documents by a single statistical graph-of-words when
considering collections of tweets in our research (Meladianos et al., 2015a).

co-occurrence vs. collocation So far, we have only been discussing
co-occurrences of words within a document or a phrase. But sometimes phrases
have more meaning than just the association of each word’s meaning, e. g.,
“weapons of mass destruction”. In the literature (Firth, 1957, p. 181; Sinclair,
1991, p. 115-116; Manning and Schütze, 1999, sec. 5.5), this corresponds to the
distinction made with collocations that are basically significant co-occurrences.
Actually, Manning and Schütze (1999, p. 153–154) proposed the Student’s t-test
(cf. Section 2.3.4) to separate meaningful co-occurrences from those due to
chance while Church and Hanks (1990) capitalized on the mutual information
between pairs of words. Finally, we ought to mention the several works of
Smadja (1990; 1991; Apr. 1991; Mar. 1993) who dedicated his Ph.D. dissertation
to filtering n-grams extracted from large corpora in order to get collocations from
mean and variance analysis. In our work, we considered all co-occurrences as-
suming that the relevant subsequent processing steps will take care of whatever
discrimination is needed, e. g., through some feature selection procedures. This
also alleviates the need of using language-specific large collections of documents
and favors off-the-shelf solutions.

3.1.2 Graph-based text representations

In this section, we focus the literature review on graph representations of text
that are to some extent similar to the one we adopted and that we present in
the next section. We refer to the work of Blanco and Lioma (2012, sec. 2.2) and
references therein for a broader review on the subject as well as the more recent
survey from Sonawane and Kulkarni (2014). We also added some references of
our own that were missing or that are newer. The earliest work we found and
surprisingly rarely cited was the one from Ohsawa et al. (1998).

representations Briefly, a graph consists of a set of nodes or vertices
related to one another via edges. In the case of text, a vertex corresponds to
some meaningful linguistic unit: (1) a paragraph (Balinsky et al., 2011); (2) a
sentence (Erkan and Radev, 2004; Mihalcea and Tarau, 2004); (3) a phrase (Xie,
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2005; Velikovich et al., 2010); (4) a word (Ohsawa et al., 1998; Ferrer i Cancho
and Solé, 2001; Schenker et al., 2005); (5) a syllable (Soares et al., 2005); or
even (6) a character (Crochemore and Vérin, 1997; Giannakopoulos et al., 2008).
Actually, in some works, some nodes corresponded to words and others to
sentences, forming a bipartite graph (Zha, 2002) or not (Wan, J. Yang, et al.,
2007). We voluntarily omit works where nodes are concepts or topics – we
were only interested in observable characteristics of a document in our research.
An edge corresponds to some relationship between two vertices, which can be:
(1) statistical, e. g., simple co-occurrences (Matsuo et al., 2001b) or collocations
(Ferret, 2002; Bordag et al., 2003) in a window (Dorogovtsev and Mendes, 2001),
a sentence (Ohsawa et al., 1998), the full document (Sandler et al., 2009) or in
the definition of one of the two words from a dictionary (Blondel and Senellart,
2002); (2) syntactic, e. g., an adjective pointing to the noun it modifies and more
generally grammatical relationships between pairs of words (Widdows and
Dorow, 2002; Ferrer i Cancho, Solé, and Köhler, 2004); or (3) semantic, e. g.,
based on synonymy (Leskovec et al., 2004; Kozareva et al., 2008). Moreover,
the graph can represent: (1) a sentence such as a dependency tree commonly
used in NLP (Tratz and Hovy, 2011); (2) a single document like in most related
works; (3) multiple documents (Meladianos et al., 2015a); or even (4) the entire
collection of documents (Ferret, 2002; W. Wang et al., 2005; Sandler et al., 2009;
Velikovich et al., 2010) depending on the application and the granularity we
wish to achieve.

denominations In the literature, these representations have been referred
to as term co-occurrence graphs (Ohsawa et al., 1998), collocation networks (Ferret,
2002), dictionary graphs (Blondel and Senellart, 2002), word lattices (Barzilay and
Lillian Lee, 2003), text graphs (Mihalcea and Tarau, 2004), term-distance graphs
(Gamon, 2006), term graphs (Palshikar, 2007), lexical graphs (Velikovich et al.,
2010), word graphs (Filippova, 2010) and word networks (Lahiri and Mihalcea,
2013). Additionally, there exist some representations usually referred to as
association graphs (Arora and Nyberg, 2009; Jiang et al., 2010) that mix linguistic
units and linguistic labels for nodes and edges – to some extent, they are closer
to the syntactic parse trees from NLP because of the use of POS tags as node
labels. We proposed a novel denomination – graph-of-words by analogy with
bag-of-words – because we think it better describes its goal and not only its
representation.

applications The applications of graph-based representations of text that
have been considered in the literature are numerous: (1) text summarization
(Erkan and Radev, 2004; Leskovec et al., 2004; Ganesan et al., 2010; Balinsky
et al., 2011); (2) keyword extraction (Matsuo et al., 2001b; Litvak and Last, 2008;
Lahiri, S. R. Choudhury, et al., 2014) (3) ad hoc information retrieval (Blanco and
Lioma, 2007) (4) text categorization (Markov et al., 2007; Hassan et al., 2007; Valle
and Öztürk, 2011); (5) native language identification (Lahiri and Mihalcea, 2013);
(6) novelty detection (Gamon, 2006); and more generally (7) network analysis of
written human language (Masucci and Rodgers, 2006; Lahiri, 2014).
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languages Most of the works considered English documents but there have
been a few others on various languages: (1) German, Czech and Romanian
(Ferrer i Cancho, Solé, and Köhler, 2004); (2) Hindi and Bengali (M. Choudhury
et al., 2007); (3) Russian (Kapustin and Jamsen, 2007); (4) Portuguese (Antiqueira
et al., 2007; Abilhoa and de Castro, 2014); (5) Chinese (Zhu et al., 2003; Wei
Liang et al., 2009); (6) French (Boudin, 2013); and (7) Croatian (Beliga and
Martinčić-Ipšić, 2014) among others. In this dissertation, we solely focus on
English collections of textual documents.

3.2 graph-of-words: our representation

In this section, we define the concept of graph-of-words as introduced in
(Rousseau and Vazirgiannis, 2013b), discuss its variants and report its known
network properties.

3.2.1 Model definition

Given a document, its graph-of-words representation is defined as the statis-
tical network whose vertices correspond to unique terms of the document and
whose edges represent co-occurrences between the terms within a fixed-size
sliding window over the full processed document ignoring sentence boundaries.
We highlight the fact that we are considering terms rather than words (cf. Sec-
tion 2.1.2.2) because any dimensionality reduction pre-processing steps (e. g.,
stop word removal or stemming) has been applied beforehand, hence a processed
document. One could argue that it is in fact a graph-of-terms but we chose
this denomination by analogy with the bag-of-words, which is in practice a
bag-of-terms as well. The underlying assumption is that all the words present in
a document have some relationships with one another, modulo a window size
outside of which the relationship is not taken into consideration. Note that in
order to prevent self-loops (i. e. a node sharing an edge with itself), we shorten
the sliding window when two terms are equal, which happens more frequently
with stop word removal and stemming.

The optional edge direction (e. g., based on the natural flow of the text or
a syntactic dependency) and edge weight (e. g., based on the number of co-
occurrences) are considered variants of the representation rather than different
models, mostly because they depend on the application considered as observed
in our experiments. Therefore, this is the same representation as the one used
by Ohsawa et al. (1998), Ferrer i Cancho and Solé (2001), Schenker (2003), and
Mihalcea and Tarau (2004) – we only cite here the papers that did not reference
any previous work for their representation and that served as references for
other papers later on. Indeed, the novelty of our work was not so much in the
representation itself – even though we gave it a name that hopefully should
catch on – but rather in the applications and the various findings we report in
this dissertation.
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procedure Figure 3.1 illustrates the process of generating a graph-of-words
representation for a given textual document (original text in upper box). The
figure has been manually created using the Ipe extensible drawing editor
based on an automated graph visualization from the JUNG library that used the
Kamada-Kawai force-based algorithm (Kamada and Kawai, 1989). First, the
document is (1) lowercased; (2) tokenized; (3) stripped out of non-alphanumeric
characters and stop words; and (4) stemmed. This results in a processed text that
corresponds to a single sequence of terms. The set of n unique terms constitute
the vertices of the graph-of-words. The edges are then drawn between terms
co-occurring within a fixed-size sliding window W (of size 3 for the example)
over the sequence, i. e. capturing trigrams. Multiple co-occurrences might be
encoded through the edge weight as illustrated (the thicker the edge, the higher
the weight on the figure). Here we do not direct the edges, for instance according
to the natural flow of the text, and thus “information retrieval” and “retrieve
information” are both mapped to inform—retriev in the example. Overall, the
complexity is O(nW) in time and O(n + m) in space with m being the final
number of edges (at most nW).

3.2.2 Variants

There have been many variants of the graph-of-words definition and building
procedure considered in the literature as well as explored by us in our research in
terms of edge direction, edge weight, pre-processing steps and sliding window.

edge direction Naturally, we would direct the edges according to the flow
of the text (i. e. left to right, at least for English) but in all our experiments we
did not observe any significant differences in effectiveness (or at best with low
effect sizes) between undirected edges, forward edges (natural flow of the text –
an edge term1 → term2 meaning that term1 precedes term2 in a sliding window)
and backward edges (the opposite), especially across tasks. In the literature,
the first representations had no direction (Ohsawa et al., 1998; Ferrer i Cancho
and Solé, 2001) then Schenker (2003) and Mihalcea and Tarau (2004) introduced
forward edges and later Litvak and Last (2008) considered backward edges. This
lack of a dominant choice for edge direction makes us recommend undirected
edges for ease of implementation and also because it follows our initial idea of
using graphs to capture sets of words rather than (sub)sequences of words; the
exception being when the actual application requires some natural language
generation, e. g., summarization from path extraction (Filippova, 2010).

edge weight Naturally, we would weight the edges according to the strength
of the relationship. For a statistical graph-of-words, this means taking into ac-
count the number of co-occurrences between its two endpoints, optionally
boosting the weight with the inverse distance in the sliding window (Gamon,
2006). Actually, the weight can end up being the inverse of the co-occurrence
frequency if the subsequent graph mining process is based on path lengths for
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information retrieval is the activity of obtaining textual documents
relevant to an information need from a collection of textual doc-
uments. in ad hoc information retrieval, the information need is
conveyed through an ad hoc textual user query and processed by a
search engine to retrieve information according to some relevance.
retrieval models assign to documents relevance scores with regard
to user queries based on query term frequencies in the document
and the collection. being able to retrieving information is crucial for
users when searching for answers.

.

Figure 3.1 – Illustration of the graph-of-words representation of a document
(text in upper box). Nodes correspond to unique terms of the
document after stop word removal and stemming. Edges represent
co-occurrences within a window of size 3 over the processed text.
Edge thickness indicate its weight (1, 2 and 6), i. e. the number of
co-occurrences – no edge direction, i. e. “information retrieval” and
“retrieve information” are both mapped to inform—retriev. In blue,
we highlight one particular subgraph.
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instance (Abilhoa and de Castro, 2014). In any case, as often when considering
unbounded feature values, the use of edge weights will depend eventually on
the application. Indeed, if we consider documents separately of one another, for
instance in single-document KwE, then encoding the number of co-occurrences
can only be beneficial. But when considering multiple documents of heteroge-
neous length simultaneously, some normalizations need to be applied so as not
to favor longer documents that will result on average in higher edge weights.

pre-processing steps Prior to the graph construction, the standard op-
tional NLP pre-processing steps can be applied to reduce the number of terms,
i. e. the number of nodes: stop word removal 2, stemming 3 or lemmatization 4

and POS-tag 5 filtering, e. g., keeping only the nouns and adjectives for keyword
extraction, i. e. NN, NNS, NNP, NNPS, and JJ using the Penn Treebank Project
notations (Santorini, 1990). There is no consensus in the literature on which
set(s) of pre-processing steps to use – this is actually not specific to research
on graph-of-words but also true for IR and NLP. Generally speaking, dimen-
sionality reduction techniques will increase the “academic” performances but
might not be suitable for more practical applications where users might not be
interested in stemmed keywords for instance!

sliding window The size of the sliding window, which represents the
maximum scope for what we consider a phrase, varies from 2 to 10 in general.
Some works did consider more words, up to 40 for Blanco and Lioma (2007) but
only to recommend 6 in the end. The choice of a fixed vs. a parameterized sliding
window seems to be more in the favor of the former, at least out of the 50 works
or so we found on the subject and this is the approach we adopted. However,
we want to highlight three subtleties that are rarely mentioned in papers but
that can make a difference when trying to reproduce the experiments: (1) is
the sliding window over the original text or its processed version; (2) does the
sliding window span sentences; and (3) how to deal with multiple occurrences
of the same word in a window? In our case, in all our works, we ended up using
a sliding window of size 4 over the processed text, i. e. after stop word removal
in particular, ignoring sentence boundaries (we experimented with the Apache
OpenNLP Sentence Detector 5) and shortening the window when finding the
same term twice (including a stemmed version) to prevent self-loops.

3.2.3 Subgraph-of-words

We highlighted in blue on Figure 3.1 one particular subgraph extracted ini-
tially from the trigram “based on query term”. The same subgraph would
be found in other graph-of-words representations of documents containing

2. http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
3. http://tartarus.org/~martin/PorterStemmer
4. https://wordnet.princeton.edu/man/morphy.7WN.html
5. http://opennlp.apache.org/documentation/1.5.3/manual/opennlp.html
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one of the following n-grams: “query-based term”, “query based on selected
terms”, “terms based on a user query”, etc. Actually, the subgraph does not
have to be present in the form of one single sequence of terms – documents
containing “query-based” and “query terms” separately would also possess
the same subgraph in their graph-of-words representation. This is why we
think of subgraphs of graph-of-words as long-distance n-grams (Rousseau and
Vazirgiannis, 2015) by analogy with the long-distance bigrams from Bassiou and
Kotropoulos (2010).

Note that we make a distinction here between a subgraph that can be any
combination of nodes and edges from the original graph and an induced sub-
graph where given a set of nodes, all the edges between these vertices present
in the original graph appear in the subgraph.

3.2.4 Graph properties

Ferrer i Cancho and Solé (2001) and Matsuo et al. (2001a) reported quasi-
simultaneously that syntactic graph-of-words were small worlds (Milgram,
1967), i. e. networks whose nodes are highly clustered (compared to a random
graph) yet the path length between them is small (close to that of a random
graph), typically in the order of the logarithm of the number of nodes at most
(Watts and Strogatz, 1998). Senellart (2001) reported the same for his dictionary
graph. Additionally, Ferrer i Cancho and Solé (2001) also noticed a scale-free
distribution of node degrees, i. e. the number of nodes of degree δ in a graph is
inversely proportional to δ, optionally with a power constant.
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4
R E T R I E V I N G I N F O R M AT I O N F R O M G R A P H - O F - W O R D S

In this chapter, we retrieve information in text from the graph-of-words
representation of documents. We first review how the seminal TF×IDF term
weighting scheme capitalizes on the raw term and document frequencies

to favor the most important terms of a document through various successive
normalizations. We then present an alternative term weight based on graph-of-
words to retrieve more relevant documents in ad hoc Information Retrieval (IR).

4.1 interpreting tf×idf as composing normalizations

As introduced in Section 2.1.3, the concepts of Term Frequency (TF) and
Inverse Document Frequency (IDF) are the building blocks of the earliest scoring
functions used in ad hoc IR and more generally of the term weighting schemes
in Text Mining (TM). These scoring functions capitalized on the TF×IDF general
weighting scheme to favor query terms that are frequent in a document while
rare in the collection – we make here a distinction between TF×IDF as an
abstract model and TF-IDF, the specific IR retrieval model with pivoted document
length normalization defined in (Singhal, Choi, et al., 1999) (cf. Section 4.1.3
for the formula). Nevertheless, the research community proposed and used
successive normalizations on the raw term and document frequencies to boost
the performances and explained them in terms of satisfying some heuristic
retrieval constraints as mentioned in Section 2.2.1.2.

unfair baseline Too often in TM and IR, the term “tf-idf” is used without
mentioning which specific normalizations were applied and in which compo-
sition order, which is crucial for getting the best and fairest results and also
for reproducibility. Indeed, taking raw term and document frequencies as a
baseline is unfair because normalizations are essential and can greatly increase
the performances in ad hoc IR as verified in our own experiments (cf. Table 4.2,
difference in results between TF and TFx). It is less significant in other TM tasks
because for instance in TC we are generally not trying to categorize documents
based on the number of co-occurrences of a given query term but rather cluster
together documents sharing the same terms. Actually, opinion mining (i. e.
predicting the sentiment polarity of a document, typically a user review) is
known to be a subtask where binary features (i. e. presence/absence of a term,
regardless of its term frequency) have been claimed to yield better prediction
results (Pang, Lilian Lee, and Vaithyanathan, 2002).
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our motivation It is in this spirit that we carefully explored in (Rousseau
and Vazirgiannis, 2013a) how TF×IDF is built through various successive nor-
malizations on the term and document frequencies so as to better capitalize later
on an alternative term weight (in our case extracted from a graph representation
of the document). In this work, we also proposed a clear way for researchers
to indicate the specific model they considered by indicating as subscripts the
normalizations successively applied and the composition order.

equation A TF×IDF scoring function r̂ between a document d from collec-
tion D and a query q is composed of three components supposedly independent
of one another: one at the query level (QF), one at the document level (TF) and
one at the collection level (IDF):

r̂(d, q) = ∑
t∈q

QF(t fq(t))× TF(t fd(t))× IDF(d fD(t)) (4.1)

where t fq(·) is the term frequency in the query, t fd(·) in the document and
d fD(·) the document frequency in the collection. Query Frequency (QF) and
Term Frequency (TF) have similar roles, the former normalizing the term fre-
quency in the query and the latter in the document. Actually, QF only makes
sense in the context of ad hoc IR where there is a query and with some term
repetitions, which is unlikely to happen in Web queries for instance because of
their short length. Therefore it is common to omit it in practice, be it in IR or
more generally in TM. Most of the research work on the subject, including our
own, has been devoted to the TF and the IDF components. BM25 (Robertson,
Walker, et al., 1994) might be the only state-of-the-art retrieval model to explicitly
take it into account (probably because it is one of the oldest and dates back from
when queries used to be longer and not Web-related).

4.1.1 Term frequency normalizations

Since the early work of Luhn (1957), the research community has believed that
the term frequency plays an important role for retrieval and is therefore at the
center of all IR retrieval models. Intuitively, the more times a document contains
a query term, the more relevant this document is w. r. t. the query. However, the
raw term frequency (t f , i. e. the number of times a term occurs in a document)
proved to be non-optimal in ad hoc IR and researchers started normalizing it
considering multiple criteria that were later explained as functions satisfying
heuristic retrieval constraints (Fang et al., 2004, 2011). Still, it is commonly
accepted that the overall scoring function must be a monotonically increasing
function of the term frequency and thus this needs to be also true for the TF
component and the successive normalizations that compose it.

4.1.1.1 Decreasing marginal gain in relevance

The marginal gain of seeing an additional occurrence of a term inside a docu-
ment should be decreasing. Indeed, the change in the score caused by increasing
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t f from 1 to 2 should be much larger than the one caused by increasing t f from
100 to 101 (and by default it is not since we sum each term’s contribution in
Equation 4.1). Mathematically, this corresponds to applying a concave transfor-
mation on the raw t f . We prefer the term concave like in (Clinchant and Gaussier,
2010) to sub-linear like in (Manning, Raghavan, et al., 2008, p. 126; Lv and Zhai,
2011a) since the positive homogeneity property is rarely respected (and actually
not welcomed) and the sub-additivity one, even though desirable, not sufficient
enough to ensure a decreasing marginal gain. Note that the transformation still
needs to be monotonically increasing in the term frequency t f .

There are mainly two concave transformations used in the literature: the one
in TF-IDF and the one in BM25 that we respectively called log-concavity (TFl)
and k-concavity (TFk) defined as follows for a term t and a document d:

TFl(t, d) = 1 + ln (1 + ln (t fd(t))) (4.2)

TFk(t, d) =
(k1 + 1)× t fd(t)

k1 + t fd(t)
(4.3)

where k1 is a constant set by default to 1.2 that corresponds to the asymptotical
maximal gain achievable by multiple occurrences compared to a single occur-
rence (TFk(t, d) = 1 when t fd(t) = 1 and TFk(t, d) = k1 + 1 when t fd(t)→ ∞).

4.1.1.2 Diversity in query terms

If two documents have the same total number of occurrences of all query
terms, a higher score should be given to the document covering more distinct
query terms. Mathematically, this corresponds to applying a sub-additive
transformation on the raw t f : f (t f1 + t f2) ≤ f (t f1) + f (t f2). Logarithm is the
typical example of a sub-additive function. As noted by Fang et al. (2004), TFl
and TFk already satisfy that property so no additional normalization is actually
needed. More generally, any concave function f : [0,+∞) → [0,+∞) with
f (0) = 0 is also sub-additive so all monotonically increasing concave functions
satisfying f (0) = 0 are good candidates for ensuring both a decreasing marginal
gain and diversity. Note that these two notions are different from the ones
discussed in Section 2.2.1.1 where it was question of overlapping results on the
SERP and diminishing return in relevance between documents and not between
terms.

4.1.1.3 Document length penalization

When collections consist of documents of varying lengths (e. g., Web pages),
longer documents will – as a result of containing more terms – have higher t f
values without necessary containing more information. For instance, a document
twice as long and containing twice as more times each term should not get
a score twice as large but rather a very similar score. As a consequence, it
is commonly accepted that the overall scoring function should be an inverse
function of the document length to compensate that effect.
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normalization Early works on the Vector Space Model (VSM) (Salton
and Buckley, 1988) suggested to normalize the score by the norm of the vector,
be it the L0 norm (number of unique terms in the document), the L1 norm
(length of the document), the L2 norm (Euclidian length of the document) or
the L∞ norm (maximum t f value in the document). However, these norms still
mask some subtleties about longer documents. Indeed, it turned out that in
practice longer documents have a higher probability of relevance (computed
using ground truth data) and therefore should have a higher probability of
retrieval – Figure 4.1 illustrates this (only looking at the black curve for now,
other curves corresponding to other models later introduced as we consider
more normalizations). Robertson and Spärck Jones (1994) explained it either
by: (1) the scope hypothesis, the likelihood of a document’s relevance increases
with length due to the increase in material covered; or (2) the verbosity hypothesis,
where a longer document may cover a similar scope than shorter documents but
simply uses more words and phrases.

pivoted normalization As a result, the research community has been
using a more complex transformation known as pivoted document length
normalization and defined as follows for a term t and a document d:

TFp(t, d) =
t fd(t)

1− b + b× |d|/avdl
(4.4)

where b ∈ [0, 1] is the slope parameter, |d| the document length and avdl
the average document length across the collection of documents as defined in
(Singhal, Buckley, et al., 1996). Basically, b controls how much penalization the
document should get based on its length: 0 none, 1 all documents have the same
probability of retrieval regardless of their document length and in between the
amount of tilting around the pivot value avdl (cf. Figure 4.1).

recent work Note that more recently, Losada et al. (2008) contested this
popular belief arguing that the positive relationship between relevance and
document length observed empirically was an artefact of the test collections
due to incompleteness in the relevance judgments (not all relevant documents
are marked as such by human annotators since they would need to go through
thousands to billions of documents for each query). However, until the bench-
mark datasets used by the research community include this finding, taking into
account the document length results in better results (in terms of standard eval-
uation metrics). Additionally, Na (2015) argued very recently that the document
length penalization should be in two stages to explicitly take into account both
the verbosity and the scope hypotheses.
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4.1.1.4 Composition of normalizations

With multiple functions satisfying different heuristic retrieval constraints, it
seems rather natural to compose them successively. For instance, here are the
two compositions behind TF-IDF and BM25, respectively TFp◦l (= TFp ◦ TFl)
and TFk◦p (= TFk ◦ TFp) for a term t and a document d:

TFp◦l(t, d) =
1 + ln (1 + ln (t fd(t)))

1− b + b× |d|
avdl

(4.5)

TFk◦p(t, d) =
(k1 + 1)× t fd(t)

1−b+b× |d|avdl

k1 +
t fd(t)

1−b+b× |d|avdl

=
(k1 + 1)× t fd(t)

k1 ×
(

1− b + b× |d|
avdl

)
+ t fd(t)

=
(k1 + 1)× t fd(t)

K + t fd(t)
(4.6)

where K = k1 × (1− b + b× |d|
avdl ) as defined in (Robertson, Walker, et al., 1994).

Note that under this last form, it is not obvious that TFk◦p is really a composition
of two functions with the same properties as the one in TFp◦l . We believe this is
the main reason why composition has never been considered before explicitly.
By doing so, we provided not only a way to fully explain BM25 as a TF×IDF
scoring function but also a way to easily consider variants of a term weighting
scheme by simply changing the order of composition. Actually, this led us to a
new TF×IDF scoring function that consistently outperforms BM25 on several
standard datasets.

smart notations Salton and Buckley (1988) proposed along with their
SMART retrieval system a set of notations for specifying which normalizations
are applied but they make a clear distinction between the transformations
applied on the raw t f and the vector normalization applied at the document
level to account for document length. Therefore, it is then hard to fully fit BM25

in the TF×IDF weighting scheme since the document length penalization is
applied prior to the concave transformation. In our case, we do not make this
distinction and we allow for as many transformations as necessary.

4.1.1.5 Lower-bounding regularization

Lv and Zhai (2011b) introduced two new constraints to the work of Fang
et al. (2004) to lower-bound the TF component. In particular, they stated that
there should be a sufficiently large gap in the score between the presence and
absence of a query term even for very long documents where TFp tends to 0
and a fortiori the overall score too. Indeed, there is no reason for preserving
some sort of continuity between the presence and absence of a query term.
Mathematically, this corresponds to be composing with a third function TFδ
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that is always composed after TFp since it compensates the potential null limit
introduced by TFp and it is defined as follows for a term t and a document d:

TFδ(t, d) =

{
t fd(t) + δ if t fd(t) > 0

0 otherwise
(4.7)

where δ is the gap, set to 0.5 if TFδ is composed immediately after TFp and 1 if
concavity is applied in-between. These are the two default values defined in the
original papers (Lv and Zhai, 2011b,c) and we just interpreted their context of
use in terms of order of composition.

4.1.2 Document frequency normalizations

While the higher the frequency of a term in a document is, the more salient this
term is supposed to be, this is no longer true at the collection level. Actually, this
is quite the inverse since these terms have presumably a lower discrimination
power. Indeed, a query term that appears in a lot of documents might not
be the best one in helping assess the relevance of documents w. r. t. the query.
However, these frequent terms are still somewhat common in queries, and simply
removing them, as advocated by Svenonius (1972), could have a damaging effect
on retrieval performances. Therefore all terms should be allowed to match
but the value of matches on frequent terms should be lower than that for
non-frequent terms.

term specificity Spärck Jones (1972) proposed to capture this term speci-
ficity through the inverse of the document frequency, defining the Inverse
Document Frequency (IDF) of a term t as follows:

IDF(t) = log
N

d f (t)
(4.8)

which already normalizes the document frequency with the total number of
documents N and a concave transformation. It appeared as such in (Robertson
and Spärck Jones, 1976; Salton and Buckley, 1988; Church and Gale, 1995;
Singhal, Salton, et al., 1995; Manning, Raghavan, et al., 2008). Later on (Robertson
and Spärck Jones, 1994; Singhal, Choi, et al., 1999) and from there (Fang et al.,
2004; Lv and Zhai, 2011b), it was changed to a slightly different version:

IDF(t) = log
N + 1
d f (t)

(4.9)

supposedly to prevent a null IDF value when a term appears in all documents
(d f (t) = N) but no justification nor any explanation were found in the literature
to explain this sudden change.
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4.1.2.1 Probabilistic IDF

In parallel, Robertson and Spärck Jones (1976) developed a relevance term
weighting scheme from a probabilistic perspective, which in the absence of
relevance judgment and relevance feedback can be interpreted as the logit (a. k. a.
log-odds) of the document frequency of a term t:

IDF(t) = log
N − d f (t)

d f (t)
(4.10)

However, it was noted in (Robertson and Walker, 1997) that for terms that occur
in more than half the documents of the collection (d f (t) > N/2), this would result
in negative values, i. e. a score less than with the absence of the term. This is
obviously problematic for ad hoc IR but can be good for other applications, e. g.,
novelty detection in our case (Karkali, Rousseau, et al., 2013) where penalizing
previously seen terms is of interest.

4.1.2.2 Add-1/2 smoothed IDF

lidstone smoothing As explained by Manning, Raghavan, et al. (2008, p.
226), for trials with categorical outcomes (such as noting the presence or absence
of a term in a document), one way to estimate the probability of an event from
data is simply to count the number of times an event occurred (d f (t)) divided by
the total number of trials (N) – this is referred to as the relative frequency of the
event (d f (t)/N). Estimating the probability as the relative frequency corresponds
to the Maximum Likelihood Estimate (MLE), because this value makes the
observed data maximally likely. However, if we simply use the MLE like in
the original IDF formula (Equation 4.8), then the probability given to observed
events is usually overestimated and for unseen events underestimated (actually
null: d f (t) = 0 for query terms that do not appear in the collection, leading in
our case to infinite id f values, which is unlikely but undesirable).

Simultaneously decreasing the estimated probability of seen events and in-
creasing the probability of unseen events is referred to as smoothing. One
simple way of smoothing is to add a number α to each of the observed counts
(and α times the number of possible outcomes to the total number of trials),
which is known as (add-α) Lidstone smoothing (W. E. Johnson, 1932; Jeffreys,
1948, sec. 3.23). In the case of α = 1 and binary outcomes, this is also known as
Laplace smoothing by analogy with Laplace’s rule of succession for estimating
the probability that the sun will rise tomorrow given that it has risen every day
for the past 5,000 years (Laplace, 1814, p. 23). These pseudo-counts correspond
to the use of a uniform distribution over the vocabulary as a Bayesian prior
(hence why we take into account the number of possible outcomes). We initially
assume a uniform distribution over events, where the magnitude of α denotes
the strength of our belief in uniformity, and we then update the probability
based on observed events. This is a form of maximum a posteriori estimation,
where we choose the most likely point value for probabilities based on the prior
(α) and the observed evidence (d f (t)).
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final idf version Early on, Robertson and Spärck Jones (1976) and Croft
and Harper (1979) proposed to add Lidstone smoothing (α = 1/2) to the proba-
bilistic IDF under the following form (when again no relevance judgment nor
relevance feedback is available):

IDF(t) = log
N − d f (t) + 0.5

d f (t) + 0.5
(4.11)

Similarly, for the standard IDF, the following smoothed form appeared in (Amati
and van Rijsbergen, 2002; Lv and Zhai, 2011a,c, 2012):

IDF(t) = log
N + 1

d f (t) + 0.5
(4.12)

The 1 (=2α) in the numerator comes from the fact that there are two possible
outcomes: presence or absence of a term in each document. We think this last
version is the one that makes the most sense because it does not suffer from any
of the shortcomings aforementioned (null, infinite nor negative values) while
fixing them in a principled way using pseudo-counts.

4.1.2.3 Theoretical justifications

Initially, the idea of IDF and its associated formula were merely a heuristic
backed by empirical proof. In the 1990s-2000s, there has been a fair number of
works including (Church and Gale, 1995; Robertson, 2004; Joho and Sanderson,
2007; Lillian Lee, 2007; Metzler, 2008) that tried to explain it in a more theoretical
manner. Papineni (2001) showed that IDF is the optimal scoring function for
document self-retrieval, which confirms our intuition that IDF can be seen as a
cheap estimator of the likelihood that the unigram language model (built from
the previously seen documents) generated the incoming document in a stream
of documents for novelty detection (Karkali, Rousseau, et al., 2013).

4.1.3 TF-IDF vs. BM25

By TF-IDF, we refer hereinafter to the TF×IDF retrieval model defined in
(Singhal, Choi, et al., 1999), often called pivoted normalization weighting. The
retrieval model corresponds for a term t and a document d to TFp◦l×IDF:

TF-IDF(t, d) =
1 + ln (1 + ln (t fd(t)))

1− b + b× |d|
avdl

× log
N + 1

d f (t) + 0.5
(4.13)

By BM25 (BM stands for Best Match), we refer hereinafter to the scoring
function, often called Okapi weighting, defined in (Robertson, Walker, et al.,
1994) for a term t and a document d as follows:

BM25(t, d) =
(k3 + 1)× t fq(t)

k3 + t fq(t)
× (k1 + 1)× t fd(t)

K + t fd(t)
× log

N + 1
d f (t) + 0.5

(4.14)
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It corresponds to TFk◦p×IDF when we omit QF (k-concavity of parameter k3 =

1000 for t f (t, q)). Thus, it has an inverse order of composition between the
concavity and the document length penalization compared to TF-IDF but they
are more similar than what most people think.

piv+, bm25+ and bm25l The weighting models Piv+ and BM25+ defined
by Lv and Zhai (2011b) correspond respectively to TFδ◦p◦l×IDF (= TFδ ◦ TFp ◦ TFl
×IDF) and TFδ◦k◦p×IDF (= TFδ ◦ TFk ◦ TFp×IDF) while BM25L defined by Lv
and Zhai (2011c) corresponds to the other order of composition TFk◦δ◦p×IDF (=
TFk ◦ TFδ ◦ TFp×IDF). We clearly see that the only difference between BM25+
and BM25L is the order of composition: this is one of the advantages of our
framework – easily represent and compute multiple variants of a same general
weighting model. In our experiments reported in (Rousseau and Vazirgiannis,
2013a), we considered all the possible orders of composition between TFk or
TFl , TFp and TFδ with the condition that TFp always precedes TFδ as explained
before. For instance, we considered a novel scoring function TFl◦δ◦p×IDF with
TFl◦δ◦p defined a term t and a document d as follows:

TFl◦δ◦p(t, d) = 1 + ln
(

1 + ln
(

t fd(t)
1− b + b× |d|/avdl

+ δ

))
(4.15)

where b is set to 0.20 and δ to 0.5. This model consistently outperformed the
others on several standard TREC datasets.

4.1.4 Which normalizations and in which order?

While the proposed framework allows researchers to clearly specify which
TF×IDF variant they use, it does not give the optimal set of transformations
to apply along with its optimal order of composition. Indeed, we have seen
that TF-IDF and BM25 rely on a different concave transformation, resulting in
an inverse order of composition. With only three successive transformations to
apply, the best way remains to test all possibilities on a training set. Even with
more normalizations like for the SMART notations, Zobel and Moffat (1998)
did not find any principle way of combining them. In the future, with more
heuristic retrieval constraints to satisfy and additional transformations to meet
them, there could be some research to be done on automatically learning to
compose these normalizations.
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4.2 tw-idf, going beyond the term frequency

Behind the bag-of-words representation widely adopted in ad hoc IR, there
is this assumption that terms are independent of one another. The result is at
least two-fold: (1) the relevance of a document w. r. t. a query is estimated by
summing up each query term’s individual contribution (cf. Equation 4.1) and
(2) these individual contributions are estimated independently of one another -
the term frequencies solely depend on the occurrences of the particular term
regardless of its neighboring terms in the document. This is also due to practical
reasons in terms of indexing and querying (cf. Section 2.2.1.3). Note that some
works tried to consider the query as a long-distance n-gram in the retrieved
documents, e. g., Clarke, Cormack, et al. (1995) experimented with using the
distance between query terms in retrieved documents to re-score retrieval results.

Initially, we wanted to challenge both aspects of the term independence
assumption by representing the query as a graph-of-words and then consider
the task as a graph matching/retrieval problem – basically retrieve documents
containing the query in a graphical setting. However, this would mean building
a graph index that would potentially store millions to billions of graph-of-words
while allowing for fast querying based on a subgraph (the query). Considering
that people choose for efficiency reasons to store raw t f values in the inverted
index rather than the final normalized version used at query time even if it
means computing it on the fly every single time, we discarded this research
direction that would require a very efficient solution to even begin to compete
with modern search engines and we explored instead replacing the stored term
frequency (t f ) with an alternative graph-based term weight (tw), hopefully more
meaningful.

4.2.1 Model definition

In this section, we define the document representation, the term weighting
scheme and the scoring function TW-IDF we came up with for ad hoc IR, which
we introduced in (Rousseau and Vazirgiannis, 2013b).

4.2.1.1 Related work

To the best of our knowledge, Blanco and Lioma (2007) were the first to
explore this approach. They proposed to apply PageRank (cf. Section 5.1.2)
on each graph-of-words to extract “random walk term weights” (rw) and then
replaced the term frequencies by them. It is unclear in the paper but from
the experimental results, it seems that no concave transformation was applied
on the raw term frequency, which lowers the baseline, and as for the pivoted
document length normalization, the value of the slope parameter b was not
discussed, neither for the baseline nor their model. They rather focused on the
sliding window W for the graph-of-words construction, trying values from 2
to 40. They later extended their work (Blanco and Lioma, 2012) by including
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in the scoring function some global graph properties such as average degree,
average path length and clustering coefficient interpreting them in the context of
a graph-of-words as respectively the cohesiveness of the document, “how tightly
knit the discourse is” and its “topical clustering”. However, this time, they used
a logarithmic concave transformation on the rw values but no document length
penalization at all, again focusing on the size of the sliding window.

4.2.1.2 The proposed model

For ad hoc IR, our experiments led us to represent each document as an
unweighted undirected graph-of-words with a fixed sliding window of size 4
(cf. Figure 3.1 for illustration) where the node degree is the term weight used
for retrieval.

edge direction Initially, we tried to direct the edges according to the
natural flow of a text (from left to right, at least in English) for marginal yet
significant improvement then according to some grammatical hierarchy, e. g.,
based on POS-tagging (adjectives pointing to nouns pointing to verbs) but that
last approach proved to be empirically more expensive while not more effective.
Therefore, we do not recommend any edge direction for ad hoc IR.

edge weight Initially, we considered weighted edges in the graph. It seemed
natural to weight the edges by the number of co-occurrences of the two terms
in the text. We even tested with boosted weights that depend on the distance
between the two terms within the considered sliding window assuming that
the closer two terms are, the stronger their relationship should be. Indeed, in
Figure 3.1, considering the window “query term frequencies”, the additional
weight of the association query–term should be a priori more important than
the one for query–frequenc. However, in practice, the use of unweighted edges
consistently led to better results. We will propose a possible explanation in
Section 4.2.3.1 but we first need to introduce the term weighting and the scoring
function since it inherently depends on these choices for the implication on the
retrieval effectiveness.

term weight Following the intuition behind the term frequency that the
most frequent terms of a document should get a higher score because more
representative of the document, the weights given to terms of the graph-of-words
should express how important the nodes are in the network and one measure
of importance is how central a vertex is (Freeman, 1979). Unlike Blanco and
Lioma (2007) though, we chose to keep the vertex score definition simple – its
degree – and more precisely its indegree in case of a directed network, which,
in the context of an unweighted graph-of-words, corresponds to the number of
different contexts of co-occurrence of a term inside a document, i. e. how many
different terms surround it regardless of how many times it occurs with each
term.
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centrality measures We did explore other vertex centrality measures
in our early experiments. These measures fall into four categories: the ones
based on (1) the degree (connections between a vertex and its neighbors); (2) the
closeness (lengths of the shortest paths between a vertex and the other vertices);
(3) the betweenness (frequency of the vertex on the shortest paths between other
vertices); and (4) the eigenvectors (spectral decomposition of the adjacency ma-
trix). We refer to Section 5.1.2 for the definitions. Note that measures such
as PageRank, that belongs to the last category, assign a floating-point weight
rather than a small integer and that requires some quantization for efficient
compression and storage (Anh et al., 2001) while our degree-based model does
not suffer from this shortcoming. This was another (practical) reason for us to
keep the vertex weight definition simple. There was no mention of this issue
in Blanco and Lioma (2007, 2012) but we think it does matter. Moreover, the
use of these more complex centrality measures for term weighting did not lead
to significantly better results than the degree-based ones, finding actually not
specific to ad hoc IR but also observed in text categorization (Valle and Öztürk,
2011) and keyword extraction (Boudin, 2013).

scoring function Following the TF-IDF and BM25 scoring functions pre-
sented in Section 4.1.3, we defined our final model TW-IDF for a term t and a
document d as follows:

TW-IDF(t, d) =
twd(t)

1− b + b× |d|
avdl

× log
N + 1

d f (t) + 0.5
(4.16)

where twd(t) is the weight of the vertex (i. e. its indegree in practice) associated
with the term t in the graph-of-words representation of the document d. It
corresponds to TWp×IDF when defining TWp by analogy with TFp. b is set to
0.003 and does not require tuning – this constant value consistently produced
good results across various collections. Its two orders of magnitude less than
TF-IDF (0.20) and BM25 (0.75) can be explained by the structure of the graph-of-
words. Since there is no weight on the edges, the indegree of a vertex does not
increase linearly with the document length like the term frequency does: it is
incremented only when a new context of occurrence appears. Thus, this requires
less tilting (but still some pivoting as observed empirically, cf. Section 4.2.2.3
and Figure 4.1).

concave transformation Note that the model does not explicitly include
a concave transformation (TWk or TWl defined by analogy with TFk and TFl).
In fact, applying such a function worsens sometimes the results. This can be
explained by the use of unweighted edges in the graph representation. Recall
that the raw term frequency was historically dampened so that the difference
between 1 and 2 and 100 and 101 in terms of t f values is much more important
for the former (cf. Section 4.1.1.1). Here, in the context of a graph-of-words, an
additional edge is added to the graph only if the context of occurrence for the
term is new. This holds the same amount of information whatever the tw value
already is, hence, the absence of such penalization for effectiveness reasons.
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lower-bounding regularization Similarly, there is no explicit lower-
bounding regularization as well. This can be explained by the two orders of
magnitude less for b. In the original paper that introduced this normalization (Lv
and Zhai, 2011b), it was noted that the pivoted document length normalization
could result in null scores for very long documents (as |d| becomes much larger
than avdl, cf. Section 4.1.1.5). Here, this would happen in TW-IDF for documents
a hundred times longer than for TF-IDF or BM25 and there is none in today’s
collections (in recent datasets, the size of the collection has been growing but
not the document length). Anyway, if this were the case (e. g., books), then it
would only require an additional composition with the function TWδ that we
omit for now in the implementation for efficiency reasons.

4.2.2 Experiments

In this section, we present the experiments we carried out to validate our
proposed retrieval model TW-IDF. We first describe the datasets, the evaluation
metrics, the platform and the considered models. We then report the results we
obtained and discuss their interpretations.

4.2.2.1 Datasets, evaluation metrics, platform and models

datasets We used four standard TREC collections of documents: (1) Disks
1&2; (2) Disks 4&5 (minus the Congressional Record); (3) WT10G; and (4) .GOV2.
Disks 1&2 includes 741,856 news articles from the Wall Street Journal (1987-
1992), the Federal Register (1988-1989), the Associated Press (1988-1989) and the
Information from the Computer Select disks (1989-1990) 1. Disks 4&5 contains
528,155 news releases from the Federal Register (1994), the Financial Times (1991-
1994), the Foreign Broadcast Information Service (1996) and the Los Angeles
Times (1989-1990)1. WT10G consists of 1,692,096 crawled pages from a snapshot of
the Web in 1997

2. .GOV2 corresponds to a crawl of 25,205,179 .gov sites in early
2004

3. Table 4.1 presents some basic statistics on the datasets – the document
length corresponds to the number of terms in a document while the number of
unique terms to the number of vertices in its graph-of-words representation (we
give the average values per document over the entire collection).

evaluation metrics We evaluated the retrieval models over these collec-
tions in terms of Mean Average Precision (MAP) and Precision at 10 (P@10)
considering only the top-ranked 1000 documents for each run (cf. Section 2.3.3.1).
Our goal was to propose a novel scoring function that improved both metrics.
The statistical significance of improvement was assessed using the paired Stu-
dent’s t-test considering two-sided p-values less than 0.05 to reject the null
hypothesis (cf. Section 2.3.4).

1. http://trec.nist.gov/data/docs_eng.html
2. http://ir.dcs.gla.ac.uk/test_collections/wt10g.html
3. http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
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Statistic
Dataset

Disks 1&2 Disks 4&5 WT10G .GOV2

# documents 741,856 528,155 1,692,096 25,205,179

# unique terms 535,001 520,423 3,135,780 15,324,292

average # terms 237 272 398 645

average # vertices 125 157 165 185

average # edges 608 734 901 1185

Table 4.1 – Collection and document statistics on the four TREC datasets used
in our experiments – the average values are given for a document.

relevance judgments For each collection, we used a set of TREC topics
(title only to mimic Web queries) and their associated relevance judgments 4:
(1) 51-200 for Disks 1&2 (TREC1-3 Ad Hoc Tasks); (2) 301-450 and 601-700 for
Disks 4&5 (TREC 2004 Robust Track); (3) 451-550 for WT10G (TREC9-10 Web
Tracks); and (4) 751-850 for .GOV2 (TREC 2004-2006 Terabyte Tracks).

platform We used Terrier version 3.5 to index, retrieve and evaluate the
retrieval models over the TREC collections. We extended the framework to
accommodate our graph-based approach (mainly graph creation, indexing of
term weight instead of term frequency and novel weighting models such as TW-
IDF). We chose the Java JUNG library for graph representation and computation.
We used Hadoop 1.0.3 to handle the distributed indexing of the .GOV2 collection,
which takes 426 GB of space in its original text form (compressed). For all the
datasets, the preprocessing steps involved Terrier’s built-in stop word removal
and Porter’s stemming.

models We considered four state-of-the-art scoring functions to compare
our model with: TF-IDF, BM25, Piv+ and BM25+ (cf. Section 4.1.3). They
all use pivoted document length normalization with a slope parameter b set
by default to 0.20 for TF-IDF and its extension Piv+ and 0.75 for B25 and its
extension BM25+. We will present results with default value for b and tuned
one using 2-fold cross-validation (up to 4 decimals, odd vs. even topic ids, MAP
maximization). For TW-IDF, b does not require any tuning and a default value
of 0.003 was consistently giving good results across all collections. Regarding
the parameter δ defined by Lv and Zhai (2011b) and used in the lower-bounding
regularization, we did not tune it and used the default value (1.0) suggested in
the original paper for both Piv+ and BM25+.

4.2.2.2 Retrieval results

Table 4.2 and Table 4.4 present the results we obtained for each of the four
tasks. We separate results with untuned slope parameter b (Table 4.2) and with

4. http://trec.nist.gov/data/qrels_eng/index.html
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Model b
TREC1-3 Ad Hoc TREC 2004 Robust

MAP P@10 MAP P@10
TF none 0.0150 0.0273 0.0480 0.0867

IDF none 0.0576 0.0960 0.1396 0.2040

TFp 0.20 0.0482 0.1067 0.0596 0.1193

TFp 0.75 0.0539 0.1807 0.0640 0.1289

TFl none 0.0583 0.0940 0.1591 0.3141

TFk none 0.0599 0.0913 0.1768 0.3269

TFp◦l 0.20 0.1471 0.3960 0.1797 0.3647

TFk◦p 0.75 0.1346 0.3533 0.2045 0.3863

TFδ◦p◦l 0.20 0.1470 0.3820 0.2002 0.3876

TFδ◦k◦p 0.75 0.1272 0.3240 0.2165 0.3956

TW none 0.1502 0.3662 0.1809 0.3273

TWp 0.003 0.1576* 0.4040* 0.2190* 0.4133*

TF-IDF 0.20 0.1832 0.4107 0.2132 0.4064

Piv+ 0.20 0.1825 0.3813 0.2368 0.4157

BM25 0.75 0.1660 0.3700 0.2368 0.4161

BM25+ 0.75 0.1558 0.3207 0.2466 0.4145

TW-IDF 0.003 0.1973* 0.4148*
0.2403 0.4180*

Model b
TREC9-10 Web TREC 2004-2006 Terabyte

MAP P@10 MAP P@10
TF none 0.0376 0.0833 0.0126 0.0617

IDF none 0.0539 0.0729 0.0478 0.0651

TFp 0.20 0.0531 0.1021 0.0228 0.0631

TFp 0.75 0.0473 0.1000 0.0262 0.0550

TFl none 0.1329 0.2063 0.1412 0.4215

TFk none 0.1522 0.2104 0.1569 0.4188

TFp◦l 0.20 0.1260 0.1875 0.1853 0.4913

TFk◦p 0.75 0.1702 0.2208 0.2527 0.5342

TFδ◦p◦l 0.20 0.1436 0.2021 0.2055 0.5081

TFδ◦k◦p 0.75 0.1835 0.2354 0.2654 0.5369

TW none 0.1430 0.1979 0.2081 0.5021

TWp 0.003 0.1946* 0.2479* 0.2828* 0.5407*

TF-IDF 0.20 0.1430 0.2271 0.2068 0.4973

Piv+ 0.20 0.1643 0.2438 0.2293 0.5047

BM25 0.75 0.1870 0.2479 0.2738 0.5383

BM25+ 0.75 0.2026 0.2521 0.2830 0.5383

TW-IDF 0.003 0.2125* 0.2917* 0.3063* 0.5633*

Table 4.2 – Effectiveness results (MAP and P@10) of TW over TF and TF+ with
untuned slope parameter b. Bold font marks the best performance
in a column. * indicates statistical significance at p < 0.05 using the
Student’s t-test with regard to the baseline (TFδ◦k◦p or BM25+) of the
same column.
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Model
TREC1-3 TREC 2004 TREC9-10 TREC 04-06
Ad Hoc Robust Web Terabyte

TFp◦l 0.1100 0.0635 0.0310 0.0340

TF-IDF 0.1000 0.0780 0.0340 0.0350

TFk◦p 0.4180 0.3719 0.1740 0.3910

BM25 0.3600 0.3444 0.2505 0.3900

TFδ◦p◦l 0.1548 0.0919 0.0407 0.0430

Piv+ 0.1510 0.0863 0.0340 0.0400

TFδ◦k◦p 0.5170 0.3780 0.2720 0.4120

BM25+ 0.5510 0.3760 0.2345 0.4150

Table 4.3 – Values of slope parameter b tuned using cross-validation.

tuned one using cross-validation (Table 4.4). Table 4.3 indicates the tuned value
for b that was learnt for each model on each task. We also indicate each time the
results for the TF/TW component only and then for the full model (that takes
into account IDF). That way, we can see the raw impact of TW as an alternative
to TF. Statistical significance was computed with regard to the baseline model:
TFδ◦k◦p for TWp and BM25+ for TW-IDF (with tuning in Table 4.4). Note that
the results for BM25 in Table 4.4 match the ones on the official Terrier website 5,
assuring some reproducibility of the experiments.

tf vs . tfx In the first two rows of Table 4.2, we present the results when using
the raw term frequency (TF) or the normalized inverse document frequency
(IDF) alone. We witness the popular belief that IDF is “superior” to TF in terms
of contribution to the relevance. But in the next rows, we present the results for
the normalized versions of TF, which we refer to as TFx and we see in particular
that the concave transformation (TFl or TFk) is crucial. Moreover, the effect
of the document length penalization, even though milder, still adds up when
combining the two, much more than when combining TF and IDF (still positive
in all cases). This was a consistent finding that is rarely highlighted in our
opinion and that really shows the importance of the TF normalizations and their
composition.

tw vs . tf Table 4.2 also reports results for TW, which corresponds to a raw
graph-based term weight without document length penalization. Surprisingly,
it is already outperforming TFp◦l , the TF component of TF-IDF. This was one of
our early models and this finding encouraged us to pursue further and develop
TW-IDF. When taking into account the document length with a small tilting, i. e.
TWp, we obtain a model that is significantly better than its counterparts, even
with lower-bounding regularization.

5. http://terrier.org/docs/v3.5/trec_examples.html#paramsettings
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Model b
TREC1-3 Ad Hoc TREC 2004 Robust

MAP P@10 MAP P@10
TFp◦l tuned 0.1555 0.4167 0.1946 0.3867

TFk◦p tuned 0.1521 0.3767 0.2176 0.4145

TFδ◦p◦l tuned 0.1481 0.3873 0.2082 0.4036

TFδ◦k◦p tuned 0.1319 0.3240 0.2246 0.4185
TW none 0.1502 0.3662 0.1809 0.3273

TWp 0.003 0.1576*
0.4040 0.2190 0.4133

TF-IDF tuned 0.1936 0.4340 0.2261 0.4193

Piv+ tuned 0.1841 0.3840 0.2436 0.4229

BM25 tuned 0.1893 0.4080 0.2502 0.4382
BM25+ tuned 0.1603 0.3340 0.2547 0.4349

TW-IDF 0.003 0.1973*
0.4148 0.2403 0.4180

Model b
TREC9-10 Web TREC 2004-2006 Terabyte

MAP P@10 MAP P@10
TFp◦l tuned 0.1847 0.2729 0.2336 0.5611

TFk◦p tuned 0.1915 0.2583 0.2807 0.5785
TFδ◦p◦l tuned 0.1949 0.2729 0.2463 0.5658

TFδ◦k◦p tuned 0.1997 0.2708 0.2894 0.5758

TW none 0.1430 0.1979 0.2081 0.5021

TWp 0.003 0.1946 0.2479 0.2828 0.5407

TF-IDF tuned 0.2031 0.2854 0.2589 0.5732

Piv+ tuned 0.2117 0.2875 0.2667 0.5725

BM25 tuned 0.2104 0.3210 0.3046 0.5899
BM25+ tuned 0.2169 0.2771 0.3085 0.5906
TW-IDF 0.003 0.2125 0.2917 0.3063 0.5633

Table 4.4 – Effectiveness results (MAP and P@10) of TW over TF and TF+ with
tuned slope parameter b. Bold font marks the best performance in
a column. * indicates statistical significance at p < 0.05 using the
Student’s t-test with regard to the baseline (TFδ◦k◦p or BM25+) of the
same column.
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tw-idf vs . bm25 Table 4.2 clearly establishes the significant performance of
TW-IDF over BM25 (and a fortiori TF-IDF). With tuning of the slope parameter
b (Table 4.4), TW-IDF still outperforms BM25 on the Web datasets in terms of
MAP. Moreover, tuning of parameters is known to be costly and requires a set of
queries with associated relevance judgments. For a new collection of documents
without such training set (like most of real-world datasets), TW-IDF appears
more robust and should produce better results than BM25.

tw-idf vs. bm25+ Table 4.2 compares our novel models to extensions of
TF-IDF and BM25 recently proposed by Lv and Zhai (2011b). Again, without
tuning, TWp and TW-IDF significantly outperform the other models. This
shows how well the graph-of-words encompasses concavity, document length
penalization and lower-bounding regularization compared to the traditional
bag-of-words. This allows our model to require less parameterization and to
show more robustness across collections.

tuned slope parameter In all fairness, we also reported in Table 4.4
results for tuned Piv+ and BM25+. These are the only cases where TW-IDF
performed comparably. One has to take into consideration that we are challeng-
ing a well-established model with a novel approach and in this last case, tuned
state-of-the-art scoring functions. We shall see in Section 4.2.3.2 our thoughts on
how people could further improve TW-IDF.

4.2.2.3 Likelihood of relevance and likelihood of retrieval

We mentioned in Section 4.2.1.2 that, in principle, TW-IDF should include
an explicit penalization over the document length like most of the traditional
scoring functions such as TF-IDF or BM25. We then turned to seeking empirical
evidence to see if this was the case in practice. We already witnessed in the
experiments that TWp was giving much better results than the raw TW in terms
of MAP and P@10.

plot Following Singhal et al.’s finding that a good scoring function should
retrieve documents of all lengths with similar chances to their probability of
relevance (Singhal, Buckley, et al., 1996), we compared the retrieval pattern
of TW-IDF (with and without regularization) against the relevance pattern
extracted from the golden judgments. We followed the binning analysis strategy
proposed by Singhal, Buckley, et al. (1996) and plot in Figure 4.1 the three
patterns against all document lengths on the WT10G collection. We set the bin
size to 5,000 and display the x-axis with logarithmic scale following Lv and Zhai
(2011b). We also plot the retrieval patterns of TF-IDF, Piv+, BM25 and BM25+
(with the tuned slope parameter b from Table 4.3). The regression curves were
obtained using Locally Weighted Scatterplot Smoothing (LOWESS) (Cleveland,
1979) through the geom_smooth(method="loess") ggplot2 geometric object 6.

6. http://docs.ggplot2.org/0.9.3.1/geom_smooth.html
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Figure 4.1 – Probability of relevance and probability of retrieval vs. document
length on the WT10G collection.

interpretation The plot shows that TW-IDF without document length
penalization (b = 0, blue curve) favors more than it should longer documents
and less than it should shorter documents, thus requiring pivoting and tilting
(b = 0.003, purple curve). This empirically confirms our previous analysis
that TW-IDF needs document length penalization, even if it is at a smaller
scale than TF-IDF and BM25, which was not explored by Blanco and Lioma
(2007, 2012). The plot also shows clearly that TW-IDF with pivoted document
length normalization matches better the likelihood of relevance (black curve)
than any other retrieval functions, even BM25+ (dark green curve) that was
specifically designed to overcome the over-penalization for very long documents
compared to BM25 (green curve) as introduced by Lv and Zhai (2011b). This is
yet another advantage of our scoring function TW-IDF in terms of robustness
against varying document lengths. TF-IDF (gold curve) and Piv+ (orange
curve) are definitely not tailored for varying document lengths, which suggests
that the concave transformation TFk might be more suited than TFl for longer
documents.

55



retrieving information from graph-of-words

4.2.3 Highlights, current limitations and future work

By representing documents as unweighted undirected graph-of-words, we are
able to extract more meaningful terms weights than traditional term frequencies,
which results in a better scoring function (TW-IDF) compared to the classical
TF-IDF and BM25. In particular, the unweighted indegree-based term weight
proved to be a valid alternative to the dampened term frequency by only taking
into account the number of different contexts of co-occurrences regardless of the
frequency of each context. Moreover, the constant and two order of magnitude
smaller value for the slope parameter b (0.003) alleviates the costly parameter
tuning and the additional lower-bounding regularization. Finally, our proposed
model boasted a better robustness against varying document lengths. We
describe next the current limitations of our scoring function due mostly to the
scale of the task at hand and propose research directions for future work.

4.2.3.1 Normalized weighted node degree

Experiments showed that an unweighted graph-of-words representation re-
sulted in better retrieval performances. But intuitively, if we were to weight
the edges with the number of times the two terms co-occur in the document,
we would capture the strength of these relationships. However, taking the raw
weighted node degree as term weight would be equivalent to considering the
t f value up to the constant multiplier W (except for edge cases like starting
and ending terms and self-loop avoidance). And subsequent normalizations
at query time would only results in models equivalent to Piv+ and BM25+.
Nevertheless, we could in theory include some normalizations when computing
the weighted node degree by penalizing each edge weight with some concave
transformation or taking into account the document length or related global
graph properties. But this second layer of normalizations, at the node level,
should occur before the tw value is computed and thus prior to the indexing.
Therefore, a parameterized normalization would involve the tuning at query
time of a parameter set at indexing time, which turned out to be infeasible for
us in practice as the indexing of one collection for one set of parameter values
was already taking hours to days, even on a cluster of distributed machines.
And we would need to try hundreds of different values for a given parameter
with no guarantee that the optimization problem is convex (just like for tuning
the slope parameter b) nor that the parameters are independent.

4.2.3.2 TW-IDW, challenging the document independence assumption

Through the graph-of-words representation, we challenged the term indepen-
dence assumption made behind the bag-of-words model and proposed TW as
an alternative to TF. In ad hoc IR and more generally in TM, there is actually
another assumption made, this time at the collection level: the document inde-
pendence assumption. Indeed, we commonly assume that each document in
a collection is independent of one another. In particular, when computing the
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document frequency of a term for the IDF component, we consider the collection
as a bag-of-documents. In the context of a search engine, taking into account
relations between documents could improve search and user experience by pro-
viding more diversity among the top results for instance. Additionally, instead
of just counting the number of documents in which a term appears to assess its
specificity, we might want to consider whether a term appears in a set of related
documents or not by representing the collection as a graph-of-documents and
explore its communities. Defining the document weight of a term in the context
of a graph representation of a collection to challenge TF×IDF with TW×IDW is
a research issue in itself and is beyond the scope of this dissertation, especially
if we want to weight the edges between documents according to some similarity
measures based on their graph-of-words representation through the definition
of relevant graph kernels for instance.
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5
E X T R A C T I N G K E Y W O R D S F R O M G R A P H - O F - W O R D S

In this chapter, we extract keywords from graph-of-words representations
of documents. The idea in itself is not novel as other researchers have
wondered in the past what it means for a node of a graph-of-words to

be a keyword. Therefore, we first review the main unsupervised approach in
Keyword Extraction (KwE), which states that central nodes make good keywords.
We then pursue with our proposed approach, which extracts not only central
but also densely connected sets of nodes that we call “corewords” as we have
observed in practice that this technique leads to the selection of keywords closer
to what authors would choose since they prefer keyphrases over keywords, i. e.
subgraphs of graph-of-words over isolated nodes.

5.1 central nodes make good keywords

Many works in the past decade have reported that nodes with high centrality
in graph-of-words representations of documents usually correspond to the
keywords that a human would pick for the documents. Therefore, we first
need to define the various vertex centrality measures from graph theory before
providing an overview of the publications on the subject.

5.1.1 Preliminary graph definitions

graph Let G = (V , E) be a graph (a. k. a. a network), V its set of vertices
(a. k. a. nodes) and E its set of edges (a. k. a. arcs or links). Edges can be directed,
in which case networks are referred to as digraphs, and/or weighted as seen
in Section 3.2.2 and also labeled, e. g., covalent bonds in chemical compounds.
By abusing the notation, when considering nodes from a graph, we will write
v ∈ G rather than v ∈ V . We denote by n the number of vertices (n = |V|) and
m the number of edges (m = |E |). A graph can represent anything, from a social
network to a power grid or in our case a textual document.

walk vs. path A walk is a sequence of vertices and edges, where each
edge’s endpoints are the preceding and following vertices in the sequence. It can
be directed and/or weighted just like the edges. A random walk is a walk where
each next edge in the sequence is chosen at random from the last endpoint,
according to the outgoing edges’ weights in a weighted network (Pearson, 1905).
A path is a walk in which all the vertices are distinct (and a fortiori the edges as
well). The length of a walk/path is the number of edges between the starting
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and ending vertices in the unweighted case and the sum of the edge weights in
the weighted case.

connectivity A graph is connected if there are paths between every pair
of vertices, otherwise it is said to be disconnected. A digraph is strongly
connected if there are directed paths between every pair of vertices, weakly
connected if there are only undirected paths between every pair of vertices and
disconnected otherwise. A connected component of a graph G is a maximal
connected subgraph of G, i. e. it cannot be augmented (by adding new edges or
nodes) without losing this property.

shortest path The shortest path between two vertices u and v is the path
of minimum length. Its length d(u, v) is called the geodesic distance from vertex
u to v. Note that the shortest path may not be unique, may not exist because of
a disconnected network or a non-strongly connected directed network or may
only be one-way in case of a digraph. Also, for weighted graphs, depending
on the meaning of the edge weights (e. g., number of co-occurrences in the case
of a graph-of-words), one might need to take the inverse of the weights when
computing the length of the paths so as to favor the strongest path(s).

completeness A (di)graph is complete if there are (directed) edges between
every pair of vertices. An induced subgraph, i. e. a subgraph of the original
network containing all the original edges between a given set of nodes, is a
clique if it is complete, i. e. all the vertices of the subgraph share an edge with
each other.

5.1.2 Vertex centrality measures

degree The degree degG(v) of a node v is defined as the sum of the weights
of its incoming edges in the general case of a directed weighted network. For
undirected unweighted graphs, this simply corresponds to the number of ad-
jacent neighbors (i. e. the number of distinct contexts of co-occurrence for a
graph-of-words). For undirected weighted ones, this also takes into account
the strength of the relationship (e. g., the number of co-occurrences between
two terms for a graph-of-words). Note that we restrict the definition to in-
links for the directed case to keep the definition of a k-core unidimensional
(cf. Section 5.2.1) and we refer to the work of Giatsidis et al. (2011a) for the
bidimensional case. Since we can choose between forward and backward edges
in our graph-of-words, we can alternatively consider in-links and out-links, just
not both at the same time. We also denote by ∆(G) the maximum degree of G,
i. e. ∆(G) = maxv∈V (degG(v)).
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closeness The closeness CC(v) of a node v is defined as the inverse of the
total distances from every other node to v in the graph:

CC(v) =
1

∑u 6=v d(u, v)
(5.1)

In the literature and in graph libraries, we have found definitions for digraphs
with distances from v and to v. The original paper from Bavelas (1950) defined
it with distances from v but it was later referenced by Beauchamp (1965) with
distances to v. In our opinion, this mostly depends on the application. For
instance, in the case of the Web, pages have less control over their in-links and
therefore it might make more sense to consider distances to v in order to measure
how central a Web page is, at least in terms of closeness. For graph-of-words,
we generally recommend undirected networks anyway and in any case, we can
alternatively consider in-links and out-links.

betweenness The betweenness CB(v) of a node v is defined as the fraction
of shortest paths from all vertices (except v) to all others (except v) that pass
through v:

CB(v) = ∑
s 6=v 6=t

σst(v)
σst

(5.2)

where σst is the total number of shortest paths from node s to node t and σst(v)
is the number of those paths that pass through v. Note that in the general case of
a directed network, σst might be different from σts. Essentially, the betweenness
quantifies the number of times a node acts as a bridge along the shortest path
between two other nodes. The concept was formalized by Freeman (1977).

clustering coefficient The clustering coefficient CC(v) of a node v is
defined as the fraction of neighbors that are also connected together (at most
(degG (v)

2 ) for undirected networks), i. e. the fraction of actual triangles the node
belongs to in an undirected graph:

CC(v) =
2|{e = (s, t) ∈ E , (s, v) ∈ E ∧ (v, t) ∈ E}|

degG(v)(degG(v)− 1)
(5.3)

Essentially, the clustering coefficient quantifies how close the neighbors of a
node are to being a clique, its “cliquishness” as presented by Watts and Strogatz
(1998), which makes it a measure of centrality and cohesion (Wasserman and
Faust, 1994, page 249) as well.

small-worldliness As mentioned in Section 3.2.4, statistical graph-of-
words have been reported to be small worlds, i. e. networks whose nodes are
highly clustered (high clustering coefficient) yet the path length between them is
small (short characteristic path length).

61



extracting keywords from graph-of-words

The characteristic path length L(G) of a graph G is defined as the average
shortest distance between all pairs of nodes ((n

2) in total for undirected networks),
assuming a (strongly) connected graph:

L(G) = 2
n(n− 1) ∑

s 6=t
d(s, t) (5.4)

Some nodes contribute more than others to the small-worldliness of a graph and
one way to measure their local contributions is to compute the two metrics on
the original network and on a network without the node of interest (and its
adjacent edges). Since the removal of one node has little effect on the overall
clustering coefficient (Matsuo et al., 2001b), people have focused in practice
on the difference in characteristic path length, defining the small-worldliness
CSW(v) of a node v as:

CSW(v) = L(G \ {v})− L(G) (5.5)

where G \ {v} is the graph G without the node v (and a fortiori without its
adjacent edges).

eccentricity The eccentricity ε(v) of a node v is defined as the length
of the longest shortest path(s) from any other nodes to v, i. e. the maximum
geodesic distance to v:

ε(v) = max
u 6=v

d(u, v) (5.6)

Therefore, its inverse is a measure of centrality. The main difference with
closeness is that a node with a low eccentricity value is relatively close to every
other node whereas a node with a high closeness value is on average close to all
the other nodes. In practice, because of “outliers” that can artificially lower the
centrality, e. g., high cost weight on all edges to a particular node, it has been
less used than closeness, including in KwE from graph-of-words.

eigenvector centrality So far, the definition of a centrality measure for
a given node v has been independent of the centrality values of its neighbors,
considering basically that each neighbor contributes equally to the centrality of
v – apart from the edge weight but we consider for now unweighted networks.
However, intuitively, an in-link from a central node carries a stronger endorse-
ment in terms of its own centrality, e. g., connections to influential people might
lend a person more influence than connections to less influential people. We thus
require knowing the centrality values of the neighbors to compute the centrality
value of a node, values that might even depend on the value of interest in case
of bidirectional links.

This results in a recursive definition of the eigenvector centrality e(v) of a
node v:

λe(v) = ∑
u∈NI(v)

e(u) = ∑
u∈G

Auve(u) (5.7)

where λ is a constant required so that the equations have a non-zero solution
(Bonacich, 1987), NI(·) is the set of neighbors pointing to a node and A is the
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(binary) adjacency matrix of graph G, i. e. Aij encodes the existence of an edge
from node i to node j. Note that in the literature there is a discrepancy between
the textual definition that states we should consider nodes pointing to v and the
corresponding formula where Avu is employed instead, e. g., see Newman (2003,
p. 43). Since the original case was for undirected networks, it did not matter
but we think Auv makes more sense and it also aligns with PageRank, a close
measure as we will see next and first applied to the Web, a directed graph. In
matrix notation, the centrality can be expressed as:

λe = A>e (5.8)

where e is the vector of centralities for all nodes and thus corresponds to the
eigenvector of A> associated to the eigenvalue λ. As reported by Newman
(2003, pp. 43-44), provided that the network is connected, the Perron–Frobenius
theorem tells us that there is only one eigenvector with all weights non-negative,
which is the unique eigenvector corresponding to the largest eigenvalue and it
can be found for instance by repeated multiplication of the adjacency matrix (i. e.
by power iteration) into any initial non-zero vector (in practice a uniform vector).

pagerank PageRank is a variant of the eigenvector centrality. It was intro-
duced by Page et al. (1999) and incorporated in the earliest versions of Google’s
search engine (Brin and Page, 1998), which made this centrality measure ex-
tremely popular, both in industry and academia. It was used to model the
navigation of a “random surfer” on the Web as a sequence of visited pages, i. e.
a random walk in the corresponding graph.

The PageRank score PR(v) of a node v is defined as:

PR(v) =
1− d

n
+ d× ∑

u∈NI(v)

PR(u)
|NO(u)|

subject to ‖PR‖1 = 1 (5.9)

where d is a damping factor (∈ [0, 1], typically 0.85) and NO(·) is the set of
neighbors pointed by a node.

The three differences with the original eigenvector centrality are (1) the
additional term controlled by the damping factor, interpreted as the probability
(1− d) of the surfer to jump to any random page at any given moment (with
probability 1/n); (2) the normalization of the adjacency matrix terms by the
number of outgoing links; and (3) the normalization of the PageRank vector at
each step to make it a probability distribution, which results in the PageRank
score being not only the centrality of the node but also the probability of visiting
the given Web page at random.

hits In parallel of the development of PageRank, Kleinberg (1999) proposed
Hyperlink-Induced Topic Search (HITS) as a measure of the influence of a node
in a network. Contrary to previous centrality measures, he made a distinction
between nodes pointed by a lot of other nodes, the so-called authorities, and
nodes pointing to a lot of other nodes, the hubs. For instance, in the case of
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a citation network of publications, seminal papers would be authorities, Ph.D.
dissertations hubs and seminal surveys both. Therefore, while still based on a
recursive definition, each node has two scores: one for authority that depends
on the hub scores of its incoming neighbors and one for hubness that depends
on the authority scores of its outgoing neighbors. Indeed, a seminal paper
should be cited by a lot of other papers, including surveys, and a survey should
reference a lot of papers, including seminal papers.

The HITS authority and hub scores a(v) and h(v) of a node v are defined as:

a(v) = ∑
u∈NI(v)

h(u) (5.10)

h(v) = ∑
u∈NO(v)

a(u) (5.11)

In matrix notation, this gives a = A>h and h = Aa and by combining the
two equations, this results in a = A>Aa and h = AA>h. Therefore, a is by
definition the right singular vector of the adjacency matrix A and the eigenvector
of the covariance matrix A>A while h is the left singular vector of the adjacency
matrix A and the eigenvector of the Gram matrix AA>.

complexity In all cases, we need O(n+m) space to store the graph. Brandes
(2001) proposed an algorithm for computing the betweenness of all vertices,
which also covers closeness, small-worldliness and eccentricity since they all
involve shortest paths, that requires O(nm) time for unweighted graphs and
O(nm + n2 log n) time for weighted ones. Computing the clustering coefficients
of all vertices requires O(n∆(G)2) time when intersecting adjacency lists (for
each node, we need to test for the existence of at most (∆(G)

2 ) edges). Computing
the eigenvector centrality, PageRank and HITS scores of all vertices iteratively
requires O(m) time at each iteration.

5.1.3 Literature review

In the literature, there has been a few works on extracting keywords from
graph-of-words representations of document and in particular on defining
what makes a node a good keyword – high centrality being the most adopted
approach. The earliest work we found was the one from Ohsawa et al. (1998)
– the one that actually pioneered the graph-of-words representation to the
best of our knowledge – where keywords are defined as nodes that tie and
hold clusters together. Then, Matsuo et al. (2001b) proposed to extract the
nodes that contribute the most to the small-worldliness of the network by
computing the difference in characteristic path length between the graphs
with and without the node, idea further explored by Zhu et al. (2003) as well.
Mihalcea and Tarau (2004) came up with the idea of using PageRank to score
each node’s contribution in the context of a graph-of-words, popularizing the
graph representations of text in TM, and subsequently revisited in several other
papers (Wan and Xiao, 2008; Weiming Liang et al., 2009; Wan and Xiao, 2010;
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R. Wang et al., 2015). Palshikar (2007) argued in favor of the inverse of the
eccentricity to score terms, comparing it with closeness and betweenness just
like Abilhoa and de Castro (2014) who also simply considered the node degree.
Litvak and Last (2008) explored HITS as opposed to PageRank to try to identify
a difference between authoritative and hub terms in a document. Boudin (2013)
and Lahiri, S. R. Choudhury, et al. (2014) both wrote a survey of the various
centrality measures to be used in the context of KwE. Schluter (2014) recently
tried to explain what make central nodes good keywords. Additionally, on
semantic graph-of-words, Grineva et al. (2009) defined a score based on its
community’s density and its community’s informativeness while Tsatsaronis
et al. (2010) stuck to more classical eigenvector centrality measures, namely
PageRank and HITS.

baselines In our research, we focused on PageRank and HITS as baselines
for various reasons. PageRank has been repeatedly reported as working best
at extracting keywords from graph-of-words and HITS is an interesting variant
where there could be a difference between authoritative and hub terms in a doc-
ument. They both take into account the centrality values of the neighbors when
computing the centrality of a node, which can explain why they have performed
better in a wide variety of tasks and they are also cheaper to run – even if our
graph-of-words have only a few thousands nodes at most, we potentially apply
the extraction procedure on thousands to millions of documents.

5.2 communities of central nodes make better keywords

In this section, we first present the concept of graph degeneracy that takes
into account not only how central nodes are but also how cohesive their neigh-
borhoods are. We then capitalize on that notion to propose a novel method
to extract the most representative words of a document – its corewords – and
compare it with baseline approaches based solely on centrality measures. Finally,
we conclude with current limitations and potential future work extensions.

5.2.1 Graph degeneracy

The idea of a k-degenerate graph comes from the work of Bollobás (1978,
page 222) that was further extended by Seidman (1983) into the notion of a k-core,
which explains the use of degeneracy as an alternative denomination for k-core
in the literature. Henceforth, we will be using the two terms interchangeably.

definition A subgraph Hk = (V ′, E ′), induced by the subset of vertices
V ′ ⊆ V (and a fortiori by the subset of edges E ′ ⊆ E ), is called a k-core or a
core of order k iff ∀v ∈ V ′, degHk

(v) ≥ k and Hk is the maximal subgraph with
this property, i. e. it cannot be augmented without losing this property. In
other words, the k-core of a graph corresponds to the set of maximal connected
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3-core
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1-core

B
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n = 34, m = 36

F

Figure 5.1 – Illustration of the decomposition of a given undirected unweighted
graph into nested subgraphs of increasing core order. Node color
indicates the highest core a vertex belongs to: black for the 0-core,
purple for the 1-core, green for the 2-core and red for the 3-core
(main core).

subgraphs whose vertices are at least of degree k within the subgraph they
belong to. The core number core(v) of a vertex v is the highest order of a core
that contains this vertex. The core of maximum order is called the main core and
its core number is denoted by core(G). The set of all the k-cores of a graph (from
the 0-core to the main core) forms what is called the k-core decomposition of a
graph, a sequence of nested subgraphs of increasing core order k.

illustration Figure 5.1 illustrates the decomposition of a given undirected
unweighted graph G of 34 vertices and 36 edges into nested cores of order 0, 1,
2 and 3. In this example, core(A) = degG(A) = 0, core(B) = 1, degG(B) = 2,
core(F) = 1, degG(F) = 5, core(D) = 3, degG(D) = 6, core(G) = 3 and
∆(G) = 6. We note in particular that (a) the cores are nested, i. e. ∀j > i, Hj ⊆ Hi
and (b) they do not need to form a single connected component (e. g., the 2-core
in dark green is composed of two disconnected components). This figure has
been manually created using the Ipe extensible drawing editor.
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interpretation Centrality measures like the node degree or the PageRank
score aforementioned tend to favor vertices with a lot of neighbors (at least in the
unweighted case) but it does not imply that their neighbors need to be connected
with each other as well (classically a vertex at the center of a star or wheel pattern
in a graph). A good example of that difference is the node F in Figure 5.1 of
relatively high degree (5) but of lower core number (1) in comparison with other
vertices of lower degree like C (degree of 2, core number of 2) or of similar
degree like D (degree of 6, core number of 3). Degeneracy captures not only
how central a node is but also how connected its neighborhood is, property
known as the cohesion of a graph (Wasserman and Faust, 1994, page 249).

complexity Batagelj and Zaveršnik (2003) proposed a linear algorithm
(O(n + m) time, O(n) space) for the k-core decomposition of an unweighted
graph. The main idea is to remove the vertex of lowest degree (in the remaining
subgraph) at each step and decrease the degree of its adjacent neighbors by
one. The vertices are initially sorted in linear time using bin sort since there are
at most ∆(G) + 1 distinct values for the degrees and ∆(G) < n. Because the
algorithm only visits each edge twice and updating the degree can be achieved
in constant time (by moving the node to the adjacent bin), the complexity is
linear in the number of nodes and edges.

However, the algorithm no longer works for weighted edges since updating
the degree of a neighbor when removing the vertex of lowest degree might
change its degree by more than one. Thus, keeping the vertices in increasing
order of degree requires a more complex data structure than the binning strategy
used in the unweighted case (and also because the values of the degrees can be
potentially any real number, which does not scale well with bin sort). Batagelj
and Zaveršnik (2002) proposed the use of a min-oriented binary heap to retrieve
the vertex of lowest degree in logarithmic time (O(log n)) at each step. We
note that building the heap from an existing array of elements can be done
in linear time (Cormen et al., 2009, page 159) and not trivially in linearithmic
time as counted by Batagelj and Zaveršnik. Thus, the overall complexity is
O(n + m log n) in time and O(n) in space. Also note that this heap needs to
support the decrease-key operation in order to update the priority of a node as
its degree changes. This can be achieved in logarithmic time as well (O(log n))
providing a hash table for fast access to any node in the heap (O(n) additional
space). Indeed, with constant time access (O(1)) and logarithmic time call to
the internal bubble-up routine (O(log n)), any node can be moved in the heap to
its rightful position whenever its priority is decreased in a min-oriented heap.
This is the data structure that we implemented in our experiments. Batagelj
and Zaveršnik also mentioned the use of a Fibonacci heap (Fredman and Tarjan,
1987) that guarantees linear time construction (O(n)) and amortized constant
time update (O(1)) for an overall complexity of O(n log n + m) in time but the
structure is more complex to maintain for little to no gain in practice for us
(graphs with a number of vertices and edges in the order of a thousand at most).
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applications Graph degeneracy has been used for (1) visualization (Alvarez-
Hamelin et al., 2005; Ahmed et al., 2007); (2) generation (Baur et al., 2007);
(3) influential spreaders identification (Kitsak et al., 2010); (4) community detection
(Giatsidis et al., 2011b); (5) modeling of engagement dynamics (Malliaros and
Vazirgiannis, 2013); (6) community-preserving anonymization (Carpineto and
Romano, 2013; Assam et al., 2014; Rousseau, Casas-Roma, et al., 2015) and
generalization (Casas-Roma and Rousseau, 2015) of networks and applied in
addition to (1) dynamic (Miorandi and De Pellegrini, 2010; R.-H. Li et al., 2014);
(2) directed (Giatsidis et al., 2011a); (3) weighted (Garas et al., 2012; Eidsaa and
Almaas, 2013); (4) signed (Giatsidis, Vazirgiannis, et al., 2014); and (5) uncertain
(Bonchi et al., 2014) graphs. In all works, researchers capitalize on its efficient
way to capture cohesive sets of nodes, i. e. communities of similar entities or at
least its core members compared to maybe more effective but far more expensive
techniques such as clustering in polynomial time (Girvan and Newman, 2002;
Frey and Dueck, 2007) or finding maximal cliques in exponential time (Bron and
Kerbosch, 1973).

5.2.2 Coreword extraction: retaining the nodes from the main core

In this section, we define the document representation and the keyword extrac-
tion technique we came up with for KwE, which we introduced in (Rousseau
and Vazirgiannis, 2015).

5.2.2.1 Model definition

For KwE, we represented each document as a weighted (un)directed graph-
of-words with a fixed sliding window of size 4 (cf. Figure 3.1 for illustration).
We took into consideration edge weights since, in the context of single-document
KwE, the task is done independently of the other documents and therefore we
do not have the normalization issues we had for ad hoc IR (cf. Section 4.2.3.1),
resulting actually in better performances.

Our idea was to consider the vertices of the main core as the set of keywords
to extract from the document, the main core being obtained by running either
the unweighted or the weighted version of the k-core algorithm on the graph-
of-words. By analogy with the keyworlds from Matsuo et al. (2001b) that
corresponded to the nodes contributing the most to the small-worldliness of the
network, we called ours the corewords of the document. Indeed, the main core
corresponds to the most cohesive connected component(s) of the graph and thus
its vertices are intuitively good candidates for representing the entire graph-
of-words. Additionally, assuming a set of golden keywords to compare with,
we thought of considering more and more cores in the k-core decomposition
and expected an increase in the recall of the extracted keywords without a
too important decrease in precision or at least at a lower rate than for existing
methods.
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illustration Figure 5.2 illustrates the iterative procedure of decomposing
a graph-of-words into nested k-cores of increasing cohesion. We kept the same
node color code as in Figure 5.1 and grayed out the nodes not belonging to the
current core as we go deeper in the decomposition. Figure 5.2d corresponds to
the last core in the decomposition, i. e. the main core, and its terms highlighted
in red form the corewords of the documents, i. e. the keywords selected by our
method to represent the document. In particular, we see that the node ‘queri’
has a degree of 10 in the 4-core but because of its neighbors it does not belong to
the 5-core while the node ‘hoc’ has a degree of only 6 but makes it to the main
core. This figure has been manually created using the Ipe extensible drawing
editor.

intuition Table 5.1 shows the ranked list of the unique terms from the
document from Figure 3.1 according to their core numbers (first two columns)
or eigenvector centrality (PageRank or HITS, last two columns) in the corre-
sponding graph-of-words. Since our toy example is undirected, HITS authority
and hub scores are the same. We can see the difference between weighting
the edges or not for graph degeneracy, in particular in terms of the size of the
main core. Figure 5.3 illustrates the distributions of eigenvector centralities and
both display a S-shape resulting in three types of nodes: high, average and low
centrality values.

If we assume that the keyphrases a human annotator would choose for the
toy document are the following: ‘ad hoc information retrieval’, ‘relevance’ and
‘collection of textual documents’ then we have a set of golden keywords to
obtain, highlighted in bold in the table. Each method also needs to define a cut-
off on the score above which it considers a term a keyword. For our proposed
approach, we defined it as the main core, whatever the core number is or the
number of nodes in it – note that they may both differ between unweighted and
weighted versions of a network as observed in the table. For PageRank and
HITS, Mihalcea and Tarau suggested extracting the top third of the vertices (top
33%), relative numbers helping accounting for documents of varying length.
Here, for PageRank, following Figure 5.3, the cut-off should probably rather be
between ‘collect’ and ‘ad’ or ‘ad’ and ‘term’. Since this is just a toy example
to get an intuition of what our method brings, we are not interested in finding
if there is a better cut-off for the baselines, we will come back to this crucial
point later on. We note that PageRank and HITS give relatively high scores to
‘user’, ‘queri’ and ‘search’, which are not golden keywords, because of their
centrality but not degeneracy because of their neighbors. Again, the main core
corresponds to a cohesive set of vertices (or potentially several sets) in which
they all contribute equally to the subgraph they belong to – removing any node
would collapse the entire subgraph through the cascading effect implied by the
k-core condition. PageRank and HITS, on the other hand, provide scores for
each vertex based on its centrality yet it does not require its neighbors to be
central as well, providing enough neighbors to endorse it. But keywords happen
to be keyphrases most of the time and thus capturing sets of co-occurring words
is well-suited for the task.
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(a) 0-core, the initial graph from Figure 3.1
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(b) 2-core, all the nodes survived
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(c) 4-core, ‘answer’ is dropped since its degree is 2 in the 4-core
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(d) 6-core, the main core – the remaining terms form the corewords

Figure 5.2 – Illustration of the k-core decomposition of the graph-of-words from
Figure 3.1. The terms in red, belonging to the last and main core,
form the corewords of the document.
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k-core
k-core

PageRank HITS
(weighted edges)

ad 4 ad 6 retriev 1.95 inform 0.34

hoc 4 hoc 6 doc 1.95 doc 0.34

inform 4 inform 6 inform 1.78 retriev 0.33

retriev 4 retriev 6 user 1.76 text 0.30

relev 4 relev 6 text 1.50 relev 0.27

collect 4 collect 6 relev 1.34 hoc 0.25

text 4 text 6 queri 1.33 user 0.24

doc 4 doc 6 search 1.19 collect 0.22

model 4 model 4 hoc 1.07 ad 0.18

assign 4 assign 4 collect 0.94 queri 0.17

convei 4 convei 4 ad 0.80 search 0.16

crucial 4 crucial 4 term 0.73 activ 0.15

engin 4 engin 4 process 0.72 obtain 0.15

score 4 score 4 frequenc 0.71 convei 0.15

regard 4 regard 4 regard 0.71 assign 0.15

activ 4 activ 4 engin 0.70 model 0.15

process 4 process 4 score 0.69 crucial 0.15

queri 4 queri 4 crucial 0.68 score 0.14

obtain 4 obtain 4 assign 0.68 engin 0.13

user 4 user 4 model 0.68 frequenc 0.12

search 4 search 4 obtain 0.66 regard 0.12

term 3 term 4 activ 0.67 term 0.11

frequenc 3 frequenc 4 convei 0.67 process 0.10

base 3 base 4 base 0.58 base 0.08

answer 2 answer 2 answer 0.43 answer 0.07

Table 5.1 – Ranked list of the unique terms from the document from Figure 3.1
according to their core numbers or eigenvector centrality (PageRank
or HITS) in the corresponding graph-of-words. Bold font indicates
the golden keywords and the dashed lines the cutoff for each method.
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(b) HITS

Figure 5.3 – Ranked list of the unique terms from the document from Figure 3.1
according to their eigenvector centrality (PageRank or HITS) in the
corresponding graph-of-words.
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5.2.2.2 Keywords are keyphrases

For the 500 abstracts from the Inspec database that we used in our experiments,
only 662 out of the 4,913 keyphrases manually assigned by human annotators
are keywords (13%). The rest of them range from bigrams (2,587 – 52%) to
7-grams (5). Similar statistics were observed on other datasets. Therefore, we
make the general claim that human annotators tend to select keyphrases. Thus,
to improve the performances of an automated system, one needs to capture the
interactions between keywords in the first place. This is the main reason why we
explored the graph-of-words representation to challenge the traditional unigram
bag-of-words and why we considered graph degeneracy to extract cohesive sets
of keywords.

Even if nodes correspond to unigrams because of the way the graph-of-words
is constructed, the edges do represent co-occurrences within a sliding window.
And for small-enough sizes (which is typically the case in practice), we can
consider that two linked vertices represent a long-distance bigram (Bassiou and
Kotropoulos, 2010), if not a bigram (cf. Section 3.2.3). Hence, by considering
cohesive subgraphs, we make sure to extract unigrams that co-occur together and
thus are bigrams, if not higher order n-grams. On the contrary, methods based
solely on centrality measures may extract unigrams that are central because they
co-occur with a lot of other words but these words may not be extracted as well
because of a lower weight. Extracting salient bigrams would require to include
bigrams as vertices but the number of nodes increases linearly with the order of
the n-gram.

5.2.2.3 Corewords are adaptive

Most current techniques in KwE assign a score to each term of a document
and then select the top ones as keywords. For a given collection of homogeneous
documents in length or because of specific constraints, an absolute number may
make sense. For example, Turney (1999) limited to the top 5 keyphrases while
Witten et al. (1999) to the top 15, which is inline with what is imposed by some
publishers for academic papers for instance. Mihalcea and Tarau (2004) argued
that a relative number should be used for documents of varying length or when
no prior is known, i. e. top X% instead of top X. We go further and claim that
the numbers of retrieved keywords should be decided at the document level and
not at the collection level. For instance, for two documents, even of equal length,
one of them might require more keywords to express the gist of its content
(because it deals with more topics for example). Therefore, adapting the number
of extracted keywords to the document should yield results closer to the human
ones.

Grineva et al. (2009) suggested to use the elbow method, an unsupervised
empirical method originally developed for selecting the number of clusters
in k-means (Thorndike, 1953). Indeed, as mentioned in Section 5.1.2, most
centrality measures will follow a power law distribution because of the scale-
free property observed in graph-of-words (cf. Section 3.2.4). Consequently,
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the authors proposed to select the keywords with a score in the “upper arm”.
However, it was noted in Lahiri, S. R. Choudhury, et al. (2014) that the elbow
is not always clear, especially for short text (in their case for closeness), and
more complex to automate. On our toy example, we see in Figure 5.3 that for
both PageRank and HITS, it is not straightforward to choose the cut-off because
of the plateau in the middle and therefore, in our experiments, we opted for
relative and absolute numbers.

In our case, the size of each k-core, i. e. the number of vertices in the subgraph,
depends on the structure of the graph. In the unweighted case, it is lower-
bounded by k + 1 since each vertex has at least k neighbors but can potentially
be up to n in the case of a complete graph. Hence, we think that degeneracy
can capture this variability in the number of extracted keywords, in particular
for a fixed document length (the other methods will still extract more and more
keywords as the document length increases when using relative numbers). In
Section 5.2.3.4, we will show distributions of extracted keywords per document
length for all models and from human annotators to support our claim.

5.2.3 Experiments

In this section, we present the experiments we carried out to validate our
proposed keyword extraction technique. We first describe the datasets, the
evaluation metrics and the considered models. We then report the results we
obtained and discuss their interpretations.

5.2.3.1 Datasets, evaluation metrics and models

datasets We used two standard collections of documents publicly available 1:
(1) Hulth2003 and (2) Krapivin2009. Hulth2003 consists of 500 abstracts from
the Inspec database introduced by Hulth (2003) and used in many works since
then (Mihalcea and Tarau, 2004; Z. Liu et al., 2009; Tsatsaronis et al., 2010;
Boudin, 2013; Lahiri, S. R. Choudhury, et al., 2014). In her experiments, Hulth is
using a total of 2,000 abstracts, divided into 1,000 for training, 500 for validation
and 500 for test. Since our approach is unsupervised and because this is also
the choice made by all the others, we only used the 500 test documents in order
to get comparable results. Additionally, we used the “uncontrolled” golden
keywords since we do not want to restrict the keywords to a given thesaurus.
Krapivin2009 consists of 2,304 ACM full papers in CS (references and captions
excluded) introduced by Krapivin et al. (2009) – the golden keywords are the
ones chosen by the authors of each ACM paper. Since we are interested in
single-document KwE, the scalability of the methods are measured with regards
to the document length, not the collection size (that only needs to be large
enough to measure the statistical significance of the improvements). This is the
main reason why we considered Krapivin2009 as second dataset: to see how
these methods scale for longer documents and larger graphs.

1. https://github.com/snkim/AutomaticKeyphraseExtraction
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evaluation metrics For each document, we have a set of golden key-
words manually assigned by human annotators and a set of extracted keywords
produced by each method (one of the baselines or of our approaches). We can
thus naturally compute precision, recall and F1-score per document and per
method. Following the suggestion of Hulth (2003), we consider the proportion of
correctly extracted keywords (precision) equally as important as the amount of
terms assigned by a professional indexer (recall) hence the choice of a balanced
F-measure (i. e. F1-score, cf. Section 2.3.2.3). We then macro-average these
metrics to get results at the collection level (cf. Section 2.3.3.2) – we prefer to
macro-average (arithmetic mean over all documents of the metrics per docu-
ment) rather than micro-average (metric computed over all documents) in order
not to bias towards longer documents (with more keywords). Note that it is not
always clear in the related works which average the authors took. We believe
the historical supervised approaches (Turney, 1999; Witten et al., 1999; Hulth,
2003) considered micro-averaged results since the classification examples were
the actual words, regardless of which documents they belong to, and therefore
they naturally pooled the per-example decisions (cf. Section 2.2.3). However, in
the unsupervised graph-based approaches, we consider documents separately,
which is better represented by macro-averaged results. The statistical signifi-
cance of improvement was assessed using the paired Student’s t-test considering
two-sided p-values less than 0.05 to reject the null hypothesis (cf. Section 2.3.4).

keyword vs. keyphrase In practice, humans tend to select key-phrases
to represent documents (cf. Section 5.2.2.2) but the graph-based methods select
nodes, i. e. unigrams. Therefore, we converted the golden keyphrases into
unigrams applying the same preprocessing steps (e. g., stop word removal
or POS-tag filtering) beforehand. That way, it is straightforward to compute
precision and recall between this set of golden unigrams and the set of extracted
unigrams. In their survey, Hasan and V. Ng (2010) suggested to only consider
the actual keywords (i. e. discard the other keyphrases) but this does not hold
for the datasets we used (cf. Section 5.2.2.2). It does not penalize that much
models that would be designed to extract higher order n-grams since they would
still get higher precision and recall. Otherwise, it becomes hard to define hits
and misses when a model might extract two unigrams and the overall bigram is
expected. Indeed, there is no standard definition on how to penalize a method
that, given a golden bigram to extract, would return part of it (unigram) or
more than it (trigram). Mihalcea and Tarau (2004) suggested “reconciling” the
n-grams as a post-processing step by looking in the original text for adjacent
unigrams but then questions arise such as whether we should keep the original
unigrams in the final set, impacting the precision and recall. Similarly, Z. Liu
et al. (2009) proposed to merge keywords that occur together in the original
text as a noun phrase, i. e. matching the following regular expression: (JJ)*

(NN|NNS|NNP)+. It is not clear how the other related works did it and if one
method is preferable to the others. Therefore, we consider this reconciliation
step as part of the application that would use any keyword extraction method
but not part of the technique itself, hence an evaluation based on unigrams.
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models For the graph-of-words representation, we experimented with undi-
rected edges, forward edges (natural flow of the text – an edge term1 → term2

meaning that term1 precedes term2 in a sliding window) and backward edges
(the opposite). In terms of keyword-extracting methods, we considered (1)
PageRank, (2) HITS, (3) k-core on an unweighted network and (4) k-core on a
weighted one (the edge weight being the number of co-occurrences). Note that
for HITS, we only report the results for the authority scores since the hub scores
are the same in the undirected case and symmetric in the directed case (the hub
score for forward edges corresponds to the authority score for backward edges
and vice versa).

number of keywords We extracted the top third keywords (top 33%) on
Hulth2003 and the top 15 keywords on Krapivin2009 for the baselines and the
main core for our approaches (the highest k value differs from document to
document). The choice between relative (top X%) and absolute numbers (top X)
comes from the fact that for relatively short documents such as abstracts, the
longer the document, the more keyword human annotators tend to select while
past a certain length (10-page long for ACM full papers), the numbers vary
far less. Hence, in all fairness to the baselines, we selected the top 33% on the
abstracts like in the original papers and the top 15 for the full papers (15 being
the average number of unigrams selected as keywords by the papers’ authors
on the dataset).

5.2.3.2 Macro-averaged results

Table 5.2 show the macro-average precision, recall and F1-score for all models
(rows) for the different variants of graph-of-words considered (multirows) on
the Hult2003 dataset; same for Table 5.3 on the Krapivin2009 dataset. Overall,
PageRank and HITS have similar results, with a precision higher than the recall
as reported in previous works. It is the opposite for k-core with unweighted
edges, which tends to extract a main core with a lot of vertices since the k-core
condition can be interpreted as a set of keywords that co-occur with at least
k other keywords. For the weighted case, it corresponds to a set of keywords
that co-occur at least k times in total with other keywords leading to cores with
fewer vertices but with stronger links and the extraction of important bigrams,
hence the increase in precision (at the cost of a decrease in recall) and an overall
better F1-score.

Edge direction has an impact but not necessarily a significant one and is
different across methods. This disparity in the results and the lack of a dominant
choice for edge direction is consistent with the relevant literature. Mihalcea
and Tarau (2004) and Blanco and Lioma (2012) used undirected edges, Litvak
and Last (2008) backward edges and Rousseau and Vazirgiannis (2013b) for-
ward edges. Hence, we recommend the use of undirected edges for ease of
implementation but other techniques that would try to extract paths from the
graph-of-words for instance might need the edge direction to follow the natural
flow of the text such as for summarization (Filippova, 2010).
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Graph Method Precision Recall F1-score

undirected
edges

PageRank 0.589 0.422 0.473

HITS 0.579 0.418 0.466

k-core 0.465 0.625*
0.491

*

k-core
(weighted)

0.612*
0.503

* 0.519*

forward
edges

PageRank 0.558 0.420 0.457

HITS 0.548 0.404 0.450

k-core 0.425 0.729* 0.517*

k-core
(weighted)

0.570*
0.469

*
0.506

*

backward
edges

PageRank 0.593 0.427 0.476

HITS 0.564 0.407 0.454

k-core 0.409 0.706*
0.452

k-core
(weighted)

0.602*
0.499

* 0.500*

Table 5.2 – Effectiveness results (macro-average precision, recall and F1-score)
of coreword extraction over eigenvector centrality-based keyword
extraction on the Hulth2003 dataset. Bold font marks the best per-
formance in a column of a block. * indicates statistical significance
at p < 0.05 using the Student’s t-test with regard to the PageRank
baseline of the same column of the same block.

5.2.3.3 Precision/recall curves

Additionally, instead of just considering the main core or the top X% vertices,
we computed precision and recall at each core and at each percent of the total
number of terms to get precision/recall curves (cf. Section 2.3.3.1). We used
relative numbers because the documents are of varying length so the top 10

keywords for a document of size 10 and 100 do not mean the same while the
top 10% might.

We show on Figure 5.4 the resulting curves on the Hulth2003 dataset, one
for each model (100 points per curve, no linear interpolation following Davis
and Goadrich (2006)). The final recall for all models is not 100% because
human annotators sometimes used keywords that do not appear in the original
documents. Since we are dealing with the task of extractive KwE (as opposed to
abstractive), the methods are only supposed to extract keywords present in the
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Graph Method Precision Recall F1-score

undirected
edges

PageRank 0.502 0.488 0.496

HITS 0.495 0.479 0.480

k-core 0.405 0.784*
0.466

k-core
(weighted)

0.535*
0.502

* 0.508*

forward
edges

PageRank 0.478 0.449 0.457

HITS 0.470 0.442 0.450

k-core 0.398 0.791*
0.460

k-core
(weighted)

0.522*
0.457

* 0.470*

backward
edges

PageRank 0.514 0.500 0.505

HITS 0.491 0.470 0.474

k-core 0.392 0.776*
0.469

k-core
(weighted)

0.521*
0.502

*
0.504

Table 5.3 – Effectiveness results (macro-average precision, recall and F1-score)
of coreword extraction over eigenvector centrality-based keyword
extraction on the Krapivin2009 dataset. Bold font marks the best
performance in a column of a block. * indicates statistical significance
at p < 0.05 using the Student’s t-test with regard to the PageRank
baseline of the same column of the same block.

documents. We observe that the curve for the k-core with weighted edges (green,
solid circle) is systematically above the others, thus showing improvements in
Area Under the Curve (AUC) and not just in point estimates such as the F1-score.
The curve for k-core (orange, diamond) is overall below the other curves as the
algorithm tends to only find a few cores with a lot of vertices, lowering the
precision but insuring some minimum recall (its lowest value of recall is greater
than for the other curves).

5.2.3.4 Distribution of the number of keywords

Human annotators do not assign the same number of keywords to all docu-
ments. There is a variability that is partially due to varying document length
(the number increases with the length) as observed on the Hulth2003 but not
only. Indeed, when computing a distribution per document length, we can still
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Figure 5.4 – Effectiveness results (macro-average P/R curves) of coreword ex-
traction over eigenvector centrality-based keyword extraction on
the Hulth2003 dataset.

observe some dispersion. With PageRank, by extracting a relative number of
unigrams (top 33%), one accounts for varying length but does not fully capture
the variability introduced by human annotators while k-core does better. Sim-
ilarly, for the Krapivin2009 dataset, where documents are of the same length
(10-page), some authors may have chosen more keywords for their paper than
others because for instance there are alternative denominations for the concept(s)
developed in their work and as a result more keywords.

Figure 5.5 shows groups of 3 box plots computed on the Hulth2003 dataset.
In each group, the left one corresponds to PageRank (in blue, similar results
for HITS), the middle one to human annotators (white) and the right one to
k-core with weighted edges (green). We do not show any box plot for k-core
with unweighted edges since the method tends to overestimate the number of
keywords (higher recall, lower precision). For space constraints and also for
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Figure 5.5 – Distribution of the number of keywords assigned by human anno-
tators (middle, white) versus extracted (a) via PageRank (left, blue)
and (b) via k-core with weighted edges (right, green) for different
document lengths (binned by quartile) on the Hulth2003 dataset.

sparsity reasons, we binned the document lengths by quartile (i. e. the bins are
not of equal range but contains the same number of documents – 25% each).

As expected, the number of keywords for a given bin varies little for PageRank
– the increase in median value across the bins being due to the baseline taking
the top third unigrams, relative number that increases with the document length.
For k-core with weighted edges, we observe that the variability is taken much
more into account: the first, second and third quartiles’ values for the number of
keywords are much closer to the golden ones. For PageRank and HITS, it would
be much harder to learn the number of keywords to extract for each document
while it is inherent to graph degeneracy. Alone, these results would not mean
much but because higher effectiveness has already been established through
consistent and significantly higher macro-average F1-scores, they support our
claim that k-core is better suited for the task of keyword extraction because of
its adaptability to the graph structure and therefore to the document structure.
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5.2.4 Highlights, current limitations and future work

Similarly to previous approaches, we capitalized on the graph-of-words rep-
resentation to extract central terms from documents. However, by retaining
only the main core of the graph, we were able to capture more cohesive sub-
graphs of vertices that are not only central but also densely connected. Hence,
the extracted corewords are more likely to form keyphrases and their number
adapts to the graph structure, as human annotators tend to do when assigning
keywords to the corresponding document.

As a final example, here are the stemmed unigrams belonging to the main core
of the graph-of-words corresponding to the paper we published on this work
(references and captions excluded): {keyword, extract, graph, represent, text, weight,
graph-of-word, k-core, degeneraci, edg, vertic, number, document}. Using PageRank,
“work” appears in the top 5, “term” and “pagerank” in the top 10, and “case”
and “order” in the top 15. Existing methods tend to extract central keywords
that are not necessarily part of a cohesive subgraph as opposed to our proposed
approach, which provides closer results to what humans do on several aspects.

limitations Our main regret in this work was that most of the main cores
were connected graphs, even on 10-page long ACM papers, i. e. with a single
component, while we were expecting to extract sets of keywords, one per
(sub)topic ideally. Moreover, as tested in practice when developing a Web
browser plugin based on coreword extraction, the end users want unprocessed
keyphrases, not a set of stemmed keywords and therefore the reconciliation
post-processing step mentioned in Section 5.2.3.1 needs to be solved as well.
Content extraction from a Web page turned out to be also a challenge as the
core text might be surrounded by other “noisy” textual elements as opposed to
abstracts and full papers, but this is another research issue in itself.

future work Possible extension of this work would be the exploration of
the clusters of keywords in the top cores (even in a single component) to elect
representatives per cluster for topic modeling following the approach from Z.
Liu et al. (2009). Also, we could explore alternative definitions of the degree to
keep the good recall of the unweighted graph and the precision of the weighted
one, capitalizing on the generalized cores of Batagelj and Zaveršnik (2002) that
work for additional definitions of the degree.
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6
L E A R N I N G PAT T E R N S F R O M G R A P H - O F - W O R D S

In this chapter, we learn classification patterns in text from the graph-of-
words representation of documents. We first present the state-of-the-art
approaches to obtain a classifier from supervised learning on labeled data.

We then challenge the traditional feature space used for Text Categorization (TC)
by considering subgraphs of graph-of-words as features and the task as a graph
classification problem. Additionally, we show how we can capitalize on the
coreword extraction technique introduced in Chapter 5 to reduce the dimension
of the feature spaces for little to no cost in prediction performances. Finally, we
tackle the sparsity issue that arises when classifying short documents or when
little training data is available by proposing a convolutional sentence kernel on
syntactic graph-of-words based on distances in word embeddings.

6.1 classification from supervised learning

In this section, we assume a classification task for which we have already-
classified examples and the goal is to obtain a model capable of predicting
class labels for unseen examples. The task is usually split into two components:
(1) feature extraction, i. e. choose a set of common features to describe each
example; and (2) model learning, i. e. produce an automated system that can
correctly classify the data we have and make good predictions about the data
we do not have. Since we have ground-truth labels for a set of examples, we
consider the task as a supervised problem, i. e. learning a model on a labeled
training set, tuning its potential parameters on a validation set and evaluating it
on a test set (in a typical 60-20-20 split or 80-20 with cross-validation on the 80%
training+validation set), as opposed to an unsupervised approach like the one
we adopted for single-document keyword extraction in Chapter 5.

feature space Throughout Section 6.1, we assume we have already chosen
the set of features, i. e. the examples are represented as feature vectors ( fk)k∈J1,pK
in a p-dimensional feature space. Typically, for TC, examples are documents
(denoted by d and represented as unigram bag-of-words), p = |V | and each
fk corresponds to a unique unigram of the vocabulary. In this context, the
collection D can thus be seen as a (sparse) document-term matrix of dimension
N × p; each feature vector constituting a row of this matrix. The sparsity comes
from the fact that a document only contains a few terms of the vocabulary and
thus a lot of 0s in its associated feature vector. In the rest of the section, we will
be taking TC as our use case for classification since this was the application we
considered in our research but most of the content applies to the general case,
e. g., examples could be graphs and features subgraphs if we were to classify
networks.
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6.1.1 Probabilistic classifiers

We present in this section classifiers that rely on a probabilistic formulation
of the problem and on maximizing the likelihood of the parameters given the
observed data.

6.1.1.1 Bayesian formulation

Given a document d and a set of categories C, for single-label classification, we
want to predict its most likely class label c∗ ∈ C, i. e. the category with maximum
a posteriori probability P(c|d) – we will use the caret symbol to signify that we
only have access to an estimate P̂ of the true probability P, estimate computed
on a training set typically. In other words, we want to find the category c∗ such
that:

c∗ = arg max
c∈C

(
P̂(c|d)

)
= arg max

c∈C

(
P̂(c)× P̂(d|c)

P̂(d)

)
(Bayes’ rule)

= arg max
c∈C

(
P̂(c)× P̂(d|c)

)
(P̂(d) same for all c) (6.1)

Bayes’ rule encompasses the fundamental idea behind supervised Machine
Learning (ML). In the end (e. g., on a test set), we want a model that makes
predictions given the data (from P(c|d), the posterior probability). And to learn
this model, we consider the data given the predictions that we have (from P(d|c),
the likelihood, estimated typically on a training set); hence the swap between
c|d and d|c. Equation 6.1 can be interpreted as a generative process since we
model explicitly the joint probability P(d, c): to generate a document d, we
first choose a class label c with probability P(c) (the prior) and then, given this
category, we choose a document according to some distribution P(d|c). Note
that in the second equation above, it is fine to drop the denominator P(d) (the
evidence) because it is the same for all classes and we are only interested in the
classification decisions (arg max), not the probability estimates themselves.

Generally speaking, in ML, assuming a p-dimensional binary feature space of
(very) high dimension, we are trying to estimate P( f1, . . . , fp|c), which would
require estimating O(2p × |C|) parameters in practice. This could only be
estimated if a very, very large number of training examples were available. One
solution is to tackle the problem “naively” by making additional assumptions,
hence the common Naive Bayes (NB) denomination described next.
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6.1.1.2 Naive Bayes

A Naive Bayes model assumes conditional independence between the fea-
tures: each of the attributes it uses are conditionally independent of one another
given the class label, which means:

P( f1, . . . , fp|c) =
p

∏
k=1

P( fk|c) (6.2)

The assumption of conditionally independent features is often violated in prac-
tice but the model still performs well enough in general. This has been explained
by Friedman (1997) and Domingos and Pazzani (1997) by the fact that binary
classification estimation is only a function of the sign of the function estimation
and therefore the function approximation can still be poor while classification
accuracy remains high. Under this assumption, we now only have O(p× |C|)
parameters to estimate, which is a lot more practical.

6.1.1.3 Bernoulli vs. Multinomial Naive Bayes

There are two standard Naive Bayes processes in TC to model the generation
P(d|c) of a document given a class. Intuitively, because of the choice of doc-
ument representation (bag-of-words), we are already used to consider terms
independently of one another in a document.

bernoulli The first process considers |V | binary random variables Et indi-
cating presence (Et = 1) or absence (Et = 0) of each vocabulary term t in the
document. Assuming that each of these random variables is independent of
one another given the class, the Naive Bayes document generation model cor-
responds to a process following a multivariate Bernoulli distribution. Indeed,
each variable Et follows a Bernoulli distribution such that:

P(Et = et|c) = P(T = t|c)et (1−P(T = t|c))1−et , et ∈ {0, 1} (6.3)

where T is a categorical random variable that can take any of the vocabulary
term as value. This results in:

P(d|c) = ∏
t∈V

P(t|c)et (1−P(t|c))1−et (Bernoulli) (6.4)

multinomial The second process considers |d| successive draws with re-
placement of any of the vocabulary term t with probability P(T = t|c) or P(t|c)
for short. Basically, for every successive token position in the document, we
pick a term from the vocabulary. We have to make a first assumption known
as positional independence. That is, the conditional probabilities of a term
given a class are the same, regardless of its position in the document. Indeed,
we considered that between each trial the probabilities P(t|c) do not change
based on the position (hence a single categorical random variable T). This is
fine because the position of a term in a document does not carry information
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about the class by itself since we considered terms independently of each other
anyway. This also has practical reasons: in terms of probability estimation, the
contrary would pose a problem of data sparsity since we would need training
data in which every word appears in every position of every document.

Moreover, the generative process needs an additional step that generates a
document length according to some distribution P(|d||c). When this is taken
into account, researchers have been assuming that the document length does not
depend on the class and thus considered P(|d|) instead (McCallum and Nigam,
1998; Schneider, 2003; Metsis et al., 2006). This is an additional over-simplistic
assumption, which is more questionable in spam filtering. For example, the
probability of receiving a very long spam message appears to be smaller than
that of receiving an equally long ham message (Metsis et al., 2006).

The |V | categorical random variables Xt indicate the number of times each
possible outcome t is observed over the |d| trials (i. e. the number of times
the term t occurs in the document – its term frequency t fd(t)). Assuming
that each draw is independent of one another given the class, the Naive Bayes
document generation model corresponds to a process following a multinomial
distribution. In NLP, this corresponds to having a unigram language model per
class for document generation. This results in:

P(d|c) = P(|d|) |d|!
∏t∈V t fd(t)!

∏
t∈V

P(t|c)t fd(t) (Multinomial) (6.5)

interpretations The two models have a very different interpretation in
terms of how to generate a document given a class and the random variables
considered. In particular, the multinomial model takes into account multiple
occurrences of the same term but not the Bernoulli one, which only states that a
term appears (or not) in a document regardless of its position(s) and number of
occurrences.

On one hand, as noted by McCallum and Nigam (1998), consider, for example,
the occurrence of numbers in the Reuters newswire articles (a standard TC
dataset) and let’s assume that the tokenization process maps all strings of digits
to a single token “_NUMBER_” (a common pre-processing in NLP). Since
every news article is dated, and thus has a number, the special token in the
multivariate Bernoulli event model is uninformative. However, news articles
about earnings tend to have a lot of numbers compared to general news articles.
Thus, capturing frequency information of this token can help classification.

On the other hand, the Bernoulli model explicitly includes the non-occurrence
probability of vocabulary terms that do not appear in the document while the
multinomial one does not. In general, the Bernoulli model works better for short
documents and low-dimension vocabulary while the multinomial model scales
better to longer documents and larger feature space.
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maximum a posteriori Going back to the initial problem of finding the
category with maximum a posteriori probability P(c|d), the expression for the
multinomial model can be greatly simplified by removing all the terms that
do not depend on the class (hence why we do not consider that the document
length depends on the category):

c∗ = arg max
c∈C

(
P̂(c)×∏

t∈V
P̂(t|c)et

(
1− P̂(t|c)

)1−et

)
(Bernoulli) (6.6)

c∗ = arg max
c∈C

(
P̂(c)×∏

t∈V
P̂(t|c)t fd(t)

)
(Multinomial) (6.7)

oversimplified model Note that in quite a lot of resources (papers and
online material), the expression we see for NB for text categorization is different
from either model’s. It is usually of the form:

c∗ = arg max
c∈C

(
P̂(c)×∏

t∈d
P̂(t|c)

)
(6.8)

Basically, it omits the vocabulary terms that are absent from the document as
opposed to the Bernoulli model and the term frequencies as opposed to the
multinomial model. It still works in practice because of the high number of
terms in the vocabulary that result in practice in very low P̂(T = t|c) and thus
the term ∏t 6∈d

(
1− P̂(T = t|c)

)
close to 1. Additionally, it limits the number of

computations to the document length like for the multinomial model instead of
the vocabulary size.

multivariate poisson S.-B. Kim et al. (2003) proposed a Naive Bayes
multivariate Poisson model to capture the term frequencies that the Bernoulli
model was missing, modeling the number of occurrences of each vocabulary
term in a document as following a Poisson distribution:

P(d|c) = ∏
t∈V

P(t|c)t fd(t)

t fd(t)!
e−P(T=t|c) (Poisson) (6.9)

Eyheramendy et al. (2003) showed that for classification, this is similar to the
multinomial model.

6.1.1.4 Maximum Likelihood Estimate

Similarly to IDF, the probabilities P(t|c) are estimated on a training set using
the Maximum Likelihood Estimate (MLE), because these values makes the
observed data maximally likely. For the Bernoulli model, the probability should
reflect the chance of a term of occurring in a document of class label c regardless
of the actual number of times it occurs in documents while for the multinomial
model, terms occurring multiples times should be favored: this is exactly the
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difference between document frequency and collection frequency as introduced
in Section 2.1.3. Therefore, the two quantities can be estimated as follows:

P̂(t|c) = d f (t)
Nc

(Bernoulli) (6.10)

P̂(t|c) = c f (t)
Lc

(Multinomial) (6.11)

where Nc is the total number of documents of class label c in the training set
and Lc = ∑t c f (t) = ∑d |d| is the collection length (the length of the collection if
interpreted as one mega-document consisting of all the documents of class label
c in the training set appended to one another).

add-1 smoothed probabilities Again, similarly to IDF, unseen terms
in the training set will results in null estimates for P̂(t|c) and because of the
product, null estimates for P̂(d|c). Therefore, it is common in practice to smooth
the probability estimates using add-one Lidstone smoothing, resulting in:

P̂(t|c) = d f (t) + 1
Nc + 2

(Bernoulli) (6.12)

P̂(t|c) = c f (t) + 1
Lc + |V |

(Multinomial) (6.13)

The difference in value in the denominator reflects the difference in the number
of outcomes/types of random variables between the two models. For Bernoulli,
a term appears or not in a document, with a uniform probability of 1/2 (binary
random variable Et). For Multinomial, a term appears or not at a given position,
with a uniform probability of 1/|V | (categorical random variable T).

6.1.1.5 Log-likelihood

Even with smoothed probability estimates, the values will be very low in
practice, especially for large vocabulary. Therefore, multiplying these low values
will result in numerical underflow. To prevent this, people have been estimating
the log-likelihood instead since it does not change the classification decision
and computes a sum of negative real-valued numbers that is less likely to
overflow than the product to underflow. This results in:

c∗ = arg max
c∈C

(
log P̂(c) + ∑

t∈V
log P̂(t|c)et

(
1− P̂(t|c)

)1−et

)
(Bernoulli) (6.14)

c∗ = arg max
c∈C

(
log P̂(c) + ∑

t∈V
t fd(t)× log P̂(t|c)

)
(Multinomial) (6.15)

6.1.1.6 Online learning

Naive Bayes is a simple (as in high bias, low variance) yet effective model in
practice. In particular, for large-scale evolving datasets, it is straightforward to
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take into account new data by just updating the relevant counts, which makes it
suitable for online learning. It is also robust to noisy features and time-related
changes in the data, e. g., concept drift (Forman, 2006) – the gradual change over
time of the concept underlying a class – where the probability estimates will
re-distribute between themselves the probability mass based on present use of
terms (through their frequencies).

6.1.2 Geometric classifiers

We present in this section classifiers that rely on a geometric formulation of
the problem and on minimizing a regularized loss function.

6.1.2.1 Geometric formulation

This time, we consider documents as points living in a p-dimensional vector
space X (i. e. the feature space in ML). If we restrict ourselves to binary
classification (class label y ∈ Y = {−1,+1} associated to each point x ∈ X ),
we are trying to find an hyperplane (of equation θ>x + b = 0) that separates
the two classes as good as possible. The notion of “goodness” differs from
model to model: not only we want to make as little classification mistakes as
possible on the training set, i. e. maximize the goodness of fit, but we also want
to make in the future as little prediction mistakes as possible, i. e. minimize
the generalization error. For instance, if the problem is linearly separable on
the training set, there are still an infinite number of hyperplanes that separate
perfectly the data and which one to choose should be done according to its
generalization power. The p-dimensional vector θ corresponds to the feature
weight vector and b is the intercept (sometimes called bias – not to be confused
with the bias of the model, as in bias-variance trade-off).

notations The ML literature is full of notations and abuse of notations. In
particular, β and w are often used instead of θ (but in TM w usually corresponds
to a word and w to the corresponding word embedding). The class labels are
sometimes in {0, 1} but we think {−1, 1} simplifies the expressions better. As
for the intercept b, it is often integrated into the θ>x expression considering
(p + 1)-dimensional vectors with θ0 = b and x0 = 1 but since the intercept is
not regularized (as we will see later on in Section 6.1.2.3), you end up having
two different feature weights between the loss function and the penalty term.
To simplify the expressions, we propose to define instead hθ(x) = θ>x + b.
For regression, this actually corresponds exactly to the prediction while for
classification, its sign corresponds to the prediction (hence {−1, 1} for the class
labels). Finally, we will be using a lot the expression yhθ(x), which represents
the relative distance to the hyperplane – absolute if ‖θ‖2 = 1 and positive (resp.
negative) if x is well-classified (resp. mis-classified). It is also known as the
functional margin (Manning, Raghavan, et al., 2008, p. 322).
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6.1.2.2 Loss function

Given a model hθ, a. k. a. hypothesis (in our case a set of feature weights θ

defining a specific hyperplane hθ(x) = 0), we want to assess the risk R, i. e. the
expected classification error, ideally on X ×Y :

R(θ) =
∫
X×Y

`(y, hθ(x))d P(x, y) (6.16)

where ` : Y × R → R+ is a loss function that quantifies the discrepancy
between the true class label y and the prediction hθ(x). The problem of classifi-
cation is thus reduced to finding the hypothesis that minimizes the risk. But the
joint probability distribution P(x, y) = P(y|x)P(x) is unknown and the only
available information is contained in the training set {(xi, yi)}i=1...N . Therefore,
in practice, we estimate this risk on the training set, estimate known as the
empirical risk R̂ (Vapnik, 1991):

R̂(θ) =
N

∑
i=1

`(yi, hθ(xi)) (Empirical risk) (6.17)

We then try to minimize this risk, e. g., using (stochastic) gradient descent
(Perceptron, LLSF, LR, SVM) or coordinate descent (AdaBoost).

surrogate loss Naturally, we would want to use the 0-1 loss function for
classification error, i. e. simply penalizing by a single unit any mis-classification.
However, as shown on Figure 6.1, the 0-1 loss function is non-smooth, non-
convex and makes the minimization problem NP-hard. Therefore, in practice,
we use (convex) surrogate loss functions ˆ̀. Table 6.1 presents some common
surrogate loss functions used in binary classification and their associated classi-
fiers. Figure 6.1 plots their values as a function of yhθ(x). They are all convex
upper bounds of the 0-1 loss function. Generally speaking, when the training
examples are mis-classified (yhθ(x) < 0), the further away from the hyperplane,
the higher the loss: for the hinge and log loss, (almost) linear; for the squared
loss, quadratic; and for the exponential loss, well, exponential! Conversely, when
the training examples are well-classified (yhθ(x) > 0), the loss tends to decrease
as the distance to the separating hyperplane increases: the loss is actually null
for the hinge loss from yhθ(x) ≥ 1 but never for the log and exponential loss –
this actually explains one of the differences between LR and SVM: in the former,
all the training examples contribute to the decision boundary, even slightly
for the outliers, while in the latter, only the training examples for which the
loss is non-null, the so-called support vectors. Note that the squared loss is the
only symmetric loss and penalizes heavily points falling far from the separating
hyperplane, regardless of the actual classification, which explain why it is used
for linear regression mainly. We refer to (F. Li and Y. Yang, 2003) for a review of
the classification methods used in TC and expressed in terms of loss functions,
even for Naive Bayes.
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Name Expression Classifier
0-1 loss 1yhθ(x)<0 optimal
exponential loss e−yhθ(x) AdaBoost
hinge loss [1− yhθ(x)]+ SVM
log loss log(1 + e−yhθ(x)) LR
squared loss [1− yhθ(x)]2 LLSF

Table 6.1 – Common surrogate loss functions for binary classification.

6.1.2.3 Regularization

Only minimizing the empirical risk can lead to overfitting, that is, the model
no longer learns the underlying pattern we are trying to capture but fits the
noise contained in the training data and thus results in poorer generalization
(e. g., lower performances on the test set). For instance, along with some feature
space transformations to obtain non-linear decision boundaries in the original
feature space, one could imagine a decision boundary that follows every quirk
of the training data. Additionally, if two hypothesis lead to similar low empirical
risks, one should select the “simpler” model for better generalization power,
simplicity assessed using some measure of model complexity.

interpretation The concept of regularization encompasses all these ideas.
It can be interpreted as (1) taking into account the model complexity by
penalizing larger feature weights; (2) incorporating prior knowledge to help
the learning by making prior assumptions on the feature weights and their
distribution; and (3) helping compensate an ill-posed problem (e. g., typically
when X>X is not invertible in linear regression but X>X + λI is).

loss+penalty Regularization takes the form of additional constraints to the
minimization problem, i. e. a budget on the feature weights, which are often
relaxed into a penalty term controlled via a Lagrange multiplier λ. Therefore,
the overall expected risk (Vapnik, 1991) is the weighted sum of two components:
a loss function and a regularization penalty term, expression referred to as
“Loss+Penalty” by Hastie et al. (2009, p. 426).

l1 and l2 regularization The two most used penalty terms are known
as L1-regularization, a. k. a. Lasso (Tibshirani, 1996), and L2-regularization, a. k. a.
ridge (Hoerl and Kennard, 1970) or Tikhonov (Tikhonov and Arsenin, 1977), since
they correspond to penalizing the model with respectively the L1-norm and
L2-norm of the feature weight vector θ:

R̂(θ) =
N

∑
i=1

ˆ̀(yi, hθ(xi)) + λ
p

∑
j=1
|θj| (L1-regularized empirical risk)

R̂(θ) =
N

∑
i=1

ˆ̀(yi, hθ(xi)) + λ
p

∑
j=1

θj
2 (L2-regularized empirical risk)

91



learning patterns from graph-of-words

0.0

0.5

1.0

1.5

2.0

−1 0 1 2 3 4

yhθ(x)

lo
ss

0−1 loss
exponential loss
hinge loss
log loss
squared loss

Figure 6.1 – Common surrogate loss functions for binary classification.

As aforementioned, we do not try to control the size of the intercept b via
regularization because it describes the overall scale of the data rather than the
relationship between x and y (and this is the reason why making θ a (p + 1)-
dimensional vector is “dangerous”).

prior on the feature weights L1- (resp. L2-) regularization can be
interpreted as adding a Laplacian (resp. Gaussian) prior on the feature weight
vector. Indeed, given the training set, we want to find the most likely hyperplane,
i. e. more generally the hypothesis h∗ with maximum a posteriori probability:

h∗ = arg max
h∈H

(
P(h|{(xi, yi)}i=1...N)

)
= arg max

h∈H

(
P(y1, . . . , yN |x1, . . . , xN , h)P(h|x1, . . . , xN)

P(y1, . . . , yN |x1, . . . , xN)

)
= arg max

h∈H

(
P(y1, . . . , yN |x1, . . . , xN , h)P(h|x1, . . . , xN)

)
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= arg max
h∈H

(
P(y1, . . . , yN |x1, . . . , xN , h)P(h)

)
(6.18)

= arg max
h∈H

(
N

∏
i=1

(
P(yi|xi, h)

)
P(h)

)
(6.19)

= arg max
h∈H

(
N

∑
i=1

(
log P(yi|xi, h)

)
+ log P(h)

)

= arg min
h∈H

 N

∑
i=1

− log P(yi|xi, h)︸ ︷︷ ︸
loss function

 − log P(h)︸ ︷︷ ︸
regularization term

 (6.20)

We assumed in particular that the hypothesis does not depend on the examples
alone (Equation 6.18) and that the N training labeled examples are drawn from
an independent and identically distributed (i.i.d.) sample (Equation 6.19). In
that last form (Equation 6.20), we see that the loss function can be interpreted
as a negative log-likelihood and the regularization penalty term as a negative
log-prior over the hypothesis.

Therefore, if we assume a multivariate Gaussian prior on the feature weight
vector of mean vector 0 and covariance matrix Σ = σ2 I (i. e. independent
features of same prior standard deviation σ), we do obtain the L2-regularization:

P(h) =
1√

(2π)p|Σ|
e−

1
2 θ>Σ−1θ (Gaussian prior)

⇒ − log P(h) =
1

2σ2 θ> Iθ+
p
2

log(2πσ)

argmax
= λ‖θ‖2

2, λ =
1

2σ2 (L2-regularization) (6.21)

And similarly, if we assume a multivariate Laplacian prior on the feature weight
vector (i. e. θi ∼ Laplace(0, 1

λ )), we obtain L1-regularization. In practice, in both
cases, the priors basically mean that we expect weights around 0 on average.
The main difference between L1- and L2-regularization is that the Laplacian
prior will result in explicitly setting some feature weights to 0 (feature sparsity)
while the Gaussian prior will only result in reducing their values (shrinkage).

l0 regularization Note that when defining the L0-norm of a vector as
the number of non-zero values, L0-regularization corresponds to best subset
selection (Foster and George, 1994), i. e. limiting the number of features re-
gardless of their weights. However, the resulting minimization problem is
non-convex, actually NP-hard (Natarajan, 1995), which makes it difficult to solve
computationally.

6.1.2.4 Logistic regression

Binomial Logistic Regression (LR) is to some extent the equivalent of linear
regression for binary classification. Since the outcome y is categorical and
not numerical (the actual difference between a regression and a classification
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problem), we cannot directly apply standard linear regression techniques such
as LLSF to the outcome but instead, we could try to model P(y|x, h) as a linear
combination of the features, i. e. in the form of hθ(x). However, probabilities
are bounded and linear functions are not – any increment in any feature value
will result in an increment in the outcome. If we consider log P(y|x, h) then an
increment will result in a multiplication, which is closest to what we would
want, but log P(y|x, h) < 0 and linear functions are not. Finally, if we consider
log (P(y|x,h)/1−P(y|x,h)), the logit (a. k. a. log-odds) of P(y|x, h), then it can be a
linear combination of the features, which results in assuming that:

log
(

P(y|x, h)
1−P(y|x, h)

)
= hθ(x) (6.22)

⇒P(y|x, h) =
1

1 + e−yhθ(x)
(6.23)

π : s 7→ 1
1+e−s is known as the logistic function, which is a sigmoid function and

the probability can be directly linked to the value of yhθ(x) that corresponds
to the relative distance to the hyperplane (cf. Section 6.1.2.1). For instance, for
y = +1, the larger hθ(x), the further away from the hyperplane in the “right
direction” and the higher the probability P(y = +1|x, h) (lims→+∞ π(s) = 1).
Conversely, the further away from the hyperplane in the “wrong direction” and
the lower the probability P(y = +1|x, h) (lims→−∞ π(s) = 0).

generative vs. discriminative models As opposed to Naive Bayes
(NB) that models the joint probability P(y, x) and then picks the most likely
label y, LR models directly the posterior probability P(y|x). For classification,
this makes little difference but if we wanted to generate a new document
for a given class, P(y|x) could only tell us how likely a document belong
to a class, which is not enough. This is the difference between a generative
and a discriminative classifier. In particular, NB and LR form what is called a
“generative-discriminative” pair (A. Y. Ng and Jordan, 2002).

log loss In terms of loss function, plugging in the expression of P(y|x, h)
from Equation 6.23 into Equation 6.20 immediately gives the log loss presented
in Table 6.1. This is the power of expressing a prediction problem as a loss
function minimization one – by a simple change of loss function or regularization
term, one can consider successive regression or classification models easily.

6.1.2.5 SVM

Support Vector Machine (SVM) is a binary classifier that tries to maximize the
margin between the two classes around the separating hyperplane as illustrated
on Figure 6.2 (point color indicates the class label of the point, blue vs. red). The
idea was initiated in (Vapnik and Lerner, 1963) and further extended in (Vapnik,
1982) around the statistical learning theory. In its so-called “hard margin” initial
formulation, we assume a linearly separable problem (not necessarily in the
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θT x+ b = 0
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(a) Hard margin SVM.

θ′T x+ b′ = 0
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vectors

x1

x2

(b) Soft margin SVM.

Figure 6.2 – Illustration of hard and soft margin SVM, mis-classification allowed
if it increases the margin (soft) or not allowed at all (hard). We
assumed a linearly separable problem in some feature space.

original feature space X ). The distance between a point x0 and the hyperplane
θ>x + b = 0 corresponds to the projection of x0 − x onto θ, which is:

projθ (x0 − x) =
|θ>(x0 − x)|
‖θ‖2

=
|θ>x0 − θ>x)|
‖θ‖2

=
|θ>x0 + b|
‖θ‖2

maximizing the margin Since we are trying to maximize the margin
around the hyperplane, we can choose θ and b such that the positive examples
closest to the hyperplane satisfy θ>x+ b = +1 and the negative examples closest
to the hyperplane satisfy θ>x + b = −1. In this scenario, the margin is thus

2
‖θ‖2

and ∀i ∈ J1, NK, yi(θ>xi + b) ≥ 1. Maximizing the margin is equivalent to
minimizing its inverse or even better its squared inverse. Therefore, the problem
can be expressed as finding θ∗ such that:

θ∗ = arg min
θ∈Rp , b∈R

‖θ‖2
2

subject to 1− yi(θ>xi + b) ≤ 0 ∀i ∈ J1, NK (6.24)

which is a constrained convex minimization problem. We refer to the book of
Boyd and Vandenberghe (2004) for the theory behind convex optimization. We
note here that both the function to minimize and the constraints are convex.

lagrangian If we relax this constrained problem using a vector α of positive
Lagrange multipliers, we obtain:

θ∗ = arg min
θ∈Rp , b∈R

arg max
α∈RN

+

(
‖θ‖2

2 +
N

∑
i=1

αi

(
1− yi(θ>xi + b)

))
︸ ︷︷ ︸

L(θ, b, α)

(6.25)

The expression L(θ, b, α) (the Lagrangian) is very similar to the “Loss + Penalty”
formulation we have previously seen, with L2-regularization and hinge loss.
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This time, we can interpret the L2-regularization in terms of the inverse of
the margin width. Indeed, the wider the margin, the better the generalization
we can expect. α weights the loss over the regularization and has an inverse
behavior compared to the classic λ used in the “Loss+Penalty” formulation (cf.
Section 6.1.2.3).

optimality Resolving further the convex optimization problem, the Karush-
Kuhn-Tucker (KKT) conditions give us at the optimum:

— stationarity⇒ ∇θL = 0, ∂L
∂b = 0

⇒ θ = 1
2 ∑N

i=1 αiyixi, ∑N
i=1 αiyi = 0

— complementary slackness⇒ αi
(
1− yi(θ>xi + b)

)
= 0 ∀i ∈ J1, NK

dual formulation On one hand, plugging in the expression for θ from
the stationarity condition in the Lagrangian (Equation 6.25) gives the dual
formulation of the problem (the Wolfe):

α∗ = arg max
α∈RN

+

(
N

∑
i=1

αi −
1
4

N

∑
i=1

N

∑
j=1

αiαjyiyjxi>xj

)
(6.26)

We see that the dual maximization problem only depends on xi>xj but never
on xi alone. Moreover, if we were to change the feature space using a mapping
function φ : X → H, it would still only depends on 〈φ(xi), φ(xj)〉 and not
on φ(xi) alone (where 〈·, ·〉 is the inner product in H). Therefore, we define
a kernel function K : X ×X → R+ between two points such that K(xi, xj) =

〈φ(xi), φ(xj)〉 without explicitly having to define φ. We just need to make
sure that it is an inner product in some Hilbert space H, i. e. that K satisfies
Mercer’s condition (Mercer, 1909). This avoidance is known as the kernel trick,
which first appeared in (Aizerman et al., 1964) for the kernel perceptron and later
in (Boser et al., 1992) for the SVM. A kernel function can be interpreted as a
similarity metric between two objects (e. g., documents in our case) and the kernel
matrix corresponds to the symmetric matrix of dimension N × N filled with the
values K(xi, xj), basically the pairwise similarities. The choice of solving the
problem in the dual rather than in the primal depends on (1) the ratio between
N and p: if N � p then the kernel matrix might actually requires less memory
than the original X space (depending on its sparsity); and (2) if we want to
avoid the explicit feature mapping φ at the collection level – in many cases, when
defining specific kernels between objects, we still explicitly consider features
when comparing two objects but we do not need to list them all beforehand.
For instance, when measuring the similarity between two graphs based on the
number of shared random walks, we want to avoid to have to list all the random
walks of all the graphs in the training set at once.

support vectors On the other hand, the complementary slackness con-
dition gives birth to the support vectors. For any vector not on the margin
(i. e. 1− yi(θ>xi + b) < 0), the corresponding αi must be equal to 0 and thus
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the vector has no impact on the value of θ. Therefore, θ and the hyperplane it
defines only depends on the vectors on the margin, the ones that “support” it.
Moreover, on the validation and test set, we actually only need these vectors to
make predictions. As a rule of thumb, the ratio between the number of support
vectors and the total number of vectors in training gives an upper bound on the
generalization error (Vapnik, 1995). Indeed, intuitively, a model that needs only
a few support vectors to describe it can be expected to perform better on unseen
data.

hard vs . soft margin So far, we have been considering a linearly separa-
ble problem in some feature space, not necessarily the original one thanks to the
kernel trick. Cortes and Vapnik (1995) proposed a “soft margin” formulation of
the problem, allowing for some mis-classifications on the training set controlled
via some slack variables. In this configuration, any vector on the margin or
inside it or on the wrong side is a support vector. Actually, for better general-
ization power, even when the problem is linearly separable, it might better to
mis-classify or at least have an example within the margin if it increases greatly
the margin width as illustrated on Figure 6.2b.

multi-class classification SVM is designed for binary classification
since its hypothesis corresponds to a separating hyperplane. As aforementioned,
TC is in general a multi-class classification problem with |C| categories. Rather
than extending the definition of the 0-1 loss and its convex upper bounds for
the multi-class problem, people have been training instead multiple binary
classifiers, either (|C|2 ) classifiers in a one-vs-one scenario, i. e. the machine
learns a model for each pair of categories, (Friedman, 1996) or |C| classifiers in a
one-vs-all (a. k. a. one-vs-the-rest) scenario, i. e. the machine learns a model for
each category considering the data for all the other categories as just negative
examples. The former requires more classifiers but they are trained on less
data each. Between all the classifiers’ outputs, we then select the category with
highest probability, probability obtained from the prediction hθ(x) transformed
using the logistic function from Section 6.1.2.4 (Platt, 1999). Note that the kernel
matrix only needs to be computed once in any case.

6.2 text categorization as a graph classification problem

So far, we have been reviewing the different approaches to learn a classi-
fication model from labeled data. We took as supporting example the task
of Text Categorization (TC) where features were terms of the vocabulary and
documents feature vectors. In this section, we consider the task of TC as a graph
classification problem. By representing documents as graph-of-words instead of
historical n-gram bag-of-words, we extract subgraphs as features, which turned
out empirically to be more discriminative than standard n-grams. The learning
part is the same but the feature space is different. This work was presented in
(Rousseau, Kiagias, et al., 2015).
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tw-idf While still considering bag-of-words document representation and
unigram features, the first idea that comes to mind is to use TW-IDF instead of
TF×IDF as a term weighting scheme, i. e. graph-based feature values extracted
from graph-of-words document representations like we did for ad hoc IR in
Chapter 4. This has already been explored by Hassan et al. (2007), Valle and
Öztürk (2011), Amancio et al. (2011), and Malliaros and Skianis (2015) with
various centrality measures (cf. Section 5.1.2). Therefore, we decided to go
beyond and consider subgraphs as features instead and better capitalize on the
graph representation.

6.2.1 Model definition

For text categorization, we represented each document as an unweighted
undirected graph-of-words with a fixed sliding window of size 4 (cf. Figure 3.1
for illustration). We did not consider edge weight so as to simplify the definition
of subgraph matching between documents. Indeed, in graph classification,
especially when classifying chemical compounds, researchers have been making
a distinction between edge labels, e. g., between covalent bonds C–C and C=C,
but in our case the weights are numerical and not categorical, which would need
to be taken into account. For instance, if two edges between the same terms
have different weights, can we still consider it a match? If so, does it depend on
the difference between the weights? Questions that are not straightforward and
therefore left for further research. As for edge directionality, since the goal is to
relax the definition of n-grams and capture for instance word inversion, we did
not consider it either on purpose. We present next an overview of the literature
on graph classification and then the procedure we followed to extract the most
frequent subgraphs of a collection of graphs that will serve as features and to
control the minimum document frequency.

6.2.1.1 Literature review on graph classification

Graph classification corresponds to the task of automatically predicting the
class label of a given graph. The learning part in itself does not differ from other
supervised learning problems and most proposed methods deal with the feature
extraction part. They fall into two main categories: approaches that consider
subgraphs as features and graph kernels.

subgraphs as features The main idea is to mine frequent subgraphs and
use them as features for classification, be it with Adaboost (Kudo, Maeda, et al.,
2004) or a linear SVM (Deshpande et al., 2005). Indeed, most datasets that
were used in the associated experiments correspond to chemical compounds
where repeating substructure patterns are good indicators of belonging to one
particular class. Some popular graph pattern mining algorithms are gSpan
(Yan and Han, 2002), FFSM (Huan et al., 2003) and Gaston (Nijssen and Kok,
2004). The number of frequent subgraphs can be enormous, especially for large
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graph collections, and handling such a feature set can be very expensive. To
overcome this issue, recent works have proposed to retain or even only mine
the discriminative subgraphs, i. e. features that contribute to the classification
decision, in particular gBoost (Saigo et al., 2009), CORK (Thoma et al., 2009) and
GAIA (Jin et al., 2010). However, when experimenting, gBoost did not converge
on our larger datasets while GAIA and CORK consider subgraphs of node size
at least 2, which exclude unigrams in the case of graph-of-words, resulting in
poorer performances. Moreover, all these approaches have been developed for
binary classification, which meant mining features as many times as the number
of classes instead of just once (one-vs-all learning strategy). In our research,
we tackled the scalability issue differently through an unsupervised feature
selection approach to reduce the size of the graphs and a fortiori the number of
frequent subgraphs (cf. Section 6.3).

graph kernels Gärtner et al. (2003a) proposed the first kernels between
graphs (as opposed to previous kernels on graphs, i. e. between nodes) based
on shared random walks to tackle the problem of classification between graphs.
Other sub-structures were proposed later on, including subtrees (Ramon and
Gärtner, 2003), cycles (Horváth et al., 2004) and shortest paths (Borgwardt and
Kriegel, 2005). In parallel, the idea of marginalized kernels was extended to
graphs by Kashima et al. (2003) and by Mahé et al. (2004). We refer to the
survey by Vishwanathan et al. (2010) for an in-depth review of the topic and in
particular its limitations in terms of number of unique node labels, which make
them unsuitable for our problem as tested in practice (limited to a few tens of
unique labels compared to hundreds of thousands for us). Nevertheless, with
some colleagues, we recently started to explore shortest-path kernels between
graph-of-words with promising results in a wide range of applications based on
document similarity, leading to a paper submission (Meladianos et al., 2015b).

applications to nlp Kudo and Y. Matsumoto (2004) and S. Matsumoto
et al. (2005) used as features frequent subtrees extracted from dependency and
syntactic parse tree representations, i. e. syntactic graph-of-words. Similarly,
Jiang et al. (2010) and Arora, Mayfield, et al. (2010) mined frequent subgraphs
from their annotation graphs that are very close to respectively parse and
dependency trees, i. e. still syntactic graph-of-words. The work of Markov et al.
(2007) is perhaps the only one really close to what we are trying to achieve here.
They capitalized on the statistical graph-of-words definition from Schenker (2003)
to extract frequent subgraphs using their own supervised frequent subgraph
miner, features subsequently fed to NB and C4.5 (a type of tree-based classifiers).
In all cases though, the choice of the support value, which controls the total
number of features and can potentially lead to millions of subgraphs in the case
of text categorization datasets, was never properly discussed and left to the user.
Moreover, subgraphs of syntactic graph-of-words have a different interpretation
than the one we made in Section 3.2.3 and therefore it is harder to compare
them directly with the standard n-gram features.
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6.2.1.2 Unsupervised subgraph feature mining using gSpan

We considered the task of TC as a graph classification problem by representing
textual documents as graph-of-words and then extracting subgraph features
to train a graph classifier. Each document is a separate graph-of-words and
the collection of documents thus corresponds to a set of graphs. Therefore, for
larger datasets, the total number of graphs increases but not the average graph
size (the average number of unique terms in a text), assuming homogeneous
datasets.

note on kernels Because the total number of unique node labels corre-
sponds to the number of unique terms in the collection in our case, graph
kernels are not suitable for us as verified in practice using the MATLAB code
made available by Shervashidze (2009). We therefore only explored the methods
that consider subgraphs as features.

intuition Repeating substructure patterns between graphs are intuitively
good candidates for classification since, at least for chemical compounds, shared
subparts of molecules are good indicators of belonging to one particular class,
e. g., predicting carcinogenicity in molecules (Helma et al., 2001). We assumed
it would the same for text. Indeed, subgraphs of graph-of-words correspond
to sets of words co-occurring together, just not necessarily always as the same
sequence like for n-grams – it can be seen as a relaxed definition of a n-gram
to capture additional variants because of word inversion and subset matching for
instance (cf. Section 3.1.1).

subgraph matching In graph classification, it is common to introduce a
node labeling function µ to map a node id to its label. For instance, consider
the case of chemical compounds (e. g., the benzene C6H6). Then in its graph
representation (its “structural formula”), it is crucial to differentiate between
the multiple nodes labeled the same (e. g., C or H). In the case of statistical
graph-of-words, node labels are unique inside a graph since they represent
unique terms of the document and we can therefore omit these functions since
they are injective in our case and we can substitute node ids for node labels.
In particular, the general problem of subgraph matching, which defines an
isomorphism between a graph and a subgraph and is NP-complete (Garey and
D. S. Johnson, 1990), can be reduced to a polynomial problem when node labels
are unique. In our experiments, we used the standard algorithm VF2 developed
by Cordella et al. (2001).

gspan We used gSpan, graph-based Substructure pattern (Yan and Han,
2002), as frequent subgraph miner like Jiang et al. (2010) and Arora, Mayfield,
et al. (2010) mostly because of its fast available C++ implementation from
gBoost (Saigo et al., 2009). Briefly, the key idea behind gSpan is that instead
of enumerating all the subgraphs and testing for isomorphism throughout the
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collection, it first builds for each graph a lexicographic order of all the edges
using Depth First Search (DFS) traversal and assigns to it a unique minimum
DFS code. Based on all these DFS codes, a hierarchical search tree is constructed
at the collection-level. By pre-order traversal of this tree, gSpan discovers all
frequent subgraphs with required support.

support Consider the set of all subgraphs in the collection of graphs, which
corresponds to the set of all potential features. Note that there may be overlap-
ping (subgraphs sharing nodes/edges) and redundant (subgraphs included in
others) features since we do not restrict their definition to induced subgraphs
(cf. Section 3.2.3). Because the size of this set is exponential in the number of
edges (just like the number of n-grams is exponential in n), it is common to only
retain or even mine the most frequent subgraphs (again, just like for n-grams
with a minimum document frequency (Fürnkranz, 1998; Joachims, 1998)). This
is controlled via a parameter known as the support, which sets the minimum
number of graphs in which a given subgraph has to appear to be considered as a
feature, i. e. the number of subgraph matches in the collection. Here, since node
labels are unique inside a graph-of-words, we do not have to consider multiple
occurrences of the same subgraph in a given graph. The lower the support, the
more features selected/considered but the more expensive the mining and the
training (not only in time spent for the learning but also for the feature vector
generation).

6.2.1.3 Unsupervised support selection

The optimal value for the support can be learned through cross-validation so
as to maximize the prediction accuracy of the subsequent classifier, making the
whole feature mining process supervised. But if we consider that the classifier can
only improve its goodness of fit with more features (the sets of features being
nested as the support varies), it is likely that the lowest support will lead to the
best test accuracy; assuming subsequent regularization to prevent overfitting
(cf. Section 6.1.2.3). However, this will come at the cost of an exponential
number of features as observed in practice. Indeed, as the support decreases,
the number of features increases slightly up until a point where it increases
exponentially, which makes both the feature vector generation and the learning
expensive, especially with multiple classes. Moreover, we observed that the
prediction performances did not benefit that much from using all the possible
features (support of 1) as opposed to a more manageable number of features
corresponding to a higher support. Therefore, we proposed to select the support
using the so-called elbow method, an unsupervised empirical selection method
previously introduced (cf. Section 5.2.2.3). Figure 6.3 (upper plots) in the
experiments section will illustrate this process.

multiclass scenario In standard binary graph classification, e. g., predict-
ing chemical compounds’ carcinogenicity as either positive or negative (Helma
et al., 2001), feature mining is performed on the whole graph collection as we
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expect the mined features to be able to discriminate between the two classes
(thus producing a good classifier). However, for the task of TC, there are usually
more than two classes (e. g., 118 categories of news articles for the Reuters-21578

dataset) and with a skewed class distribution (e. g., a lot more news related
to “acquisition” than to “grain”). Therefore, a single support value might lead
to some classes generating a tremendous number of features (e. g., hundreds
of thousands of frequent subgraphs) and some others only a few (e. g., a few
hundreds subgraphs) resulting in a skewed and non-discriminative feature set.
To include discriminative features for these minority classes, we would need an
extremely low support resulting in an exponential number of features because of
the majority classes. For these reasons, we decided to mine frequent subgraphs
per class using the same relative support (%) and then aggregating each feature
set into a global one at the cost of a supervised process (but which still avoids
cross-validated parameter tuning). This was not needed for the tasks of spam
detection and opinion mining since the corresponding datasets consist of only
two balanced classes.

6.2.2 Experiments

In this section, we present the experiments we carried out to validate our
proposed novel features. We first describe the datasets, the evaluation metrics,
the platform and the considered models. We then report the results we obtained
and discuss their interpretations.

6.2.2.1 Datasets, evaluation metrics, platform and models

datasets We used four standard text datasets: two for multi-class document
categorization (WebKB and R8), one for spam detection (LingSpam) and one for
opinion mining (Amazon) so as to cover all the main subtasks of TC. WebKB
consists of the 4 most frequent categories (“project”, “course”, “faculty” and
“student”) among labeled webpages from various CS departments – split into
2,803 for training and 1,396 for test (Cardoso-Cachopo, 2007, p. 39–41). R8 con-
sists of the 8 most frequent categories (“acq”, “crude”, “arn”, “grain” “interest”,
“money-fx”, “ship” and “trade”) of Reuters-21578, a set of labeled news articles
from the 1987 Reuters newswire – split into 5,485 for training and 2,189 for
test (Debole and Sebastiani, 2005). LingSpam consists of 2,893 emails classified
as spam or legitimate messages – split into 10 sets for 10-fold cross validation
(Androutsopoulos et al., 2000). Amazon consists of 8,000 product reviews over
four different sub-collections (books, DVDs, electronics and kitchen appliances)
classified as positive or negative – split into 1,600 for training and 400 for test
each (Blitzer et al., 2007).

evaluation metrics To evaluate the performance of our proposed ap-
proaches over standard baselines, we computed on the test set both the micro-
and macro-average F1-score (cf. Section 2.3.3.2). Because we are dealing with
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single-label classification, the micro-average F1-score corresponds to the accu-
racy and is a measure of the overall prediction effectiveness (cf. Section 2.3.3.2).
Conversely, the macro-average F1-score takes into account the skewed class label
distributions by weighting each class uniformly. The statistical significance of
improvement in accuracy over the n-gram SVM baseline was assessed using the
micro sign test considering one-sided p-values less than 0.05 to reject the null
hypothesis (cf. Section 2.3.4). For the Amazon dataset, we report the average of
each metric over the four sub-collections.

platform We developed our approaches mostly in Python using the igraph
library for the graph representation. For unsupervised subgraph feature mining,
we used the C++ implementation of gSpan from gBoost (Saigo et al., 2009).
Finally for classification and standard n-gram TC, we used scikit-learn, a
standard Python ML library. For all the datasets, the preprocessing steps
involved stop word removal and Porter’s stemming.

models In text categorization, standard baseline classifiers include k-Nearest
Neighbors (kNN) (Larkey and Croft, 1996), Naive Bayes (NB) (McCallum and
Nigam, 1998) and linear Support Vector Machine (SVM) (Joachims, 1998) with
the latter performing the best on n-gram features as verified in our experiments.
We used binary features on all datasets since TF×IDF weighting schemes are
less impactful in TC than in ad hoc IR and which set of normalizations to choose
is not consistent across datasets. Our interpretation is that in ad hoc IR people
are trying to rank the documents all relevant to a query, so somewhat similar
and therefore the frequency of a term is much more important than when trying
to cluster similar documents in the first place. Since our subgraph features
correspond to “long-distance n-grams” (cf. Section 3.2.3), we used linear SVMs
as our classifiers in all our experiments – the goal of our work being to explore
and propose better features rather than a different classifier.

6.2.2.2 Classification results

The two tables from Table 6.2 show the results on the four considered datasets.
The first three rows correspond to the baselines: unsupervised n-gram fea-
ture extraction and then supervised learning using kNN, NB (Multinomial but
Bernoulli yields similar results) and linear SVM. The last row “gSpan + SVM”
corresponds to our approach: (un)supervised subgraph-of-words feature extrac-
tion using gSpan and then supervised learning using linear SVM. gSpan mining
support values are 1.6% (WebKB|, 7% (R8|, 4% (LingSpam) and 0.5% (Amazon).
We see that our model is consistently better than the baselines on all datasets,
both in terms of accuracy and F1-score.
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Method
Dataset WebKB R8

Accuracy F1-score Accuracy F1-score
kNN (k=5) 0.679 0.617 0.894 0.705

NB (Multinomial) 0.866 0.861 0.934 0.839

linear SVM 0.889 0.871 0.947 0.858

gSpan + SVM 0.912* 0.882 0.955* 0.864

Method
Dataset LingSpam Amazon

Accuracy F1-score Accuracy F1-score
kNN (k=5) 0.910 0.774 0.512 0.644

NB (Multinomial) 0.990 0.971 0.768 0.767

linear SVM 0.991 0.973 0.792 0.790

gSpan + SVM 0.991 0.972 0.798* 0.795

Table 6.2 – Effectiveness results (accuracy and macro-average F1-score in test)
of long-distance n-grams over standard ones. Bold font marks the
best performance in a column. * indicates statistical significance at
p < 0.05 using the micro sign test against the SVM baseline of the
same column.

6.2.2.3 Unsupervised support selection

Figure 6.3 illustrates the unsupervised heuristic (elbow method) we used to
select the support value, which corresponds to the minimum number of graphs
in which a subgraph has to appear to be considered frequent. We noticed that
as the support decreases, the number of features increases slightly up until a
point where it increases exponentially. This support value, highlighted in black
square on the figures and chosen before taking into account the class label,
is the value we used in our experiments and for which we report the results
in Table 6.2. The lower plots provide evidence that the elbow method helps
selecting in an unsupervised manner a support that leads to the best or close to
the best accuracy (the dashed red line indicates the accuracy in test for the SVM
baseline).

6.2.2.4 Distribution of mined n-grams, standard and long-distance ones

In order to gain more insights on why the long-distance n-grams mined with
gSpan result in better classification performances than the baseline n-grams, we
computed the distribution of the number of unigrams, bigrams, etc. up to 6-
grams in the traditional feature set and ours (Figure 6.4a) as well as in the top 5%
features that contribute the most to the classification decision of the trained SVM
(Figure 6.4b). Again, a long-distance n-gram corresponds to a subgraph of size
n in a graph-of-words and can be seen as a relaxed definition of the traditional
n-gram, one that takes into account word inversion and subset matching for
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Figure 6.3 – Number of subgraph features/accuracy in test per support (%) on
WebKB (left) and R8 (right) datasets: black square correspond to the
selected support value chosen via the elbow method and the dashed
red line to the accuracy in test for the SVM baseline with n-grams.

instance. To obtain comparable results, we considered for the baseline n-grams
with a minimum document frequency equal to the support. Otherwise, by
definition, there are at least as many bigrams as there are unigrams and so forth.
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Figure 6.4 – Distribution of standard and long-distance n-grams among all fea-
tures and among the top 5% most discriminative features for SVM
on the WebKB dataset for various models.
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Figure 6.4a shows that our approaches mine way more n-grams than unigrams
compared to the baseline. This happens because with graph-of-words a subgraph
of size n corresponds to a set of n terms while with bag-of-words a n-gram
corresponds to a sequence of n terms. Figure 6.4b shows that the higher order
n-grams still contribute indeed to the classification decision and in higher
proportion than with the baseline. For instance, on the R8 dataset, {bank, base,
rate} was a discriminative (top 5% SVM features) long-distance 3-gram for the
category “interest” and occurred in documents in the form of “barclays bank cut
its base lending rate”, “midland bank matches its base rate” and “base rate of
natwest bank dropped”, pattern that would be hard to capture with traditional
n-gram bag-of-words.

6.2.3 Highlights, current limitations and future work

We tackled the task of text categorization by representing documents as
graph-of-words and then considering the problem as a graph classification one.
We were able to extract more discriminative features that correspond to long-
distance n-grams through frequent subgraph mining, controlling the support
via an unsupervised method.

limitations To the best of our knowledge, graph classification had never
been tested at that scale – thousands of graphs and tens of thousands of unique
node labels – and also in the multiclass scenario. For these reasons, we could
not capitalize on all standard methods, in particular graph kernels. Moreover,
mining all the original graphs for frequent subgraphs is an expensive process,
which led us to the unsupervised feature selection technique presented in the
next section.

future work We believe new kernels that support a very high number of
unique node labels could yield even better performances. It is in this spirit
that we recently started to explore with some colleagues shortest-path kernels
between graph-of-words with promising results that led to a paper submission
(Meladianos et al., 2015b).
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6.3 coreword extraction for feature selection

Inspired by our coreword extraction technique previously introduced in Chap-
ter 5, we thought of applying it on the graph-of-words representation to speed
up the subgraph mining by only considering subgraphs appearing in the main
cores. Even though we are dealing with unweighted graphs, the low precision
in terms of keyword extraction reported in Section 5.2.3.2 was not a concern,
especially with the high recall. Additionally, it turned out that this technique
could also be used as an unsupervised feature selection step for standard n-gram
features.

6.3.1 Subgraphs of main-core-of-words as features

scalability issue Since the main drawback of mining frequent subgraphs
for text categorization rather than chemical compound classification is the very
high number of possible subgraphs because of the size of the graphs and the
total number of graphs (more than 10x in both cases), we thought of ways to
reduce the graphs’ sizes while retaining as much classification information as
possible.

main core retention The graph-of-words representation is designed to
capture dependency between words, i. e. dependency between features in the
context of ML but at the document-level. Initially, we wanted to capture recur-
ring sets of words (i. e. take into account word inversion and subset matching)
and not just sequences of words like with n-grams. In terms of subgraphs,
this means words that co-occur with each other and form a dense subgraph as
opposed to a path like for a n-gram. Therefore, when reducing the graphs, we
need to keep their densest part(s) and that is why we considered extracting their
main cores. Compared to other density-based algorithms, retaining the main
core of a graph has the advantage of being linear in the number of edges, i. e. in
the number of unique terms in a document in our case – the number of edges is
at most the number of nodes times the fixed size of the sliding window, a small
constant in practice (cf. Section 5.2.1).

dimensionality reduction In our second approach, denoted as “MC
+ gSpan + SVM”, we repeat the same procedure as for “gSpan + SVM” from
Section 6.2.2.2 except that we mine frequent subgraphs (gSpan) from the main
core (MC) of each graph-of-words and then train a linear SVM on the resulting
features. Main cores can vary from 1-core to 12-core depending on the graph
structure, 5-core and 6-core being the most frequent (accounting for more than
60% of the main cores on all datasets). This yields results similar to the SVM
baseline as shown on Table 6.3 for a faster mining and training compared to
“gSpan + SVM” (6x faster on an Intel Core i5-3317U clocking at 2.6GHz and with
8GB of RAM). Table 6.4 shows the reduction in the dimension of the feature
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Method
Dataset WebKB R8

Accuracy F1-score Accuracy F1-score
linear SVM 0.889 0.871 0.947 0.858

gSpan + SVM 0.912* 0.882 0.955* 0.864
MC + gSpan + SVM 0.901

*
0.871 0.949

*
0.858

MC + SVM 0.872 0.863 0.937 0.849

Method
Dataset LingSpam Amazon

Accuracy F1-score Accuracy F1-score
linear SVM 0.991 0.973 0.792 0.790

gSpan + SVM 0.991 0.972 0.798* 0.795
MC + gSpan + SVM 0.990 0.973 0.800* 0.798
MC + SVM 0.990 0.972 0.786 0.774

Table 6.3 – Effectiveness results (accuracy and macro-average F1-score in test)
of long-distance n-grams over standard ones. Bold font marks the
best performance in a column. * indicates statistical significance at
p < 0.05 using the micro sign test against the SVM baseline of the
same column.

Dataset # subgraphs before # subgraphs after reduction
WebKB 30,868 10,113 67 %

R8 39,428 11,373 71 %
LingSpam 54,779 15,514 72 %
Amazon 16,415 8,745 47 %

Table 6.4 – Total number of subgraph features vs. number of subgraph features
present only in main cores along with the reduction of the dimension
of the feature space.

space and we see that on average less than 60% of the subgraphs are kept for
little to no cost in prediction effectiveness.

distribution of mined n-grams Figure 6.5 illustrates the distribution of
standard and long-distance n-grams among all features and among the top 5%
most discriminative features for SVM on the WebKB dataset. We see that even
when restricting to subgraph features from the main cores, there are still more
n-grams of higher order with our proposed approach, which means the feature
selection step retains the classification information.
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Figure 6.5 – Distribution of standard and long-distance n-grams among all fea-
tures and among the top 5% most discriminative features for SVM
on the WebKB dataset for various models.

110



6.3 coreword extraction for feature selection

Dataset # n-grams before # n-grams after reduction
WebKB 1,849,848 735,447 60 %

R8 1,604,280 788,465 51 %
LingSpam 2,733,043 1,016,061 63 %
Amazon 583,457 376,664 35 %

Table 6.5 – Total number of n-gram features vs. number of n-gram features
present only in main cores along with the reduction of the dimension
of the feature space on all four datasets.

6.3.2 Unsupervised n-gram feature selection

Additionally, we can capitalize on the coreword extraction technique to still
mine binary n-gram features for classification but considering only the terms
belonging to the main core of each document. In that setting, the graph-of-words
representation is only used as a pre-processing step to filter out unwanted terms.

dimensionality reduction Compared to most existing feature selection
techniques in the field (Y. Yang and Pedersen, 1997), it is unsupervised and
corpus-independent as it does not rely on any labeled data like Information
Gain (IG), Mutual Information (MI) or χ2 nor any collection-wide statistics like
IDF, which can be of interest for large-scale TC in order to process documents
in parallel, independently of each other. In some sense, it is similar to what
Özgür et al. (2005) proposed with corpus-based and class-based keyword selection
for TC except that we use here document-based keyword selection like Hulth and
Megyesi (2006) with its supervised keyword extraction technique from Hulth
(2003).

number of non-zero feature values Additionally, since a document
is only represented by a subset of its original terms, the number of non-zero
feature values per document also decreases, which matters for SVM, even for
the linear kernel, when considering the dual formulation or in the primal with
more recent optimization techniques (Joachims, 2006). Figure 6.6 shows the
distribution of non-zero features before and after the feature selection on the R8
dataset. Similar changes in distribution can be observed on the other datasets,
from a right-tail Gaussian to a power law distribution.
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Figure 6.6 – Distribution of non-zero n-gram feature values before and after
unsupervised feature selection (main core retention) on R8 dataset.
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6.4 convolutional sentence kernel from word embeddings

6.4 convolutional sentence kernel based on distances in word

embeddings for short text categorization

In this section, we tackle the sparsity issue in the n-gram feature space that
arises when classifying short documents or when little training data is avail-
able by proposing a convolutional sentence kernel based on distances in word
embeddings. Because of the absence of term repetition in sentences in general,
our usual statistical graph-of-words representation provides little to no added
value compared to the standard n-gram bag-of-words, even when considering
subgraph features. Therefore, in this specific scenario, we rather experimented
with syntactic graph-of-words and more specifically NLP dependency trees as
reported in our work (J. Kim et al., 2015).

As we have previously seen, in Text Categorization (TC), words (unigrams) and
phrases (n-grams) have been traditionally considered as document features and
subsequently fed to a classifier such as an SVM. In the SVM dual formulation
(cf. Section 6.1.2.5) that relies on kernels, i. e. similarity measures between
documents, a linear kernel can be interpreted as the number of exact matching
n-grams between two documents (since it is a dot product in the n-gram vector
space). For example, consider the two following sentences: ‘John likes Mary’
and ‘Mary likes John’. Then the kernel value between the two sentences is
3 for unigram features, same as the self-similarity (kernel value between the
first sentence and itself), while for bigram features it goes up to 3+2 for the
self-similarity, which is the main reason why we consider higher order n-grams
in the first place: to take into account some local word dependency to counter-
balance the term independence assumption behind the bag-of-words document
representation.

To consider more syntactically meaningful phrases, the NLP community
has also considered as n-grams downward paths in dependency trees rather
than sequences in the original text. Figure 6.7a illustrates the dependency
tree representation of the sentence ‘John likes hot beverages’. Moreover, this
representation also has the desirable effect of being more robust to the sparsity
issue we are interested in. Indeed, word synonymy can counteract the potential
of n-grams, e. g., considering ‘John likes hot beverages’ and ‘John likes warm
beverages’, the kernel value between the two sentences is only one more with
bigram features than with unigram features when using the original text because
of the use of different, yet semantically close, adjectives. However, if we were
to use the dependency tree representation, the kernel value would be 3+2 for
bigrams. Nevertheless, it is still problematic when inner nodes are different
as illustrated in Figure 6.7 with two sentences semantically close yet with low
linear kernel value because of word synonymy, especially at the root level.

We thus propose to relax the exact matching between words by capitalizing
on distances in a word embedding space. More specifically, we smooth the
implicit delta word kernel behind the linear sentence kernel to capture the
similarity between words that are different, yet semantically similar. Moreover,
we also take advantage of the dependency tree structure to capture the syntactic
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John
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hot
(a) ‘John likes hot beverages’

John

loves

drinks

warm
(b) ‘John loves warm drinks’

Figure 6.7 – Illustration of two dependency tree representations of semantically
close sentences yet with low linear kernel value because of word
synonymy.

information hidden in the sentence and to consider more meaningful phrases
than the ones extracted from the sequence of words (or set of words in a statistical
graph-of-words). We then aggregate these word and phrase kernels into sentence
and documents kernels through convolution. In the case of Figure 6.7, while
the baseline approach would find a kernel value between the two sentences of 1

with bigram features, our method would find a value close to 4+3!

6.4.1 Model definition

We define here our proposed word, phrase, sentence and document kernels
from distances in a word embedding space.

6.4.1.1 Related work

Siolas and d’Alché-Buc (2000) pioneered the idea of semantic kernels for text
categorization, capitalizing on WordNet (Miller, 1995) to propose continuous
word kernels based on the inverse of the path lengths in the tree rather than the
common delta word kernel used so far, i. e. exact matching between unigrams.
Bloehdorn, Basili, et al. (2006) extended it later to other tree-based similarity
measures from WordNet while Mavroeidis et al. (2005) exploited its hierarchical
structure to define a Generalized Vector Space Model kernel.

In parallel, Collins and Duffy (2001) developed the first tree kernels to compare
trees based on their topology (e. g., shared subtrees) rather than the similarity
between their nodes. Culotta and Sorensen (2004) used them as Dependency
Tree Kernel (DTK) to capture syntactic similarities while Bloehdorn and Moschitti
(2007) and Croce et al. (2011) used them on parse trees with respectively Semantic
Syntactic Tree Kernel (SSTK) and Smoothing Partial Tree Kernel (SPTK), adding
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node similarity based on WordNet to capture semantic similarities but limiting to
comparisons between words of same POS tag.

Similarly, Gärtner et al. (2003b) developed graph kernels based on random
walks and Srivastava et al. (2013) used them on dependency trees with Vector
Tree Kernel (VTK), adding node similarity based on word embeddings from
SENNA (Collobert et al., 2011) and reporting improvements over SSTK. The
change from WordNet to SENNA was supported by the recent progress in
word embeddings that are better suited for computing distances between words.
Word embeddings have achieved significant success at representing words in a
low-dimension dense Euclidean space emulating human semantic cognition as
opposed to the naive sparse one-of approach (with a space of dimension the size
of the vocabulary). They have proven to be practical for a wide variety of tasks
such as POS-tagging and chunking (Collobert et al., 2011), paraphrase detection
(Blacoe and Lapata, 2012) and sentiment analysis (Maas et al., 2011). Actually, in
our experiments, word2vec by Mikolov, Chen, et al. (2013) led to better results
than with SENNA for both VTK and our kernels. Moreover, it possesses an
additional additive compositionality property obtained from the Skip-gram
training setting (Mikolov, Sutskever, et al., 2013), e. g., the closest word to
‘Germany’ + ‘capital’ in the vector space is found to be ‘Berlin’. Throughout the
rest of this section, we assume word2vec as the word embedding – we initially
started exploring with SENNA (Collobert et al., 2011) but with less success. We
represent the embedding of a word w as w, i. e. a 300-dimension dense vector.

More recently, for short text similarity, Song and Roth (2015) and Kenter
and de Rijke (2015) proposed additional semantic meta-features based on word
embeddings to enhance classification.

6.4.1.2 Word Kernel (WK)

We define a kernel between two words as a polynomial kernel over a cosine
similarity in the word embedding space:

WK(w1, w2) =

[
1
2

(
1 +

〈w1, w2〉
‖w1‖‖w2‖

)]α

(6.27)

where α is a scaling factor. We have also tried Gaussian, Laplacian and sigmoid
kernels but they led to poorer results in our experiments. Note that a delta word
kernel, i. e. the Dirac function 1w1=w2 , leads to a document kernel corresponding
to the standard linear kernel over n-grams.

6.4.1.3 Phrase Kernel (PhK)

Next, we define a kernel between phrases consisting of several words. We
considered two types of phrases: (1) statistical phrases defined as contiguous
sequences of words in the original sentence; and (2) syntactic phrases defined as
downward paths in the dependency tree representation. With this dependency
tree involved, we expect to have phrases that are syntactically more meaningful.
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Note that the Vector Tree Kernel (VTK) from Srivastava et al. (2013) considers
random walks in dependency trees instead of downward paths, i. e. potentially
taking into account same nodes multiple times for phrase length greater than
two, phenomenon known as tottering.

Once we have phrases to compare, we may construct a kernel between them
as the product of word kernels if they are of the same length l. That is, we define
the Product Kernel (PK) as:

PK(p1, p2) =
l

∏
i=1

WK(w1
i , w2

i ) (6.28)

where wj
i is the ith word in phrase pj of length l.

Alternatively, in particular for phrases of different lengths, we may embed
phrases into the embedding space by taking a composition operation on the con-
stituent word embeddings. We considered two common forms of composition
(Blacoe and Lapata, 2012): vector addition (+) and element-wise multiplication
(�). Then we define the Composition Kernel (CK) between phrases as:

CK(p1, p2) = WK(p1, p2) (6.29)

where pj, the embedding of the phrase pj, can be obtained either by addition

(pj = ∑l
i=1 wj

i) or by element-wise multiplication (pj =
⊙l

i=1 wj
i) of its word em-

beddings. For CK, we do not require the two phrases to be of the same length
so the kernel has a desirable property of being able to compare ‘Berlin’ with
‘capital of Germany’ for instance.

6.4.1.4 Sentence Kernel (SK)

We can then formulate a sentence kernel in a similar way to Zelenko et
al. (2003). It is defined through convolution as the sum of all local phrasal
similarities, i. e. kernel values between phrases contained in the sentences:

SK(s1, s2) = ∑
p1∈φ(s1)
p2∈φ(s2)

λ1
ε λ2

η PhK(p1, p2) (6.30)

where φ(sk) is the set of either statistical or syntactic phrases (or set of ran-
dom walks for VTK) in sentence sk, λ1 is a decaying factor penalizing longer
phrases, ε = max{|p1|, |p2|} is the maximum length of the two phrases, λ2 is a
distortion parameter controlling the length difference η between the two phrases
(η = ||p1| − |p2||) inspired by the IBM model from statistical machine translation
(Brown, Della Pietra, et al., 1993) and PhK is a phrase kernel, either PK, CK+ or
CK�. Since the composition methods we consider are associative, we employ the
dynamic programming approach from Zelenko et al. (2003) to avoid duplicate
computations. If we limit the maximum length of phrases to L, the computation
of one kernel value between sentences of n words can be performed in O(n2L2d)
time.
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6.4.1.5 Document kernel

Finally, we sum sentence kernel values for all pairs of sentences between two
documents to get the document kernel. Once we have obtained all document
kernel values Kij between documents i and j, we may normalize them by

√
KiiKjj

as the length of input documents might not be uniform.

6.4.2 Experiments

In this section, we present the experiments we carried out to validate our
proposed sentence kernel. We first describe the datasets, the experimental
settings, the evaluation metrics and the considered models. We then report the
results we obtained and discuss their interpretations.

6.4.2.1 Datasets, experimental settings, evaluation metrics and models

datasets We considered four tasks: (1) binary sentiment analysis with a
movie review dataset of 10,662 sentences (PL05) (Pang and Lilian Lee, 2005)
and a product review dataset (Amazon) of 2,000 multi-line documents for 4

different product groups (Blitzer et al., 2007); (2) ternary sentiment analysis with
the SemEval 2013 Task B dataset (Twitter) containing 12,348 tweets classified
as positive, neutral, or negative (Nakov et al., 2013); (3) binary subjectivity
detection with a dataset of 10,000 sentences (PL04) (Pang and Lilian Lee, 2004)
and another of 11,640 sentences (MPQA) (Wiebe et al., 2005); and (4) seven-class
topic spotting with a news dataset (News) with 32,602 one-line news summaries
(Vitale et al., 2012).

experimental settings We used the FANSE parser (Tratz and Hovy,
2011) to generate dependency trees and the pre-trained version of word2vec 1,
a 300 dimensional representation of 3 million English words trained over a
Google News dataset of 100 billion words using the Skip-gram model and a
context size of 5. While fine-tuning the embeddings to a specific task or on a
given dataset may improve the result for that particular task or dataset (Levy,
Goldberg, and Dagan, 2015), it makes the expected results less generalizable
and the method harder to use as an off-the-shelf solution – re-training the
neural network to obtain task-specific embeddings requires a certain amount
of training data, admittedly unlabeled, but still not optimal under our scenario
with short documents and little task-specific training data available. Moreover,
tuning the hyperparameters to maximize the classification accuracy needs to be
carried out on a validation set and therefore requires additional labeled data.
Here, we are more interested in showing that distances in a given word vector
space can enhance classification in general. As for the dependency-based word
embeddings proposed by Levy and Goldberg (2014), we do not think they are
better suited for the problem we are tackling. As we will see in the results, we

1. https://code.google.com/p/word2vec#Pre-trained_word_and_phrase_vectors

117

https://code.google.com/p/word2vec#Pre-trained_word_and_phrase_vectors


learning patterns from graph-of-words

do benefit from the dependency tree structure in the phrase kernel but we still
want the word kernel to be based on topical similarity rather than functional
similarity.

To train and test the SVM classifier, we used the LibSVM library (Chang
and Lin, 2011) and employed the one-vs-one strategy for multi-class tasks. To
prevent overfitting, we tuned the parameters using cross-validation on 80% of
PL05 dataset (α = 5, λ1 = 1 for PK since there is no need for distortion as the
phrases are of same length by definition, and λ1 = λ2 = 0.5 for CK) and used the
same set of parameters on the remaining datasets. We performed normalization
for our kernel and baselines only when it led to performance improvements on
the training set (PL05, News, PL04 and MPQA).

evaluation metrics To evaluate the performance of our proposed ap-
proaches over standard baselines, we computed on the test set both the micro-
and macro-average F1-score (cf. Section 2.3.3.2). Because we are dealing with
single-label classification, the micro-average F1-score corresponds to the accu-
racy and is a measure of the overall prediction effectiveness (cf. Section 2.3.3.2).
Conversely, the macro-average F1-score takes into account the skewed class
label distributions by weighting each class uniformly. In the next subsection,
we will report accuracy on the remaining 20% for PL05, on the standard test
split for Twitter (25%) and News (50%) and from 5-fold cross-validation for
the other datasets (Amazon, PL04 and MPQA). We only report accuracy for space
constraints as the macro-average F1-scores led to similar conclusions (and except
for Twitter and News, the class label distributions are balanced). Results for
phrase lengths longer than 2 were omitted since they were marginally different
at best. Statistical significance of improvement over the bigram baseline with
the same phrase definition was assessed using the micro sign test considering
one-sided p-values less than 0.01 to reject the null hypothesis (cf. Section 2.3.4).
For the Amazon dataset, we report the average of each metric over the four
sub-collections.

models We considered (1) 3 phrase definition: statistical, syntactic and
random walk; (2) 3 phrase kernels: PK, CK+ or CK�; (3) 2 word kernels: delta
and polynomial; as well as (4) 2 phrase lengths: unigram and bigram. The typical
unigram and bigram baseline approaches correspond to the models with a delta
word kernel, i. e. exact matching between all the words of a phrase. The VTK
baseline capitalizes on a random walk phrase definition, i. e. a different function
φ(·) that enumerates all random walks in the dependency tree representation
following Gärtner et al. (2003a) whereas we only consider the downward paths.
To ensure a fair comparison, we used a polynomial word kernel and word2vec
for VTK as they led to better results than the originally proposed sigmoid kernel
and SENNA.
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Figure 6.8 – Test accuracy vs. number of training examples for our polynomial
word kernel vs. a delta word kernel (baseline) on the PL04 dataset,
both with bigram syntactic phrases.

6.4.2.2 Classification results

Table 6.6 presents the results from our convolutional sentence kernel and the
baseline approaches. The 3

rd row corresponds to DTK (Culotta and Sorensen,
2004) and the 4

th one to VTK (Srivastava et al., 2013), differing with our model
on the 9

th row only by the phrase definition. It shows good performance across
all datasets but its computation was more than 700% slower than with our
kernel.

Overall, we obtained better results than the n-gram baselines, DTK and VTK,
especially with syntactic phrases. With regard to phrase kernels, PK generally
produced better results than CK, implying that the semantic linearity and
ontological relation encoded in the embedding is not sufficient enough and
treating them separately is more beneficial. However, we believe CK has more
room for improvement with the use of more accurate phrase embeddings.

There was little contribution to the accuracy from non-unigram features,
indicating that large part of the performance improvement is credited to the
word embedding resolving the sparsity issue. This can be well observed with the
following experiment on the number of training examples. Figure 6.8 shows the
accuracy on the same test set (20% of the dataset) when the learning was done
on 1% to 100% of the training set (80% of the dataset) for our polynomial word
kernel (dashed curve) vs. a delta word kernel (plain curve) on the PL04 dataset,
both with bigram syntactic phrases. We see that our kernel starts to plateau
earlier in the learning curve than the baseline and also reaches the maximum
baseline accuracy with only about 1,500 training examples.

6.4.2.3 Computational complexity

Solving the SVM in the primal for the baselines requires O(NnL) time where
N is the number of training documents, n is the number of words in the doc-
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phrase phrase phrase word PL05 Amazon Twitter
definition kernel length kernel

statistical PK 1 delta 0.742 0.768 0.623

statistical PK 2 delta 0.739 0.765 0.611

syntactic PK 2 delta 0.748 0.791 0.646

random walk PK 2 poly 0.799 0.810 0.698

statistical PK 1 poly 0.789
*

0.797 0.776
*

statistical PK 2 poly 0.784
*

0.798 0.762
*

statistical CK+
2 poly 0.796

*
0.778 0.613

statistical CK� 2 poly 0.801*
0.783 0.757

*

syntactic PK 2 poly 0.796
* 0.813* 0.808*

syntactic CK+
2 poly 0.794

*
0.780 0.741

*

syntactic CK� 2 poly 0.797
*

0.774 0.744
*

phrase phrase phrase word News PL04 MPQA
definition kernel length kernel

statistical PK 1 delta 0.769 0.904 0.754

statistical PK 2 delta 0.766 0.907 0.754

syntactic PK 2 delta 0.767 0.910 0.757

random walk PK 2 poly 0.802 0.927 0.797

statistical PK 1 poly 0.806*
0.923

*
0.793

*

statistical PK 2 poly 0.801
*

0.926
*

0.794
*

statistical CK+
2 poly 0.792

*
0.917

*
0.796

*

statistical CK� 2 poly 0.793
*

0.918
*

0.794
*

syntactic PK 2 poly 0.805
* 0.927*

0.796
*

syntactic CK+
2 poly 0.788

*
0.918

*
0.794

*

syntactic CK� 2 poly 0.792
*

0.918
*

0.794
*

Table 6.6 – Accuracy results on the test set for PL05 (20%), standard test split
for Twitter (25%) and News (50%) and from 5-fold CV for the other
datasets (Amazon, PL04 and MPQA). Bold font marks the best perfor-
mance in a column. * indicates statistical significance at p < 0.01
using the micro sign test against the bigram baseline (delta word
kernel) with the same phrase definition of the same column.
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ument and L is the maximum phrase length considered. The computation of
VTK reduces down to power series computation of the adjacency matrix of the
product graph, and since we require kernel values between all documents, it re-
quires O(N2(n2d + n4L)) time where d is the dimension of the word embedding
space (300 for the word2vec version we used).

Our kernel is the sum of phrase kernels starting from every pair of nodes
between two sentences, for all phrasal lengths and distortions under the con-
sideration. By storing intermediate values of composite vectors, phrase kernel
can be computed in O(d) time regardless of the phrase length, therefore the
whole computation process has O(N2n2L2d) complexity. Although our kernel
has the squared terms of the baseline’s complexity, we are tackling the sparsity
issue that arise with short text (small n) or when little training data is available
(small N). Moreover, we were able to get better results with only bigrams (small
L). Hence, the loss in efficiency is acceptable considering significant gains in
effectiveness.

6.4.3 Highlights, current limitations and future work

We proposed a novel convolutional sentence kernel based on word embed-
dings that overcomes the sparsity issue, which arises when classifying short
documents or when little training data is available. We described a general
framework that can encompass the standard n-gram baseline approach as well
as more relaxed versions with smoother word and phrase kernels. Because we
targeted short documents, we could not capitalize on the statistical graph-of-
words we had been using so far but we switched to syntactic graph-of-words to
still capture some additional and meaningful word dependency.

limitations Our main regret in this work was that CK did not perform bet-
ter than PK, especially when increasing the maximum phrase length. Having a
phrase kernel than can compare phrases of different length, with an appropriate
distortion parameter, seems intuitively well-suited for overcoming the sparsity
issue. We think better phrase embeddings such as the one recently proposed
by Le and Mikolov (2014), Yin and Schütze (2014), and Yu and Dredze (2015)
would greatly help.

future work A direct follow-up might involve designing a new kernel
that puts more emphasis on the syntactic structure, e. g., having word kernels
taking into account POS tags, or devising a new convolution kernel with word
embeddings on a syntactic parse tree with appropriate similarity measures
between non-terminal nodes.
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7
C O N C L U S I O N S

In this chapter, we conclude the dissertation by first highlighting the main
findings uncovered during our research and reported in great details in the
previous chapters centered around our alternative document representation,

namely graph-of-words. We then mention the potential follow-ups of our
work as well as research directions we deem promising and to the best of our
knowledge uncharted at the time of the writing.

7.1 summary

The Ph.D. was the occasion to get accustomed to a certain level to the fields
of IR, ML, NLP and more generally TM. And while acquiring a better under-
standing of the state-of-the-art methods and baseline approaches, we were able
to either propose a unifying mathematical framework encompassing both the
TF-IDF and BM25 scoring functions or explore novel applications of the graph-
of-words representation in terms of term weighting normalizations, community
structure or more relaxed classification features.

composition of tf normalizations It was already known that the sem-
inal TF-IDF and BM25 scoring functions satisfy the same set of heuristic retrieval
constraints and we went further by explaining their sole difference in terms
of concave transformation and the order of composition between all the term
frequency normalizations. More generally, by explicitly proposing the function
composition mathematical operator to combine the various transformations
to apply, we think it makes it easier for researchers to specify which normal-
izations and in which order they used them when reporting results as the
TF×IDF denomination is way too vague, encompassing models ranging from
raw frequencies to fully normalized ones.

tw-idf When assessing a query term’s weight in a document, rather than
considering the overall term frequency of a word and then applying a concave
transformation to ensure a decreasing marginal gain in relevance, one should
instead consider for each word the number of distinct contexts of co-occurrence
with other words so as to favor terms that appear with a lot of other terms, i. e.
consider the node degree in the corresponding unweighted graph-of-words. In
particular, for ad hoc IR, we challenged TF-IDF and BM25 with a novel retrieval
model called TW-IDF where we replaced the normalized term frequency with a
graph-based term weight. The proposed scoring function appeared to require
(1) no concave transformation because an additional edge is added to the graph-
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conclusions

of-words only if the context of occurrence for the term is new, which holds
the same amount of information whatever the term weight value already is;
(2) no tuning for the pivoted document length penalization; as well as (3) no
lower-bounding regularization.

corewords When assigning keywords to full papers or even abstracts, re-
searchers tend to select as keywords not only central but also densely connected
nodes in the corresponding weighted graph-of-words, property captured in
our experiments by reducing each graph to its main core using the concept of
graph degeneracy. Rather than relying on more complex centrality measures,
we found out that it was more effective to capitalize on the community structure
of the network to find cohesive sets of nodes – interpreted as corewords of the
document – and more efficient to utilize the concept of k-core as opposed to
more complex community detection techniques.

long-distance n-grams From our experiments in text categorization, sub-
graphs of unweighted graph-of-words – interpreted as long-distance n-grams –
appear to be more discriminative features than standard n-grams, partly because
they can capture more variants of the same set of terms compared to fixed
sequences of terms and therefore appear in more documents. Not only for the
same support value, the proportion of higher order n-grams was superior when
considering graph-of-words over the standard bag-of-words but that remained
true in the top 5% most discriminative features for the SVM with subgraphs of
size 4 and 5, even when reducing beforehand the networks to their main cores
as an unsupervised feature selection step.

convolutional sentence kernel When classifying short documents
or when little training data is available, sparsity issues arise because of word
synonymy for instance. Therefore, we proposed to relax the exact matching be-
tween words by capitalizing on distances in word embeddings. More specifically,
we smooth the implicit delta word kernel behind the traditional n-gram linear
kernel to capture the similarity between words that are different, yet semanti-
cally similar. Moreover, we also took advantage of syntactic graph-of-words to
capture the dependency structure hidden in the sentence and to consider more
meaningful phrases than the ones extracted from the sequences of words in
bag-of-words or sets of words in statistical graph-of-words. We then aggregated
these word and phrase kernels into sentence and documents kernels through
convolution.
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7.2 future work

In this section, we briefly present the additional research ideas that came to
mind while conducting the research presented in this dissertation. Some of them
are direct follow-ups of our published works while others are more general and
might be worth another Ph.D.! They were left unexplored mostly because of
time but also sometimes because of the lack of actual applications to evaluate
on.

tw-idw As discussed in Section 4.2.3.2, we could challenge the document
independence assumption usually made in TM and consider a collection of
documents as a graph-of-documents instead of a bag-of-documents in order for
instance to compute an alternative to IDF. Following one of our previous works
(Rousseau and Vazirgiannis, 2013b), we could then envisage exploring term
weights based on TW×IDW rather than TF×IDF. This assumes in particular
that we have a graph-of-documents, even for Web-scale datasets, which is a
research issue in itself, especially if the document similarity capitalizes on the
graph-of-words representation, e. g., using the graph kernel we proposed in
Meladianos et al. (2015b).

cgow from hop-1 neighborhood As briefly mentioned in Section 3.1.1
and Section 6.4.1.1, word2vec is a recent word embedding space that has been
proposed by Mikolov, Chen, et al. (2013) and that is learnt using the Continuous
Bag-Of-Words (CBOW) model over phrases. We think learning word embed-
dings over a set of hop-1 neighborhoods using the corresponding Continuous
Graph-Of-Words (CGOW) model would yield a model that can better take into
account word inversion and subset matching for instance, similarly to what we
have observed in Chapter 6 for text categorization.

graph-of-words embeddings From word embeddings, researchers have
been deriving document embeddings, e. g., as a dimensionality reduction step
before classification, by considering the document as the centroid of its words
following the bag-of-words representation. We think it would be interesting to
derive a document embedding from its graph-of-words representation, e. g., as
a weighted centroid with weights based on the core number of each word.

better idf from word embeddings As described in Section 6.4, we
tackled the sparsity issue in short document categorization by capitalizing
on words embeddings to define a polynomial word kernel and basically take
into account word synonymy in the term frequency weights (J. Kim et al.,
2015). We think IDF could also benefit from word similarity since its estimation
proves difficult when processing short documents or when little training data is
available because it is harder to distinguish between a true rare word and a rare
word in the small collection with a lot of synonymous.
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conclusions

graph kernels with continuous node similarity As introduced
in Section 6.2.1.1, most of the existing graph kernels developed so far put the
emphasis on the topology of the network and considered delta kernels for
node similarity, including our proposed shortest-path graph-of-words kernel
(Meladianos et al., 2015b). The main reason is probably because continuous
node similarities made less sense in the case of chemical compounds, the data of
interest in most existing works. In the case of text, vertices correspond to words
and we could capitalize on word embeddings like we did with dependency trees
(J. Kim et al., 2015) to take into account node similarity on top of edge similarity,
the main challenge being in terms of efficiency as we would potentially need to
compare every path of one graph to every path of the other one.

community-based graph kernel As reviewed in Section 6.2.1.1, pro-
posed graph kernels are based on random walks, shortest paths, cycles or
subtrees. We believed it would be interesting to explore kernels based on graph
properties at a higher level and in particular based on communities. For text, our
initial experiments from coreword extraction showed single-component main
cores and not with multiple components that would correspond to the various
topics mentioned in the document as expected. Therefore, we lack a collection
of graphs where a similarity measure based on the community structure would
be relevant.

functional ml: learning to compose Our earliest published work
revolved around the functional composition of normalizations and its optimal
order to get the best scoring function for ad hoc IR (Rousseau and Vazirgiannis,
2013a). In practice, researchers have only proposed three normalizations so
far to satisfy a set of several heuristic retrieval constraints and therefore all the
combinations can be explored in a brute force manner. As briefly mentioned
in Section 4.1.4, with more transformations, we believe the machine could be
learning to compose in a functional ML scenario. Actually, at another level, we
could think of learning how to best compose several dimensionality reduction
steps for instance – in some sense, what happens in a multi-layer neural network
where each layer corresponds to a transformation applied on the input data.

7.3 epilogue

As mentioned in introduction, we firmly believe in the potential of machines,
the limits of humans and thus the need for intelligent machines, especially
when it comes to understand text, our preferred mean of information storage
and knowledge transfer. Throughout this dissertation, we have presented our
understanding of the research field associated to that quest and hopefully
reported findings that will help its comprehension, if not progress. A lot has
been accomplished by the community already but we are not done yet...
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symbol meaning

‖ · ‖0 L0-norm, i. e. number of non-zero values of a vector
‖ · ‖1, | · | L1-norm, i. e. length of a vector
‖ · ‖2, ‖ · ‖ L2-norm, i. e. Euclidean length of a vector
‖ · ‖∞ L∞-norm, i. e. maximum value of a vector

machine learning

symbol meaning

c class label, a. k. a. category
C set of all class labels
y binary class label ∈ {−1,+1}
Y set of all binary class labels ∈ {−1,+1}
p number of features
x example, i. e. a p-dimensional feature vector
X set of all examples
N total number of training examples
θ feature weights
b intercept
[·]+ max(0, ·)

text mining

symbol meaning

d document
D collection: set of all documents
N collection size: number of documents in D
|d| document length: number of terms in a document
L collection length: sum of all document lengths of D
w word
t term: a processed word
V vocabulary (a. k. a. lexicon or dictionary): a set of terms
n number of unique terms in a document
t f (t, d) term frequency: number of occurrences of t in d
c f (t) collection frequency: number of occurrences of t in D
d f (t) document frequency: number of documents with t
q query
r̂(d, q) scoring function: estimate of relevance r of d w. r. t. q

155





A C R O N Y M S

Acc Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

AP Average Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

AUC Area Under the Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

BOW Bag-Of-Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CDF Cumulative Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CK Composition Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

CS Computer Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

DCV Document Cut-off Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

DET Detection Error Trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

DFS Depth First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

DTK Dependency Tree Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Fβ F-measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

F1 F1-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

FN False Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

FP False Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

IDF Inverse Document Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

i.i.d. independent and identically distributed . . . . . . . . . . . . . . . . . . . . . . . 93

IG Information Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

IR Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

KKT Karush-Kuhn-Tucker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

kNN k-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

KwE Keyword Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

LLSF Linear Least Square Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

LOWESS Locally Weighted Scatterplot Smoothing. . . . . . . . . . . . . . . . . . . . . . .54

LR Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

LSI Latent Semantic Indexing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

MAP Mean Average Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

MI Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

ML Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

MLE Maximum Likelihood Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

NB Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

NLP Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

P Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

PK Product Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

P/R Precision/Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

P@10 Precision at 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

157



Bibliography

POS Part-Of-Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

QF Query Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

R Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ROC Receiver Operating Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

SERP Search Engine Results Page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

SSTK Semantic Syntactic Tree Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

SPTK Smoothing Partial Tree Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

SVD Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

SVM Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

TC Text Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

TF Term Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

TM Text Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

TN True Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

TP True Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

TREC Text REtrieval Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

VSM Vector Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

VTK Vector Tree Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

158



I N D E X

accuracy, 16, 103, 118

ad hoc information retrieval, 10, 37

bag-of-words, 8, 27, 97

Bayes’ rule, 84

best subset selection, 93

BM25, 44

centrality measure, 48, 60

collection frequency, 9

collocation, 29

DET curve, 19

dimensionality reduction, 8, 108, 111

discriminative process, 94

distributional hypothesis, 27

diversity, 10, 39

document frequency, 9, 101

document independence assump-
tion, 10

document similarity, 27, 96, 99

document-term matrix, 9, 83

elbow method, 74, 101, 104

empirical risk, 90

F-measure, 17

F1-score, 18, 76, 102, 118

feature extraction, 8, 83

generalization error, 89

generative process, 84, 94

goodness of fit, 89

graph, 59

clique, 60

closeness, 60, 65

clustering coefficient, 61

degeneracy, 65

eccentricity, 62, 65

HITS, 63, 65

k-core, 65

k-core decomposition, 66

node betweenness, 61, 65

node degree, 60, 65

PageRank, 46, 63, 64

random walk, 59, 63, 116

scale-free, 35

shortest path, 60

small world, 35, 61, 64

graph-of-words, 31, 47, 68, 98

gSpan, 100, 103

heuristic retrieval constraints, 11, 41

indexing time, 12

information browsing, 10

information filtering, 10

information need, 10

information overload, 14

information retrieval, 10

inverse document frequency, 42

kernel, 96, 99, 113, 115–117

kernel trick, 96

keyword extraction, 13, 59

language model, 44, 86

Laplace smoothing, 43

lemmatization, 8

Lidstone smoothing, 43, 88

logistic regression, 93

logit function, 43, 94

loss function, 90

0-1, 91

exponential, 91

hinge, 91

log, 91

squared, 91

MAP, 20, 49

maximum a posteriori, 43, 84, 92

maximum likelihood, 43, 87

multi-class classification, 97, 101, 102

n-gram, 9, 28, 97, 100, 104, 115

long-distance, 34, 104

159



index

Naive Bayes, 85, 103

Bernoulli, 85

multinomial, 85

novelty, 10, 43

one-vs-all, 97, 99

one-vs-one, 97

online learning, 89

opinion mining, 37, 102, 117

overfitting, 91

P@10, 19, 49

precision, 17, 76

precision/recall curve, 18, 78

probabilistic IDF, 43

pseudo-counts, 43

query time, 12

recall, 17, 76

regularization, 91

L0, 93

L1, 91

Laplacian prior, 92

sparsity, 93

L2, 91

Gaussian prior, 92

shrinkage, 93

relative frequency, 43

retrieval model, 11

ROC curve, 19

routing, 10

scoring function, 11, 37

significance test, 21

McNemar’s chi-squared, 26

sign, 23, 103, 118

Student’s t, 25, 49, 76

Wilcoxon signed-rank, 26

SMART notations, 41

spam, 3, 10, 102

sparsity, 86, 93, 96

stemming, 8, 31, 32, 34, 50, 103

stop words, 8, 31, 32, 34, 50, 76, 103

subgraph matching, 100

subgraph-of-words, 34, 100, 104

subjectivity detection, 117

support, 101

support vectors, 90, 96

SVM, 94, 103

term frequency, 9, 38, 47

term independence assumption, 8,
46

text categorization, 12, 97

TF normalizations, 38

concavity, 38

document length, 39

pivoted, 40

lower-bounding, 41

sub-additivity, 39

TF-IDF, 37, 38, 44

topic spotting, 12, 117

word embedding, 28, 115

SENNA, 115

word2vec, 28, 115

WordNet, 114

160



colophon

This document was typeset in LATEX using the typographical look-and-feel
classicthesis. Most of the graphics in this dissertation are generated using
the Ipe extensible drawing editor and the R ggplot2 library. The bibliography
is typeset using biblatex.


	Abstract
	Résumé
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Preface
	1 Introduction
	1.1 Scope
	1.2 Software and libraries
	1.3 Notations, acronyms and index
	1.4 Outline

	2 Background
	2.1 Standard text representation
	2.1.1 Collection, document, word and vocabulary
	2.1.2 Bag-of-words document representation
	2.1.3 Term, document and collection frequencies

	2.2 Applications
	2.2.1 Ad hoc information retrieval
	2.2.2 Single-label multi-class text categorization
	2.2.3 Single-document keyword extraction

	2.3 Evaluation
	2.3.1 Types of predictions and confusion matrix
	2.3.2 Simple evaluation metrics
	2.3.3 Averaged evaluation metrics
	2.3.4 Statistical significance of improvement


	3 Challenging the Historical Bag-of-words
	3.1 Motivation
	3.1.1 Going beyond unigram bag-of-words
	3.1.2 Graph-based text representations

	3.2 Graph-of-words: our representation
	3.2.1 Model definition
	3.2.2 Variants
	3.2.3 Subgraph-of-words
	3.2.4 Graph properties


	4 Retrieving Information from Graph-of-words
	4.1 Interpreting TFxIDF as composing normalizations
	4.1.1 Term frequency normalizations
	4.1.2 Document frequency normalizations
	4.1.3 TF-IDF vs. BM25
	4.1.4 Which normalizations and in which order?

	4.2 TW-IDF, going beyond the term frequency
	4.2.1 Model definition
	4.2.2 Experiments
	4.2.3 Highlights, current limitations and future work


	5 Extracting Keywords from Graph-of-words
	5.1 Central nodes make good keywords
	5.1.1 Preliminary graph definitions
	5.1.2 Vertex centrality measures
	5.1.3 Literature review

	5.2 Communities of central nodes make better keywords
	5.2.1 Graph degeneracy
	5.2.2 Coreword extraction
	5.2.3 Experiments
	5.2.4 Highlights, current limitations and future work


	6 Learning Patterns from Graph-of-words
	6.1 Classification from supervised learning
	6.1.1 Probabilistic classifiers
	6.1.2 Geometric classifiers

	6.2 Text categorization as a graph classification problem
	6.2.1 Model definition
	6.2.2 Experiments
	6.2.3 Highlights, current limitations and future work

	6.3 Coreword extraction for feature selection
	6.3.1 Subgraphs of main-core-of-words as features
	6.3.2 Unsupervised n-gram feature selection

	6.4 Convolutional sentence kernel from word embeddings
	6.4.1 Model definition
	6.4.2 Experiments
	6.4.3 Highlights, current limitations and future work


	7 Conclusions
	7.1 Summary
	7.2 Future work
	7.3 Epilogue

	Bibliography
	Notation
	Acronyms
	Index
	Colophon

