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Abstract—In this paper, we tackle the problem of graph
generalization in the context of privacy-preserving social network
mining. By grouping together nodes that are not only similar
but that also belong to the same k-shells, we better preserve
the community structure of the graph, its utility in case of
clustering-related applications, while still achieving some privacy
level through the concept of graph generalization. We conduct
empirical evaluations of our approach on synthetic and real social
network data, demonstrating its utility and practical application.

I. INTRODUCTION

With the tremendous amount of social network data re-
cently made publicly available, privacy-preserving graph min-
ing has become an important research issue. Indeed, before
releasing these data to third parties and to the research com-
munity for subsequent analysis, it is necessary to protect the
users’ privacy in the first place through network anonymization
techniques. Backstrom et al. [2] pointed out that the simplest
technique for anonymizing graphs, which consists of removing
the identities of the vertices before publishing the actual graph,
does not always guarantee privacy because of the untouched
topology of the network than can help re-identify the nodes.
Therefore, developing more complex network anonymization
techniques has become an important issue these past few years.
To anonymize a network, one can change its topology (e. g.,
by adding or deleting edges) while keeping the original nodes
or one can propose a summary of the graph where nodes,
and a fortiori edges, have been merged into super-nodes and
super-edges, technique known as graph generalization or graph
summarization.

In this paper, we consider the second scenario and propose
a novel approach to generalize a graph in order to preserve the
user’s privacy while retaining as much data utility, specifically
the community structure in the context of clustering-specific
graph mining tasks. Additionally, graph generalization is also
used for summarization and dimensionality reduction in order
to represent networks in a small space, so that they can be used
effectively for indexing and retrieval. Furthermore, compressed
graphs can be used in a variety of applications in which it is
desirable to use the summary behavior in order to estimate the
approximate structural properties of the network. Therefore,
while our method has been initially developed for privacy-
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preserving graph mining, it has many more applications where
maintaining the community structure would be of interest.

A. Our contributions

We developed an approach to generalize undirected and
unlabeled networks. Since these graphs have no attributes
nor labels on the edges, information is contained only in the
structure of the graph itself – its topology – and therefore,
preserving the network’s structure is critical to reduce the
information loss. We will present various methods to compute
the similarity between vertices and define the partitions in
which the vertices will be merged. The contributions of the
proposed approach can be summarized as follows:

• We define a novel approach to generalize a graph by
capitalizing on the concept of graph degeneracy and
on the similarity between vertices of the same k-shell.

• We propose four different methods to compute the
similarity between vertices.

• We conduct an empirical evaluation of these methods
on several synthetic and real networks, comparing
information loss based on different graph properties
and also on clustering-specific processes.

• We demonstrate that our approach preserves data pri-
vacy while simultaneously achieving better data utility
through the generalization process.

B. Outline

The rest of the paper is organized as follows. Section II
reviews the state-of-the-art on graph generalization methods.
Section III defines the preliminary concepts related to our
approach. Section IV introduces our proposed algorithm for
generalizing a graph while preserving its community structure.
Section V describes the experimental framework and discusses
the results we obtained in terms of information loss and data
utility. Finally, Section VI concludes our paper and mentions
future work directions.

II. RELATED WORK

Generalization approaches, also known as clustering-based
approaches, can be essentially regarded as grouping vertices
and edges into partitions called super-vertices and super-edges.
The details about individuals can be hidden properly, but
the graph may be shrunk considerably after anonymization,
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Fig. 1: Toy example generalization process.

which may not be desirable for analyzing local structures. The
generalized graph, which contains the link structures among
partitions as well as the aggregate description of each partition,
can still be used to study macro-properties of the original
graph. Even if it holds the properties of the original graph,
it does not have the same granularity. It is interesting to
underline that generalization approaches also preserve attribute
and link disclosure, since two vertices from any cluster are
indistinguishable based on either their relationships or their
attributes.

Figure 1a shows a toy example graph, consisting on 17 ver-
tices and 25 edges distributed into 2 k-shells (see Section III-A
for definition). Node color indicates similar vertices, according
to some arbitrary vertex similarity measure. A generalized
version of the same graph, Figure 1b, contains 6 super-vertices
and 5 super-edges. Each super-vertex incorporates the number
of intra-vertices (first digit) and intra-edges (second digit).

Hay et al. [17] applied structural generalization approaches
using the size of a partition to ensure vertex k-anonymity [28].
Their method obtains a vertex k-anonymous super-graph by
clustering vertices into super-vertices and edges into super-
edges. Each super-vertex represents at least k nodes and
each super-edge represents all the edges between vertices in
two super-vertices. Zheleva and Getoor [30] focused on the
problem of preserving the privacy of sensitive relationships in
graph data. Nerggiz and Clifton [20] presented a methodical
approach to evaluate clustering-based k-anonymity algorithms
using different metrics and attempted to improve precision by
ignoring restrictions on generalization approaches.

Campan and Truta [9] worked on undirected networks
with labeled vertices and unlabeled edges. Vertices attributes
contain identifiers, quasi-identifiers and sensitive attributes.
The k-anonymity model is applied to quasi-identifiers in
order to achieve indistinguishable vertices from their attributes
or relationships between attributes. The authors developed a
method, called SaNGreeA, designed to anonymize structural
information. Then, Ford et al. [15] introduced an extension
to k-anonymity model that adds the ability to protect against
attribute disclosure. They also presented a new algorithm,
based on SaNGreeA, to enforce p-sensitive k-anonymity on
social network data based on a greedy clustering approach.
He et al. [18] utilized a similar anonymization method that
partitions the network in a manner that preserves as much of
the structure of the original social network as possible.

Bhagat et al. [5] assumed that adversaries know part of
the links and nodes in the graph. The authors pointed out that
merely grouping nodes into several classes cannot guarantee
the privacy. For instance, one can considers the case where the
nodes within one class form a complete graph via a certain
interaction. Then, once the adversary knows the target is in
the class, he can be sure that the target must participate in
the interaction. The authors provided a safety condition to
ensure that the pattern of links between classes does not leak
information.

More recently, Singh and Schramm [25] took the general-
ization concept further and create a generalized trie structure
that contains information about network sub-graphs and neigh-
borhoods. Cormode et al. [13] studied the anonymization prob-
lem on bipartite networks. Their anonymization method can
preserve the graph structure exactly by masking the mapping
from entities to nodes rather than masking or altering the graph
structure. Stokes and Torra [26] presented two methods for
graph partitioning using similarity measures to create clusters
which group vertices into partitions of k or more elements.

Finally, Sihag [24] presented a method for k-anonymization
via generalization on undirected and unlabeled graphs. The
author chose genetic algorithms to optimize this NP-hard
problem, but this method does not seem scalable for medium
or large networks.

III. PRELIMINARY CONCEPTS

Let G = (V,E) be a simple, undirected and unlabeled
graph, where V is the set of vertices and E the set of edges
in G. We define n = |V | to denote the number of vertices and
m = |E| to denote the number of edges. We will use (i, j) to
refer to an undirected edge from vertex vi to vj and deg(vi)
to denote the degree of vertex vi, i. e. its number of neighbors.
Finally, we will designate by G = (V,E) and G̃ = (Ṽ , Ẽ)
when referring to a pair of original and generalized graphs
respectively.

Our graph generalization approach relies on two main
concepts related to graph structure and vertex similarity. The
former corresponds to the concept of graph degeneracy, specif-
ically the definition of a k-shell, and the latter involves the
computation of the similarity between vertices on unlabeled
networks.

A. Graph degeneracy and k-shell

The idea of a k-degenerate graph comes from the work of
Bollobás [7, page 222] that was further extended by Seidman
[23] into the notion of a k-core, which explains the use
of degeneracy as an alternative denomination for k-core in
the literature. Henceforth, we will be using the two terms
interchangeably.

Let k be an integer. A subgraph Hk = (V ′, E′), induced
by the subset of vertices V ′ ⊆ V (and a fortiori by the subset
of edges E′ ⊆ E), is called a k-core if and only if ∀vi ∈
V ′, degHk

(vi) ≥ k and Hk is the maximal subgraph with
this property, i. e. it cannot be augmented without losing this
property. In other words, the k-core of a graph corresponds to
the set of maximal connected subgraphs whose vertices are at
least of degree k within the subgraph.
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Fig. 2: Illustration of a graph G and its decomposition in
disjoint k-shells.

From the k-core, Carmi et al. [10] defined the notion of
k-shell, which corresponds to the subgraph induced by the set
of vertices that belong to the k-core but not the (k + 1)-core,
denoted by Sk such that Sk = {vi ∈ G, vi ∈ Hk∧vi /∈ Hk+1}

The core number of a vertex vi is the highest order of a
core that contains this vertex, denoted by core(vi). It is also
referred as the shell index since the k-shell is exactly the part
of the k-core that will not survive in the (k+1)-core. Basically,
its value corresponds to how cohesive one’s neighborhood is
and is a measure of user engagement in a network [19]. Indeed,
to belong to a k-core, a node needs at least k neighbors also
meeting the same requirements, thus forming a community of
“close” nodes. Again, in the case of a social network, the core
number of a node would correspond to the number of close
friends the user has, his inner circle that would collapse if he
were to leave (through the cascading effect implied by the k-
core condition – see the impact of the removal of node D in
the 3-shell of Figure 2 for instance). Thanks to Batagelj and
Zaveršnik [4], the shell index sequence of an unlabeled graph
can be efficiently computed in linear time (O(n + m)) and
space (O(n)).

Figure 2 illustrates the decomposition of a given graph G
of 34 vertices and 36 edges into disjoints shells and nested
cores of order 0, 1, 2 and 3. Node color indicates the shell
a vertex belongs to: white for the 0-shell, light gray for the
1-shell, dark gray for the 2-shell and black for the 3-shell.

B. Vertex similarity measures

Since we are interested in grouping vertices into super-
vertices, we have to define a measure of vertex similarity in
order to find and select a group of vertices that shares structural
properties in the network. In particular, we considered Man-
hattan and 2-path similarities for clustering of the neighbor
sets of the vertices of a graph.

The Manhattan similarity [27], based on the Manhattan
distance, measures how many equal neighbors the two vertices

share but also how many non-neighbors they share. It is
computed as follows:

SimManhattan(vi, vj) = 1− 1

n

n∑
k=1

|(vi, vk)− (vj , vk)| (1)

where (vi, vk) = 1 if (vi, vk) ∈ E and (vi, vk) = 0 otherwise.

The 2-path similarity measures the number of paths of
length 2 between two vertices, as the following equation
depicts:

Sim2-path(vi, vj) =
1

n

n∑
k=1

(vi, vk)(vj , vk) (2)

where (vi, vk) = 1 if (vi, vk) ∈ E and (vi, vk) = 0 otherwise.

Both similarity measures score in the range [0, 1], where
0 indicates no similarity at all and 1 the maximum similarity
score. As noted by Stokes and Torra [26], the Manhattan simi-
larity measures the similarity between vertices with respect to
both neighbors and non-neighbors, while the 2-path similarity
only measures the similarity between vertices with respect
to their neighbors, so that a common non-neighbor does not
change the similarity between two vertices.

IV. GRAPH GENERALIZATION ALGORITHM

In this section, we present our approach designed to
generalize a graph while preserving its community structure.
As aforementioned, these methods can be useful for diverse
purposes and we focused here on privacy-preserving data
mining. Specifically, we are interested in preserving the users’
privacy while keeping most of the data utility, in particular for
clustering and community detection processes.

As stated previously, our approach relies on two definitions:
graph degeneracy and vertex similarity. Firstly, we evaluate
communities based on the concept of k-core as an efficient
mean to evaluate their collaborative nature – a property not
captured by the single-node metrics or by the established
community evaluation metrics. We considered the graph as
a set of disjoint k-shells. Such a partition provides a way to
preserve the graph’s clustering structure, while making the exe-
cution of the similarity measure between vertices much faster
due to the smaller size of the graph’s partitions. Secondly,
we consider various vertex similarity metrics to compute the
distance between vertices. Due to the fact that generalization
implies merging vertices into one super-vertex, defining a
similarity metric is a critical step to maintain the data utility
and reduce the information loss. Here, we evaluated two
similarity metrics, the Manhattan and 2-path similarities, and
we also used two well-known clustering algorithms to provide
groups of vertices.

Our approach is based on a three-step algorithm:

1) Information gathering – this step collects two types
of information for every vertex in the original graph.
First, we decompose the graph and assign the shell
index to each vertex. Then, we utilize a similarity
metric to define groups of one or more vertices.
Vertices in the same group share some structural
properties depending on the similarity metric used.



2) Super-vertex definition – using the information col-
lected in the previous step, we can define which
vertices will be merged into each super-vertex.

3) Generalized graph creation – once the super-vertices
are defined, we (1) create an empty graph; (2) add
the super-vertices and also the information contained
in them, i. e. the number of intra-vertices and intra-
edges; and finally (3) add the inter-edges between
super-vertices in the generalized network.

A. Step 1 – Information gathering

The first step focuses on collecting the information needed
in the next one to define the partition groups. Following the
intuitions previously mentioned, we considered that a partition
group must contains vertices, which (1) belong to the same k-
shell of the original graph, since it will preserve the graph
decomposition and also the clustering structure; and (2) share
some properties regarding graph’s structure, thus similarity
metrics have to defined and evaluated to reduce the information
loss.

Obviously, there are many ways to define and compute the
similarity between vertices in a network. We have chosen two
well-known vertex similarity metrics and also two graph clus-
tering algorithms, which do not provide a similarity measure
but a group partition of the whole network.

Our similarity metrics are the Manhattan and 2-path sim-
ilarity presented in Section III-B. As described, these metrics
score a mark between 0 and 1, where 0 means no similarity
at all and 1 is the maximum similarity between two vertices.
According to these scores, our approach selects the maximum
mark between two vertices or groups of vertices and merges
them into the same group. This process is iterated until a stop
condition is reached – we have used the contraction percentage
(p), defined as the number of partitions over the total number
of vertices. For instance, p = 0.5 implies creating, at least, n/2
groups of vertices.

Due to the importance of the group partitions in our
approach, we also wanted to test some clustering or community
detection algorithms to define the vertices’ partitions. They
do not provide a score, just a group partition over the whole
graph. Thus, it is possible to utilize any graph clustering or
community detection algorithm in this step. We have chosen
the Multilevel [6] and Fastgreedy [12] algorithms (see Section
V-A3 for further details).

B. Step 2 – Super-vertex definition

This second step focuses on defining the super-vertices
according to the previously collected information for each
vertex. For each k-shell in the graph, we merge vertices be-
longing to the same group partition into the same super-vertex.
Additionally, we have defined a parameter to avoid merging
too many vertices into one super-vertex; if a max fusion
parameter is reached, then we split the super-vertex onto two
independent super-vertices. As a result of this step, a set of
super-vertices is defined and each vertex is assigned to one,
and only one, super-vertex.

C. Step 3 – Generalized graph creation

Finally, the third step focuses on creating the new gen-
eralized graph according to the super-vertices defined in the
previous step. We start by defining an empty, undirected,
edge-labeled and vertex-labeled graph G̃ = (Ṽ , Ẽ). Then,
the process iterates by adding each previously defined super-
vertex svi ∈ Ṽ . Each super-vertex contains information about
the number of vertices, which have merged into this super-
vertex (IntraVertices) and also the number of edges between
the vertices contained in it (IntraEdges). Lastly, a super-edge
between two super-vertices is created if there exists an edge
between two vertices contained in each of the super-vertices,
i. e. (svi, svj) ∈ Ẽ ↔ (vk, vp) ∈ E : vk ∈ svi ∧ vp ∈ svj .
Super-edges contain a label indicating the number of edges
between all vertices from their endpoints (InterEdges).

V. EXPERIMENTS

In this section, we first describe the experimental frame-
work we used to analyze and compare the information loss
induced by our generalization methods. We then present the
results we obtained on five network datasets.

A. Experimental framework

For each dataset, we compute the generalized graph pro-
duced by Multilevel and Fastgreedy algorithms. As aforemen-
tioned, the generalized graph is unique for each clustering
algorithm. On the contrary, using our two similarity measures,
we can adjust some parameters to control the granularity
of the summarized graph. In these experiments, we set the
contraction percentage to 0.5, i. e. the number of super-vertices
is half the number of vertices.

1) Tested networks: We used both synthetic and real net-
works in our experiments. We used the igraph1 library to
generate two kinds of random graphs:

• ER-1000 – Erdös-Rényi Model [14] is a classical
random graph model. It defines a random graph as
n vertices connected by m edges that are chosen
randomly from the n(n− 1)/2 possible edges. In our
experiments, we set n to 1,000 and m to 5,000.

• BA-1000 – Barabási-Albert Model [3], also called
scale-free model, is a network whose degree distri-
bution follows a power law. That is, for degree d, its
probability density function is P (d) = d−γ . In our
experiments, we set the number of vertices to be 1,000
and γ=1, i. e. linear preferential attachment.

Additionally, three different real networks have been used
in our experiments. Although all these sets are unlabeled, we
have selected these datasets because they have different graph’s
properties. They are the following ones:

• Karate – Zachary’s Karate Club [29] shows the rela-
tionships among 34 members of a karate club.

• Polblogs – Political blogosphere data [1] compiles the
data on the links among US political blogs.

• URV email – the email communication network at the
University Rovira i Virgili in Tarragona (Spain) [16].

1Available at: http://igraph.org/



2) Generic information loss evaluation: We describe the
criteria that are used to quantify the information loss on
summarized graphs. It is important to underline that since
the number of vertices, edges and some important graph’s
structures change during generalization process, some metrics
cannot be used to compare information between original and
generalized graphs. For instance, centrality measures, like
betweenness or closeness centrality, have been proved to
correctly assess information loss and data utility [11], but
they evaluate each vertex independently and consequently,
score obtained on original and summarized graphs cannot be
compared.

For each experiment, we provide information about the
number of vertices and edges both in the original and summa-
rized graphs. We also considered the degree distribution as an
important feature we must preserve. Additionally, some graph’s
structural metrics have been included in our experiments. The
first one is the average distance (dist), which is defined as
the average of the distances between each pair of vertices in
the graph. The diameter (d) is defined as the largest minimum
distance between two vertices in the graph, and harmonic mean
of the shortest distance (h) is an evaluation of connectivity,
similar to the average distance or average path length, and
its inverse is also known as the global efficiency. Finally,
transitivity (T ) is one type of clustering coefficient, which
measures and characterizes the presence of local loops near
a vertex.

The above measures evaluate the entire graph as a unique
score. We compute the error on these graph metrics as follows:

εm(G, G̃) = |m(G)−m(G̃)|, (3)

where m is one of the graph metrics defined above, G is the
original graph and G̃ is the generalized graph.

3) Clustering-specific evaluation: Variations in the generic
graph properties is a good way to assess the information loss
but they have their limitations because they are just a proxy
to the changes in data utility we actually want to measure. We
define the specific information loss measures as a task-specific
measure for quantifying the data utility and the information
loss associated to a data publishing process. We focus on
clustering-specific processes, since it is an important applica-
tion for social and healthcare networks, among many others.
Like generic graph measures, we compare the results obtained
both by the original and the generalized graphs in order to
quantify the level of noise introduced during the generalization
process. This measure is specific and application-dependent,
but it is necessary to test the generalized data in real graph-
mining processes.

We considered the following approach to measure the
clustering assessment for a particular generalization and clus-
tering method (illustrated in Figure 3): (1) apply each of our
generalization methods to the original graph G and obtain the
generalized version G̃; (2) apply a particular clustering method
c to G and obtain clusters c(G) and apply the same method
to G̃ to obtain c(G̃); (3) compare the clusters c(G) to c(G̃).
In relation to information loss, it is clear that the more similar
c(G̃) is to c(G), we have the less information loss. Thus,
clustering specific information loss measures should evaluate
the divergence between both sets of clusters c(G) and c(G̃).

G G̃

Original
clusters
c(G)

Precision
index

Generalized
clusters
c(G̃)

Generalization

method

Clustering
method c

Clustering
method c

Fig. 3: Framework for evaluating the clustering-specific infor-
mation loss measure.

Each super-vertex contains information regarding vertices
that have been grouped into it. Thus, we are able to com-
pute the original vertex distribution on the clusters of the
generalized graph. Ideally, the results should be the same.
That is, the same number of sets (i. e. clusters) with the same
original vertices in each set. In this case, we can say that the
generalization process has not affected the clustering process.
When the sets do not match, we should be able to compute a
measure of divergence. For this purpose, we use the precision
index [8]. Assuming that we know the true communities of a
graph, the precision index can be directly used to evaluate the
similarity between two cluster assignments. Given a graph of
n nodes and q true communities, we assign to nodes the same
labels ltc(·) as the community they belong to. In our case, the
true communities are the ones assigned on the original dataset
(i. e. c(G)), since we want to obtain communities as close as
the ones we would get on non-generalized data. Assuming that
the generalized graph has been divided into clusters (i. e. c(G̃)),
then for every cluster, we examine all the vertices within each
super-vertex and assign to them as predicted label lpc(·) the
most frequent true label in that cluster (basically the mode).
Then, the precision index can be defined as follows:

precision(G, G̃) =
1

n

n∑
i=1

1ltc(vi)=lpc(vi), (4)

where 1 is the indicator function such that 1x=y equals 1 if
x = y and 0 otherwise. Note that the precision index is a value
in the range [0, 1], which takes the value 0 when there is no
overlap between the sets and the value 1 when the overlap
between the sets is complete.

We have used four graph clustering algorithms to evaluate
the community structure. They are the following ones:

• Girvan-Newman (or GN) [21] is an important com-
munity detection algorithm in graphs. It is a hierarchi-
cal divisive algorithm, in which edges are iteratively
removed based on the value of their betweenness
centrality.

• Multilevel [6] is a multi-step technique based on a
local optimization of Newman-Girvan modularity in
the neighborhood of each node. After a partition is
identified in this way, communities are replaced by
super-nodes, yielding a smaller weighted network. The
procedure is then iterated, until modularity does not
increase any further.



TABLE I: Generalization results using our four grouping methods: Manhattan and 2-path similarity metrics, and Multilevel and
Fastgreedy graph clustering algorithms. For each dataset and method, we compare the results obtained on n, m, dist, d, h, T
and precision index using Multilevel (ML), Infomap (IM), Fastgreedy (FG) and Girvan-Newman (GN) clustering algorithms.

Network Method n m dist d h T ML IM FG GN

ER-1000

1,000 4,969 3.263 5 3.083 0.010 - - - -
Manhattan 672 4,828 2.672 5 2.514 0.051 0.147 0.031 0.243 0.296

2-Path 612 4,782 2.617 5 2.451 0.070 0.150 0.040 0.215 0.311
Multilevel 135 2,772 1.741 4 1.549 0.489 0.394 0.036 0.229 0.189
Fastgreedy 119 2,766 1.630 3 1.443 0.531 0.147 0.030 0.544 0.182

BA-1000

1,000 4,985 2.481 4 2.362 0.032 - - - -
Manhattan 483 4,383 2.144 4 2.047 0.108 0.157 1.000 0.185 0.433

2-Path 436 2,690 1.991 3 1.957 0.070 0.132 1.000 0.176 0.321
Multilevel 106 1,728 1.689 3 1.526 0.457 0.618 1.000 0.184 0.374
Fastgreedy 104 1,682 1.685 2 1.522 0.451 0.176 1.000 0.477 0.374

KARATE

34 78 4.588 5 2.032 0.25 - - - -
Manhattan 25 62 2.023 3 1.769 0.335 0.705 0.500 0.676 0.676

2-Path 23 40 2.122 3 1.878 0.242 0.794 0.500 0.617 0.705
Multilevel 10 14 1.977 4 1.636 0.375 0.823 0.647 0.911 0.617
Fastgreedy 9 16 1.694 3 1.430 0.589 0.794 0.500 0.941 0.352

POLBLOGS

1,222 16,714 2.737 8 2.519 0.225 - - - -
Manhattan 866 13,229 2.408 5 2.248 0.245 0.830 0.833 0.853 0.646

2-Path 1,048 9,086 2.575 7 2.410 0.148 0.950 0.959 0.985 0.823
Multilevel 171 3,071 1.944 6 1.737 0.532 0.993 0.517 0.967 0.767
Fastgreedy 169 3,062 1.944 6 1.733 0.536 0.976 0.520 0.973 0.740

URV EMAIL

1,133 5,451 3.606 8 3.334 0.166 - - - -
Manhattan 745 5,274 2.886 6 2.683 0.149 0.420 0.463 0.533 0.352

2-Path 944 4,444 3.334 7 3.091 0.135 0.586 0.682 0.555 0.517
Multilevel 160 1,710 2.179 6 1.931 0.386 0.781 0.134 0.601 0.290
Fastgreedy 157 1,763 2.187 6 1.922 0.420 0.468 0.147 0.862 0.217

• Infomap [22] optimizes the map equation, which ex-
ploits the information-theoretic duality between the
problem of compressing data and the problem of
detecting significant structures in the graph.

• Fastgreedy [12] is a hierarchical agglomeration algo-
rithm for detecting community structure. Starting from
a set of isolated nodes, the edges of the original graph
are iteratively added to produce the largest possible
increase of the modularity at each step.

B. Results

In this section, we present the results of our generalization
approach in terms of data utility and information loss. We
considered both generic information loss measures (detailed in
Section V-A2) and also information loss regarding clustering-
specific graph-mining tasks (described in Section V-A3).

Results are given in Table I. Each cell indicates the value
for the corresponding measure and method. The first row of
each dataset points out the values obtained on the original
network, previous to the generalization process and with no
alteration. Although deviation is undesirable, it is inevitable
due to the graph generalization process.

The first two tested networks are the synthetic ones. As
we have commented previously, ER-1000 has been created
using the Erdös-Rényi model. Its degree distribution does not
follow a power law. Figure 4a presents the degree distribution
of the original graph (grey) and the reconstructed version of

the generalized graph using the Manhattan similarity (red). As
we can see, most of the vertices in the original network have
degree values between 7 and 13, while only few have degree
values lower than 7 or higher than 13.

The reconstructed version of the degree distribution uses
only information from the generalized graph. As we described,
two labels inside each super-vertex inform about the number
of vertices and the number of intra-edges, and the super-edges
contains a label indicating the number of edges between the
vertices inside each endpoint of the super-edge. Thus, we can
compute the average degree of the vertices inside each super-
vertex and reconstruct the degree distribution. Due to the fact
that the degree distribution, and its directly related properties,
are important for some analysis or graph-mining tasks, we
have considered interesting to analyze the reconstructed degree
distribution in our experiments.

The original ER-1000 network has 1,000 vertices, while
the generalized ones contain about 600 super-vertices when
Manhattan and 2-path similarity methods are used with a
contraction percentage p = 0.5, while the number of super-
vertices fall to 135 and 119 when the clustering algorithms
are utilized to create the partition groups. Obviously, it has
an important impact on the reconstructed degree distribution
as we can see in Figure 4b. Comparing this figure to the
previous one, we can clearly point out that the generalized
graph using Manhattan similarity better reconstructs the de-
gree distribution. However, we must take into account that
the generalized graph using Fastgreedy contains fewer super-
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Fig. 4: Comparison between the original and the reconstructed degree distributions after generalization process. Horizontal axis
indicates the vertex set and the vertical one corresponds to the degree of each vertex.

vertices, and it affects the reconstruction process. Comparing
the generic information loss measures in Table I, we can state
that the information loss on generalized graphs by Manhattan
and 2-path similarity measures are quite similar, while it is also
similar on generalized graphs by clustering algorithms though
their values are not as close to the original ones.

Regarding the clustering-specific information loss, we used
the precision index, as previously described, and its results are
presented on the four last columns in Table I. Regarding the
ER-1000 network, our approach achieves moderate and low
precision score values.

The second synthetic network, BA-1000, has been con-
structed by applying scale-free model and its degree dis-
tribution follows a power law. Figure 4c and 4d point out
clearly a large number of vertices with small degree value
and few vertices with very high degree value. It is important
to underline the scale difference between this figure and the
previous one. Like in the previous dataset, the generalized
graph using Manhattan similarity gets a better-reconstructed
degree distribution. Regarding the generic information loss
measures, generalized graph by Manhattan similarity carries
out the best results, i. e. the closest ones to the original values.
Nevertheless, results on our real graph mining tasks are alike
across our four generalization methods. It is interesting to point
out that precision values on Infomap are equal to 1 for all
tested methods, indicating a perfect matching between original
and generalized clusters. Since this network presents a few
important hubs and all other vertices attached to them, the
Infomap clustering algorithm creates only one partition, which
contains all vertices. The behavior is the same on generalized
graphs and consequently, the precision index matching is
complete.

The first tested real network, and also the smallest one,
is Zachary’s Karate Club. Like in the previous cases, the

generalized graphs obtained using Multilevel and Fastgreedy
algorithms are more compressed than the ones obtained using
Manhattan and 2-path methods. Nonetheless, the generic infor-
mation loss measures are closely similar for all these methods.
Precision index values are much better than the previous
analysis, reaching several values close to 0.8 or 0.9. All
methods scores values between 0.7 and 0.82 on precision index
using Multilevel clustering algorithm and between 0.62 and
0.94 on precision index using Fastgreedy algorithm. Infomap
and Girvan-Newman algorithms obtain lower values, but still
between 0.5 and 0.7 in almost all methods.

Polblogs is our second tested real network. Figures 4e
and 4f show the degree distribution. As can be seen, the
Manhattan similarity method is able to reconstruct the hubs
of the original network, due to the fact that the compression
ratio is lower than the generalized graph produced by the
Multilevel algorithm. The best values on average distance,
harmonic mean of the shortest distance and transitivity are
also achieved by the Manhattan generalized graph. In reference
to the clustering-specific information loss, we get the best
general values of all tested networks. Precision index marks
are between 0.8 and 0.99 in almost all experiments, using all
our methods. It is interesting to underline the results of 2-
path similarity method, which carries out values in range 0.82-
0.98. However, the number of super-vertices is large, which
means the compression is low. Alternatively, the compression
is much larger using the Multilevel and Fastgreedy methods,
and precision index marks are still high – between 0.74 and
0.99 in almost all cases.

Lastly, URV email is the third real network tested in our
experiments. Regarding the degree distribution, the absence
of hubs with very high degree is relevant. In this case, as
we can see in Figures 4g and 4h, the generalized graph
using Fastgreedy algorithm obtains a reconstructed degree



distribution close to the original one. Even though it is true
that the reconstructed degree distribution obtained by 2-path
similarity method is better, the former uses only 157 super-
vertices while the later utilizes 944 super-vertices. Probably
due to this, the 2-path method achieves the closest results on
average distance, diameter and harmonic mean of the shortest
distance. In reference to the clustering-specific information
loss, the results are moderate. 2-path method ranges from 0.52
to 0.68, while Manhattan method gets values on range 0.35-
0.53. The generalized graph using Multilevel algorithm scores
0.78 when the same clustering algorithm is used to compute the
precision index. It is obvious that the matching will be higher
if we use the same clustering algorithm to create vertex’s
partitions and also to compute the precision index. Similar
behavior occurs when using Fastgreedy generalized graph.

VI. CONCLUSIONS

In this paper, we have presented an approach to generalize
or summarize a graph while preserving its communities. This
approach relies on two intuitions: first, the k-shells in the graph
decomposition are related to community structures, thus pre-
serving the shells on generalization process would improve the
clustering-specific graph-mining tasks; and second, a similarity
measure have to be used to create partitions of vertices inside
each k-shell. We have introduced four methods to compute the
similarity among vertices in a graph or a shell. An empirical
evaluation of these methods have been conducted on several
synthetic and real networks, comparing information loss based
on different graph properties and also on clustering-specific
information loss. We have demonstrated that our methods
are able to generalize a graph while preserving the most
important features and maintaining data utility on clustering-
specific graph mining tasks. As we have seen throughout
our experimental framework, our four methods to define the
vertex’s partitions keep data utility on community detection
tasks, but the underlying structure of the network is critical,
and it has to be considered to find the best similarity measure.

Many interesting directions for future research have been
uncovered by this work. Firstly, a deeper analysis on how
the original graph’s structure affects the generalization process
must be conducted. Secondly, it would be thought-provoking to
apply different similarity measures in each k-shell, according
to the specific structure of the shell. Lastly, other information
loss measures based on real graph mining processes can be
considered such as information flow.
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