
Quality-of-Service Multicast Overlay Spanning
Tree Algorithms for Wireless Ad Hoc Networks

Georgios Rodolakis1, Cédric Adjih1, Anis Laouiti2, and Saadi Boudjit3

1 INRIA Rocquencourt, France
Georges.Rodolakis@inria.fr, Cedric.Adjih@inria.fr

2 GET/INT Evry, France
Anis.Laouiti@int-evry.fr
3 Université Paris 13, France

saadi.boudjit@l2ti.univ-paris13.fr

Abstract. In this article, we explore modified versions of Multicast
Overlay Spanning Tree algorithms (MOST) to support quality of ser-
vice for wireless ad hoc networks. These algorithms (Q-MOST) take into
account the interferences due to radio transmissions and the residual ca-
pacity of the nodes in the network. Different algorithms are compared
to the basic MOST algorithm. We show by simulations the ability and
superiority of these algorithms to find spanning trees that connect all
multicast group members with respect to the bandwidth requirements.

1 Introduction

Mobile ad hoc networks (MANETs) are one of the key research topics of the
moment. A MANET can be defined as a set of mobile nodes that communicate
using the wireless medium, and does not require any pre-existent infrastructure.
The main challenge of MANET research is to offer connectivity between the
participating nodes in a multi-hop manner by sharing the same wireless channel.
Several unicast protocols have been proposed to address this issue.

However, the wireless medium has limited capacity and is a scarce resource,
because it is a shared among nodes within an area. One possibility is the use of
multicast, which fits the increase of the popularity of group communication (P2P,
Web 2.0, . . .), where several nodes exchange the same data among themselves.
With multicast, every transmission from the source(s) will ultimately reach all
the multicast group members, and this is achieved by using dedicated multicast
structures and protocols that connect a set of nodes. This enables gains by
decreasing the number of necessary transmissions. Indeed, for massively dense
ad hoc networks and in the same setting as the result of Gupta and Kumar [1],
it has been shown that multicast can offer a gain of Θ(

√
n) over direct unicast

to each of n destinations [2].
But decreasing the number of transmissions may not be sufficient since some

multicast multimedia applications may also require quality of service guarantees
in order to deliver real time data flows within the network. In particular, gains

S. Fdida and K. Sugiura (Eds.): AINTEC 2007, LNCS 4866, pp. 226–241, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Quality-of-Service MOST Algorithms for Wireless Ad Hoc Networks 227

from multicast will delay the apparition of congestion, but might not prevent
it in overloaded networks, resulting in packet loss and delays, that will have a
negative impact on QoS applications. Avoiding congestion in a wireless ad hoc
network is not simple, because of the issues of shared medium and interference.
The question is then how to perform multicast in a way that avoids congestion,
taking interferences into account.

In this article, we propose some answers to this question: we introduce mul-
ticast algorithms that are, first, based on admission control, so that they are
able to detect and reject multicast groups that would create congestion, and,
second, that can find multicast structures which avoid congested areas, and
hence are more likely to be admissible. The multicast structure computed by
the algorithms, is a shared multicast spanning tree, which is constructed as an
overlay tree linking all group members. This approach has several important
advantages. It implies that only nodes interested in taking part in the multicast
communication would need to participate in the protocol operation. In addition,
the overlay tree approach can offer high robustness and reliability for the multi-
cast service [3]. Finally, when the number of group members is small compared
to the network size, multicast overlay spanning trees achieve asymptotically op-
timal performance [2] and maximize the network capacity. Indeed, the key QoS
metric is the capacity: every multicast group has a QoS requirement expressed
as a total required bandwidth for the source(s) of the group. The algorithms we
propose prevent congestion by considering the channel occupancy on each node
on the paths and of other nodes within the interference area of the paths, during
the construction of the multicast trees.

The rest of this paper is organized as follows: Section 2 provides background
material from related work; Section 3 states the studied problem, and describes
formally the QoS interference model; Section 4 introduces the different new algo-
rithms; Section 5 evaluates and analyzes the algorithms by means of simulations;
Section 6 discusses protocol aspects and future work; and Section 7 concludes.

2 Related Work

As discussed, our contribution is the introduction of quality of service for mul-
ticast in ad hoc networks. In this section, we first focus on quality of service in
wireless networks, especially the concept of “residual capacity” of a node; we
then detail multicast protocols and QoS for multicast.

Interference and QoS for Unicast in Ad Hoc Networks. Architectures
of quality of service involve a complex set of features. They include the seman-
tics and QoS model that quantify the performance for some metric of quality of
service in some network model and may allow to check whether admitting a flow
would result in acceptable performance, e.g. admission control. In this article,
the focus is on the semantics and QoS model, whose main feature is interference-
awareness. In wireless ad hoc networks, additional challenges are caused by the
distinguishing features of the wireless medium, and a number of adapted QoS

228 G. Rodolakis et al.

solutions have been proposed; see [4] for a recent survey. One of these features
is the fact that the network operates on a shared medium, where the number of
transmission opportunities should be carefully examined due to the issue of in-
terferences. Essentially, two simultaneous transmissions by nearby emitters may
interfere with each other, and as a result, may not be correctly received by their
intended recipients. A solution is to ensure that no such concurrent transmissions
will occur, and thus to avoid the hidden terminal problem. The signal-to-noise
ratio (SNR) may be used to determine whether a set of transmissions may occur
at the same time and still be successfully received, but a frequent simplification is
to consider that two transmissions may occur simultaneously if the transmitters
(and/or the receivers), are sufficiently far from each other [4].

With this assumption, several approaches exist, which we describe from the
more complex for the wireless MAC and physical layers, to the less demanding:

• In slotted networks, where the transmission opportunity schedule is predeter-
mined, a reservation algorithm can ensure that two nodes on the same channel
and in the same area would never transmit on the same slot, as in [5]. For
networks that are not using a slotted MAC layer, such as IEEE 802.11, the con-
straints of non-interference may still be expressed as conflict graphs, indicating
which sets of transmitter-receiver pairs may transmit simultaneously, as in [6]. In
both cases, this requires complex synchronization to be effectively implemented.
• Another approach is based on measurements: rather than pre-determining
transmissions that would not interfere with each other, the idea is to measure
the medium occupancy using carrier-sense features, and, based on this informa-
tion, to accept only new flows for which the measured idle channel time on each
node is sufficient, as in [7]. However, in practice the medium occupancy is not
readily available for off-the-shelf equipment, hence estimates are often required,
as proposed in [8]. As indicated in [8], the medium may be available for two
neighbor nodes, but at different times, so in reality, they might not be able to
communicate with each other: not only medium occupancy but also scheduling
should be considered once again; however it was proposed to estimate the prob-
ability that such an event occurs (mismatch of idle medium intervals).
• The last approach is to ignore precise scheduling aspects, which are complexly
linked to the wireless MAC and physical layers, and which are not robust with
respect to mobility, and to only consider channel occupancy, of a node and of
its neighbors. Then the residual capacity of a node, is defined as the minimum
of the total time for which the channel is not occupied from the point of view
of one node and the other nodes in its interference area. It is actually an upper
bound of the transmission possibilities with scheduling.

This model can be used as an admission control algorithm: if there is not
enough residual capacity, given the flows that are already present, a new flow
is not accepted. [9] had shown that this admission control decision is an NP-
complete problem, but [10] introduced efficient heuristics. This is the model and
admission control that we use in this article, see Section 3.1 for details. Under a
similar model, an entire QoS interference-aware version of the routing protocol

Quality-of-Service MOST Algorithms for Wireless Ad Hoc Networks 229

OLSR, was developed in [11], for unicast QoS flows; the channel occupancy is
derived from a packet transmission counter of each node, and transmitted as
an extension of OLSR messages. The soundness of the approach is validated in
practice by simulations in [11] and experiments on real test-beds [12].

Multicast routing - Multicast & QoS. Many protocols have been proposed
for multicast routing in mobile ad hoc networks. These protocols can be classified
into two categories: tree based and mesh based protocols. While mesh based
protocols use a single structure for each multicast group, tree based protocols can
either use one tree per multicast group (shared tree) or create a separate one for
each tuple (source, multicast group). Among the tree based multicast protocols
we can cite MAODV [13], MOLSR [14], and MOST [3]. MAODV(Multicast
Ad hoc On Demand Distance Vector) is an extension to the routing protocol
AODV [15], and is a reactive multicast protocol. MOLSR (Multicast Optimized
Link State Routing) is an extension to OLSR unicast routing protocol [16].
MOLSR uses the topology information given by OLSR to build a multicast tree
for each tuple (source, group). MOST (Multicast Overlay Spanning Tree) [3]
builds a shared overlay spanning tree between the members of the multicast
group. As an example of mesh-based routing protocols, we mention On-Demand
Multicast Routing Protocol (ODMRP) [17].

Multicast algorithm design for ad hoc networks is a complex problem in itself.
One must take into account the characteristics of these networks such as the sen-
sitivity of the shared wireless medium and the dynamicity of the nodes within
the network. The main goal of the multicast protocols is to save bandwidth from
unnecessary data transmissions. But maintaining a multicast structure implies
additional overhead, and decreases the overall reliability. Using the same tree
to forward multicast data for all the group members means that when a mul-
ticast packet is lost (notice that a multicast packet is not acknowledged by the
receiver(s)) or when a link fails, a subset of the tree is prevented from receiving
the multicast data. Mesh structures may offer more redundancy in some situa-
tions to cope with this problem. Multicast overlay structures use unicast tunnels
and are less sensitive to packet loss than the basic multicast trees or meshes.

Most multicast protocols deal with multicast structure building, some of them
try to improve the reliability, but only few of them are addressing the QOS
requirements like QAMNET[18], QMR[19]. The basic idea of QAMNET is to
extend existing approaches of mesh based multicasting and unicast QOS provi-
sioning (the local capacity of a node is calculated as in SWAN [20]). QMR (QoS
Multicasting Routing) is also a multicast mesh based protocol coupled with its
own mechanism to evaluate the residual capacity locally on each node. In this
protocol, nodes have to interact with their MAC layer to estimate the available
bandwidth [21]. These protocols build a mesh structure in a reactive manner.
Thus, there is no control neither a knowledge of the constructed mesh. In this
case, the use of the overall network capacity is not optimized, and new nodes
may be prevented from joining the multicast communicating groups. Both pro-
tocols try to estimate the residual bandwidth with different mechanisms, but,
they do not consider the interferences problem efficiently during the bandwidth

230 G. Rodolakis et al.

reservation. In fact, in QAMNET and QMR, bandwidth reservation is made
locally on multicast mesh nodes. The neighboring nodes have to evaluate con-
tinuously the available bandwidth on their own, hence, their residual capacity is
updated only when the multicast data flows start later on. Nodes transmissions
from a same multicast group mesh may interfere in that case.

3 Methodology

In this section, we present the methodology we use to derive efficient algorithms
for QoS multicast in multi-hop wireless networks. Our approach is based on the
models and heuristics proposed in [9,10] concerning unicast routing. However, we
present the models and the problem formulation in a slightly different manner,
which allows us to generalize for the case of multicast communication and to
propose improvements and performance estimates for the heuristics we consider.

3.1 Network and Interferences Model

As indicated in Section 2, we consider the interferences model that was intro-
duced in [9]. We assume that a transmission from a node i interferes with all
nodes within an interference zone, and equivalently, transmissions within this
zone interfere with node i. This means that in order for a reception to be suc-
cessful, it must be ensured that no other node within the interference zone is
transmitting at the same time. We denote I(i) the set of nodes that are within
the interference zone of node i. For example, if we assume at most two-hop in-
terferences, I(i) will comprise the one-hop and two-hop neighbors of i, as well
as the node i itself. In general, I(i) can be any set of nodes containing i. We
also denote Ci the residual capacity of node i.

Let us consider two nodes i and j which can communicate directly. We will
describe the effect on the residual capacities in the network, when a flow of x
units of bandwidth is sent from i to j. All nodes in the interference zone of i
will not be able to receive data in the same time that i is transmitting, and
if a CSMA MAC protocol is used, such as IEEE 802.11, these nodes will not
be allowed to transmit either. The model we consider here is consistent with
this constraint, since we make no distinction between receiving and transmitting
capacities. Similarly, transmissions from the nodes in the interference zone of
node j will interfere with correct reception from j. These nodes will not be able
to transmit data at the same time that j is receiving from i. Hence, when the
flow x is injected, all nodes k in the interference zone I(i) ∪ I(j) (including i
and j too) will have residual capacities updated to Ck − x. We note that our
model is symmetric, in the sense that a flow from i to j has the same effect on
the residual capacities as a flow from j to i.

Let us now consider a flow of x units of bandwidth following a route R from
a source s to a destination t. We represent the route R as a set of links, i.e.,
R = {e1, e2, . . .}. We will generalize the previous discussion to describe the
residual capacities in this case. For the given route R, we define the coefficients

Quality-of-Service MOST Algorithms for Wireless Ad Hoc Networks 231

λk corresponding to the number of route links (u, v) where at least one of the
nodes u or v are located in the interference zone of node k:

λk =
∑

1
(u,v)∈R, k∈I(u)∪I(v)

. (1)

These coefficients allow us to express the effective bandwidth which a flow x
passing through the route R will consume in node k, due to interferences and/or
transmissions by k. The effective bandwidth will depend on the route and, for a
node k, it is equal to:

xR = λkx. (2)

As a result, the residual capacities for all nodes in the network, after the flow x
is accepted through the route R, will be equal to: Ck − λkx.

3.2 Problem Statement

According to the model presented in the previous section, we can formulate the
necessary conditions for the available capacities in the network, in order for a
flow to be potentially accepted. Moreover, if a bandwidth reservation mechanism
is in use, the effective bandwidth defined in (2) corresponds to the amount of
bandwidth that each node would have to reserve for the given flow (we can
include a factor to consider the MAC and scheduling overhead, as in [11]).

At first, we consider unicast routing. We present our formulation of the path
with Residual Capacity problem (RC), defined and shown to be NP-complete
in [9]. The objective is to find a route R in order to transmit x units of bandwidth
from a source s to a destination t. The constraint is that the residual capacity of
all nodes in the network must be larger (or equal) than 0. Using the previously
presented notation, this can be expressed as follows:

∀k : Ck − λkx ≥ 0. (3)

In other words, the capacity Ck must be larger than the total bandwidth which
a flow x passing through the route R will consume in node k.

Using the same notation introduced in the previous section, we can formulate
the problem of finding a multicast overlay spanning tree with residual capac-
ity (MOST-RC), as a direct generalization of the previous case, which is obvi-
ously NP-complete too. An overlay tree corresponds to a set of routes (tunnels)
between the multicast members. So, we can represent it as a set of links T , in
analogy to the route R. For instance, a tree consisting of n tunnels Ri will be rep-
resented as T =

⋃
i=1..n Rn, where the sources and destinations for the tunnels

are chosen arbitrarily1. The objective is to find such an overlay tree spanning on
all the multicast nodes, which can accept a flow of x units of bandwidth. Again,
the constraint is that the residual capacity of all nodes in the network must be
1 Due to the symmetry in the interference model, we do not need to consider a par-

ticular source in the tree, hence the arbitrary choices concerning the tunnel sources
for the definition of the sets Ri.

232 G. Rodolakis et al.

larger (or equal) than 0, as described in (3). In this case, the coefficients λk are
defined with respect to a given tree T , instead of a route R, but their definition
remains unchanged, i.e., λk =

∑
1

(u,v)∈T , k∈I(u)∪I(v)
.

3.3 Heuristics

Since the problem we consider is NP-hard, we describe some heuristics that
can be used in order to compute bandwidth-aware routes and overlay multicast
trees. In this section, we provide a general discussion and the motivation for using
these heuristics, as well as some arguments concerning the performance that can
be achieved. A detailed description of the QoS multicast overlay spanning tree
algorithms will be presented in Section 4.

The main goal of the heuristics we will describe is to find a route/tree
that satisfies the capacity constraints (3). Moreover, it is desirable to find a
solution that does not consume too many resources, so that future flow ad-
mission requests can be satisfied too. Hence, the heuristics take into account
the available capacities in the network, so that nodes that have higher capaci-
ties are preferentially chosen as relays, while nodes that have low capacities are
bypassed. We note that, while the heuristics can be used to compute in an ef-
ficient way a candidate route/tree, they offer no guarantee or definitive answer
on whether a flow can be accepted in the network. Thus, the constraints in (3)
must be checked after the computation, to verify whether the flow can actually
be accepted.

From the definition of the coefficients λk we note that we only need to consider
nodes in the route/tree, as well as the nodes in their interference zones. For all
the remaining nodes we have λk = 0, and the residual capacities do not change.
Hence, (3) is true if and only if:

∀k ∈ I(u) ∪ I(v), (u, v) ∈ T : Ck ≥ λkx, (4)

where we took the case of the multicast tree for generality.
We can then write the following equivalent constraint formulation:

min
k∈I(u)∪I(v), (u,v)∈T

Ck

λk
≥ x (5)

According to the previous discussion, a candidate route for satisfying the given
constraints will be the route that maximizes the route capacity in the left hand
side of (5), or equivalently that minimizes the inverse capacity, i.e.,

min
{

max
k∈I(u)∪I(v), (u,v)∈T

λk

Ck

}
. (6)

However, such a route may be too long and may consume too many network
resources due to interferences. Consequently, the capacity of the network for
accepting more flows could be unnecessarily reduced.

Quality-of-Service MOST Algorithms for Wireless Ad Hoc Networks 233

A better candidate route/tree can be found by the following heuristic. Each
node k is associated with a weight wk =

∑
j∈I(k)

1
Cj

, i.e., the sum of the in-
verse capacities of all nodes in the interference zone of k (including k). We can
then define the weight of a route/tree as the sum of weights of the nodes in the
route/tree. The heuristic consists in taking the route/tree with the minimum
weight. Such a minimization can easily be performed with Dijkstra’s algorithm
or a classic spanning tree algorithm, for a route or an overlay tree respectively.
This will result in avoiding nodes which have low capacities, or which inter-
fere with other low capacity nodes. This approach was introduced in [10] for
unicast routing, and it was found (via simulations) to achieve the best perfor-
mance among other proposed approaches. We observe that the route/tree that
we compute in this case minimizes the sum:

∑
k∈I(u)∪I(v), (u,v)∈T

λk

Ck
.

We can propose a variant of this heuristic, by considering weights wk =∑
j∈I(k)

1
(Cj)n , where n can be any positive integer. We then define the following

incremental algorithm: we start with n = 1 and if the route/tree discovery fails
(i.e., the capacity constraints are not satisfied) the value of n is increased. The
procedure is repeated until the flow is accepted, or until n reaches a predefined
upper threshold (in this case the flow cannot be admitted). In fact, larger values
of n mean that low capacity nodes will have even larger weights and they will be
chosen less often. So, we will compute longer routes/trees. As n tends to infinity,
the computed route/tree will maximize the minimum residual capacity in all its

interfering nodes, since we have that limn→∞
(∑

k
1

(Ck)n

) 1
n

= maxk
1

Ck
.

The above heuristics take into consideration the available capacities in the
network, but they ignore the amount of bandwidth that is being requested by
the current flow. Although this approach can be effective when the requested
bandwidth is small compared to the residual capacities in the network, the
performance can be improved by heuristics that adapt the route/tree compu-
tation to the particular amount of bandwidth requested each time. In fact,
in the case of multicast flows, this adaptation is even more important, since
a large number of nodes might be involved, and the flow may have a signif-
icant impact on the network conditions. As a result, better performance can
be achieved if the node weights are updated during the algorithm execution,
according to the new residual capacities. Let us assume that we use a greedy
algorithm and the same definition of the node weights as before. If the weights
are updated each time a node is added to the route/tree, the algorithm will
minimize the sum2:

∑
k∈I(u)∪I(v), (u,v)∈T

∑
j=0..λk−1

1
(Ck−jx)n . The route/tree

we compute will then approach (as n tends to infinity) the route/tree which
minimizes the least residual capacity in the network after the new flow has been
admitted, i.e., max mink (Ck − λkx). However, this optimization is achieved at
the cost of an increase in the algorithm’s running time complexity. In the next
section, we discuss how a compromise can be found between the running time
and the expected performance, with selective weight updates whenever a multi-
cast node is added to the multicast overlay tree.

2 We take 1
Ck−jx

= ∞ if Ck − jx ≤ 0.

234 G. Rodolakis et al.

4 QoS Multicast Overlay Spanning Tree Algorithms

In this section, we present the algorithms which we use to construct multicast
overlay spanning trees. All new algorithms are based on the spanning tree algo-
rithm which is in use in the MOST protocol [3], combined with the heuristics we
presented in Section 3.3. The performance of all algorithms described here will
be compared via extensive simulations in the following section.

Basic MOST Algorithm. The algorithm in the MOST protocol computes a
minimum spanning tree over all multicast nodes, by minimizing the size of the
multicast tree in number of links/hops. An efficient algorithm for constructing
such an overlay tree is presented in [3]. However, this algorithm does not take
into consideration the available capacities in the network.

MOST with Unicast QoS. One possibility for improvement consists in tak-
ing an overlay tree computed by MOST and using unicast QoS routing inde-
pendently for each individual tunnel in the overlay tree, as if each tunnel corre-
sponded to a different unicast flow. This means that the overlay tree structure
is not dependent on the available capacities in the network, since each multicast
node will have exactly the same overlay neighbors as with the basic MOST algo-
rithm. Nonetheless, some optimization is possible since the unicast tunnels will
follow more appropriate paths, using the heuristics from [10].

Simple Q-MOST Algorithm. It is possible to construct a better overlay tree,
by taking into account the available capacities directly in the computation of the
overlay tree structure. This can be achieved by using the defined weights, and by
computing the overlay spanning tree that minimizes the sum of these weights.
This minimization can be performed with algorithm 1, which is an adaptation
of the basic MOST algorithm for our particular context. The difference consists
in taking node weights instead of unit edge costs.

We denote G(V, E) the network graph, where V is the node set, E is the
edge set. Each node v is associated with a weight W (v). We also denote S the
set of multicast nodes. The array d associates each node with a distance to the
multicast overlay tree, i.e., d[v] corresponds to the minimum distance of node
v to the multicast nodes that are already part of the tree. This distance is ini-
tialized to W [root] for the root node and to ∞ for all other nodes. The root
node corresponds to the node with the smallest weight. The array overlaypred
associates each node with an overlay predecessor multicast node. On the other
hand, the array pred associates each node with its direct predecessor in the mul-
ticast tree (which is not necessarily a multicast node). These arrays need only
be maintained during the computations, in order to construct the list of overlay
routes routeList, which represents the complete multicast tree structure. The
algorithm manages a set F of multicast nodes that have not been covered yet
by the tree, and a min-priority queue Q which includes all nodes, with the pri-
ority attribute being equal to their distance d. In each iteration the algorithm
chooses a node u with the smallest distance to the overlay tree (step 7), and

Quality-of-Service MOST Algorithms for Wireless Ad Hoc Networks 235

Algorithm 1: Efficient QoS Minimum Spanning Tree Algorithm
Input: Graph G(V, E), Multicast Node Set S, Node Weight Array W .
Output: Overlay route List routeList

1. for all (v ∈ V) { d[v] ← ∞; pred[v] ← NIL; overlayPred[v] ← NIL;}
2. root ← arg mini W [i]
3. d[root] ← W [root];
4. Q ← V ;
5. F ← S;
6. while (F �= ∅) {
7. u ←EXTRACT-MIN(Q);
8. if (u ∈ S) {
9. d[u] ← W [u];

10. DEL(F, u);
11. INSERT(routeList, getRoute(overlayPred[u],u) }
12. for each (v ∈ adj[u]) {
13. if (d[v] > d[u] + W [v]) {
14. d[v] ← d[u] + W [v];
15. if(v /∈ Q) { INSERT(Q,v); }
16. if (u ∈ S) overlayPred[v] ← u;
17. else overlayPred[v] ← overlayPred[u];
18. pred[v] ← u; }} }

checks whether it is a multicast node (step 8). In this case, the node’s distance
is updated to W [u] (because the node is added to the overlay tree) and it is
removed from the set F . Afterwards, for each chosen node, steps 13−18 check
its adjacent nodes on whether their distance can be improved, and update the
predecessors appropriately, similarly to the basic MOST algorithm (cf. [3]).

The node weights are set according to the formula: wk =
∑

j∈I(k)
1

Cj
for

a node k. We call this algorithm variant QOSMOSTsimple. Similarly, we can
use the weight definition wk =

∑
j∈I(k)

1
(Cj)n , where n is an integer. In this

case, the algorithm is repeated with increasing values of n until the flow is
accepted, or until n reaches a predefined upper threshold. This variant is denoted
QOSMOSTsimple-inc. In the following, we denote N the number of nodes in the
network, M the number of links, n the number of multicast members, and D
the maximum number of nodes in an interference zone. The time needed to
compute the weights for all nodes in the network, is O(ND). Similarly, the
complexity for checking whether the residual capacity constraints are satisfied
is O(TD), where T is the size of the multicast tree. Once the weights have been
computed, the complexity of algorithm 1 is exactly the same as the basic MOST
algorithm, i.e., O (n(N log N + M)) in the worst case, and approximately equal
to Dijkstra’s algorithm on average (cf. [3]). Therefore, this particular algorithm
has the important advantage of having low running time complexity. Moreover,
we note that we do not need to take into account here the amount of bandwidth
requested by a given flow. This means that this algorithm can be used to compute

236 G. Rodolakis et al.

bandwidth-aware multicast overlay trees, which can be used regardless of the
bandwidth requirements, in a group shared multicast tree protocol.

Improved Q-MOST Algorithm. In case the QoS requirements are stricter,
it is beneficial to propose an algorithm which can adapt to the precise amount of
bandwidth requested by a given multicast flow. Therefore, an improved version
of the Q-MOST algorithm consists in updating the remaining capacities and
the node weights whenever a multicast node is added to the overlay tree. More
precisely, the following modifications must be made to algorithm 1, after step 11:

1. Update the residual capacities in the network (when the tunnel which con-
nects the newly added multicast node to the tree has accepted flow x);

2. update the weights for all concerned nodes;
3. reset the distances of all nodes in the network to infinity (except multicast

nodes that have already been added to the overlay tree).

Again, we define two variants of the improved Q-MOST algorithm, depending
on whether we use incremental weights or not: QOSMOST and QOSMOST-inc.
According to the discussion in the previous section concerning weight updates,
we note that the incremental algorithm will find an overlay tree which approaches
the tree that maximizes the least residual capacity in the network, after the mul-
ticast flow is accepted. Hence, we expect to find a suitable multicast tree with
respect to a flow request in almost all cases where such a tree exists. This per-
formance gain comes at a (small) extra complexity cost. Once the node weights
have been computed, the worst case complexity in both variants of the improved
Q-MOST algorithm is O (n(N log N + M) + TD), where T is the overlay tree
size. However, the average case complexity is also higher due to the fact that the
distances must be reset each time a multicast node is added to the tree.

5 Simulations

In order to evaluate the performance of the variants of Q-MOST, we perform ex-
tensive simulations, which are detailed in this section. The focus of the Q-MOST
algorithm is on wireless ad hoc networks. Such networks have been modeled as
unit disk graphs of the plane, where two nodes are neighbors whenever their dis-
tance is lower than a fixed radio range. The simulator used was self-developed;
the simulation parameters are given in table 1. In the simulations, the network
considered is a square. The interference area of one node will be considered to
be either the one-hop neighborhood, i.e. the area within range ρ; or the two-hop
neighborhood (which is an approximation of the area within range 2 × ρ).

In the first scenario, 1000 nodes are randomly distributed, the interference
area is the one-hop neighborhood, and every node has an initial capacity of 5000
units of bandwidth. The scenario repeatedly attempts to add more multicast
trees, with a randomly selected group of 10 members, and each of the trees re-
quiring a capacity of 10 units of bandwidth. The results are shown on Fig. 1 (we
omit the plots corresponding to the incremental variants, because in this par-
ticular scenario they have exactly the same performance as the non-incremental

Quality-of-Service MOST Algorithms for Wireless Ad Hoc Networks 237

Table 1. Basic simulation parameters

Parameter Value(s)
Network width L L = 1
Number of nodes 200 or 1000

Range ρ 0.2 for 200 nodes, 0.1 for 1000 nodes
Position of the nodes random uniform i.i.d

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

N
um

be
r

of
 a

cc
ep

te
d

flo
w

s

Number of flows

QOSMOST
QOSMOSTsimple

MOSTunicastQOS
MOST

(a) Number of accepted groups

 0

 5

 10

 15

 20

 25

 30

 35

 40

Average overlay tree size

MOST
MOSTunicastQOS
QOSMOSTsimple

QOSMOST
QOSMOSTsimple-inc

QOSMOST-inc

(b) Average size of the accepted trees

Fig. 1. Admission control of 500 successive groups

algorithms). We first see on Fig. 1(a), the evolution of the accepted groups with
the number of groups: on the x-axis, the network starts with 0 groups, and new
groups are created randomly until 500 groups are reached. On the y-axis, the
number of groups that are successfully added is displayed.

As one can see, both the simple Q-MOST and improved Q-MOST perform
very similarly and clearly outperform the basic MOST algorithm and MOST
with Unicast QoS, in spite of all the algorithms being simulated with the same
groups. This result comes from the fact that, when congestion begins, while
minimum spanning trees based on hop-count distances (MOST) are no longer
necessarily accepted, the Q-MOST algorithms are able to find trees with routes
sidestepping from nodes with low residual capacity. MOST with Unicast QoS is
able to do the same to some extent, but its performance on the scenario is only
midway, illustrating that the fact that QoS for multicast is more than multicast
using unicast QoS. Hence, the global optimization in the multicast tree structure
performed by the Q-MOST algorithms implies an important performance gain.
Another interesting point is the sharper plateauing of the Q-MOST algorithms
(after about 350 admissions), showing that almost no group can be accepted
after some congestion level is reached, hinting at the fact that these algorithms
are efficient in finding possible trees when they exist. In Fig. 1(b), the average
size of the final accepted overlay tree is shown for the various algorithms; it is
the average total number of links in the tree. It appears that the size of the
overlay tree of the Q-MOST algorithm is not significantly larger than for basic

238 G. Rodolakis et al.

MOST; hence, although the heuristics avoid going through and near areas with
low residual capacity, this is done in a adequate manner. Notice that using too
large trees would have a negative performance impact on Fig. 1(a).

 0

 50

 100

 150

 200

 250

5 10 20

N
um

be
r

of
 a

cc
ep

te
d

flo
w

s

Group size

MOST
MOSTunicastQoS
QOSMOSTsimple

QOSMOSTsimple-inc
QOSMOST

QOSMOST-inc

(a) With identical initial capacity

 0

 20

 40

 60

 80

 100

 120

 140

 160

5 10 20
N

um
be

r
of

 a
cc

ep
te

d
flo

w
s

Group size

MOST
MOSTunicastQoS
QOSMOSTsimple

QOSMOSTsimple-inc
QOSMOST

QOSMOST-inc

(b) With initial capacity hole in the center

Fig. 2. Admission control of 500 successive groups for all algorithm

The second scenario is similar to the first one, except that the interferences
area is the two-hop neighborhood, and that the number of members in each
group varies: 5, 10 or 20. The results are represented on histograms in Fig. 2,
which indicate the total number of accepted multicast groups after 500 attempts.
Fig. 2(a) is for a network where all the nodes have the same initial capacity equal
to 5000, whereas in Fig. 2(b), the nodes in a smaller square in the center of edge
0.5 have a halved initial capacity, that is 2500 units of bandwidth.

We see again that all the variants of Q-MOST have a similar performance,
considering the number of multicast groups that can be accepted, that MOST
performs worse, and that MOST with Unicast QoS has intermediary perfor-
mance. One significant result here, is comparing Fig. 2(a) and Fig. 2(b), it ap-
pears that the benefits of Q-MOST over MOST increase, when the capacity is
not uniform (for instance, when there is a capacity hole in the center). This last
case corresponds to more realistic cases, where the center of the network is more
likely to get congested, or where non-multicast traffic is not uniformly spread.

The last scenario focuses on the impact of the size of requests (requested
bandwidth) on the performance. The two base scenarios are: either 1) with 200
nodes, or 2) with 1000 nodes. In addition, two sub-variants are tested, for dif-
ferent initial capacity assignments: 1) in the first, every node has an initial
capacity selected uniformly at random in the range of 4000 to 5000 units; 2) in
the second, every node has an initial capacity of 5000, except for nodes in the
center square, a capacity “hole”, which have a random capacity in the range
of 2000 − 2500 units. We present here the results when in the first variant we
assume one-hop interferences, while in the second variant we assume two-hop
interferences. For the four combinations, the scenario simulates the arrival of
one group with a large bandwidth requirement, with 10 members. The metric

Quality-of-Service MOST Algorithms for Wireless Ad Hoc Networks 239

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

P
er

ce
nt

ag
e

of
 a

cc
ep

te
d

flo
w

s

Requested Bandwidth

QOSMOST-inc
QOSMOST

QOSMOSTsimple-inc
QOSMOSTsimple
MOSTunicastQoS

MOST

(a) 200 nodes, 1-hop interferences, no capac-
ity hole

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

P
er

ce
nt

ag
e

of
 a

cc
ep

te
d

flo
w

s

Requested Bandwidth

QOSMOST-inc
QOSMOST

QOSMOSTsimple-inc
QOSMOSTsimple
MOSTunicastQoS

MOST

(b) 1000 nodes, 1-hop interferences, no ca-
pacity hole

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 a

cc
ep

te
d

flo
w

s

Requested Bandwidth

QOSMOST-inc
QOSMOST

QOSMOSTsimple-inc
QOSMOSTsimple
MOSTunicastQoS

MOST

(c) 200 nodes, 2-hop interferences, with ca-
pacity hole

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600

P
er

ce
nt

ag
e

of
 a

cc
ep

te
d

flo
w

s

Requested Bandwidth

QOSMOST-inc
QOSMOST

QOSMOSTsimple-inc
QOSMOSTsimple
MOSTunicastQoS

MOST

(d) 1000 nodes, 2-hop interferences, with ca-
pacity hole

Fig. 3. Admission probability w.r.t. requested bandwidth (avg. of 100 requests)

is the average admission rate, based on 100 attempts with randomly selected
members on the same topology and with the same bandwidth requirement. The
results are on Fig. 3.

On these figures, one can see the admission rate: for instance, on Fig. 3(d),
for a requested bandwidth equal to 250 units, the admission probability is 7%
for MOST, compared to 99% for the iterative improved Q-MOST. The results
get better and better when the algorithms are more sophisticated and more in-
terference aware; noticeably, unlike previous results from Fig. 3, this time the
difference of performance between the variants of Q-MOST are more clearly
established: this comes from the fact that only one request is to be satisfied
at a time, hence, algorithms cannot compensate by accepting later “easier” re-
quests. The best Q-MOST variant in all cases is the incremental improved Q-
MOST algorithm, which can nearly accept the double of the requested band-
width compared to the basic MOST algorithm, in the more critical case of
Fig. 3(d).

240 G. Rodolakis et al.

6 Protocol and Future Work

In the previous sections, we presented Q-MOST as an algorithm, and evaluated
its performance by simulation, assuming all information is available to every
node. In practice, one needs to extend the QoS model that is used, in order to
create a protocol with proper signaling. In reality, most of the ingredients nec-
essary to construct such an actual protocol already exist, if the OLSR routing
protocol is selected as the routing protocol of the ad hoc network: the multicast
signaling and network interfacing are available with MOST [3], which in turns
reuses implementations and ideas from MOLSR [14] - both have been imple-
mented and tested in real test-beds. Similarly, the mechanisms and protocols
for exchanging the necessary information about quality of service and residual
capacities have already been designed in a QoS interference-aware version of
OLSR [11], implemented, tested and validated on test-beds [12]. The two re-
maining difficulties are the following: the first one is that consistent information
needs to be used for the multicast tree computation; this is easily overcome by
using some kind of global counter/timing in order to decide which sets should be
included in the calculation. The second is more general: the model only considers
channel occupancy and not scheduling as indicated in Section 2, and although it
has excellent performance in practice [12], precise probabilistic arguments such
as in [8] would be interesting. Lastly, the exact specification of the protocol and
its implementation are also subjects of future work.

7 Conclusions

In this article, we presented a family of algorithms, Q-MOST, for multicast in
ad hoc networks. The central feature of these algorithms is that they integrate
quality of service constraints based on the concept of residual capacity, as well as
interference-awareness, with a specific model of interferences. They perform ad-
mission control. They essentially compute a multicast tree, linking nodes of the
group, satisfying the QoS interference constraint that the residual capacity must
never go below zero in the network; in addition, the multicast tree is an overlay
tree, hence two neighbors in the tree are linked by reliable multi-hop routes which
are themselves interference-aware. The difficulty is that even unicast route calcu-
lation is NP-complete within this model, hence we have proposed several variants
of the Q-MOST algorithms based on efficient heuristics. We have experimentally
shown via simulations the excellent behavior of these heuristics on several scenar-
ios: for instance, compared to the basic MOST algorithm, they allow to admit no-
ticeably more groups. Future work includes considering the impact of scheduling,
and developing an actual protocol specification and implementation.

References

1. Gupta, P., Kumar, P.R.: Capacity of Wireless Networks. IEEE Trans. Inf. The-
ory 46(2), 388–404 (2000)

2. Jacquet, P., Rodolakis, G.: Multicast Scaling Properties in Massively Dense Ad
Hoc Networks, SANSO, Fukuoka, Japan (2005)

Quality-of-Service MOST Algorithms for Wireless Ad Hoc Networks 241

3. Rodolakis, G., Meraihi Naimi, A, Laouiti, A.: Multicast Overlay Spanning Tree
Protocol for Ad Hoc Networks, WWIC, Coimbra, Portugal (2007)

4. Hanzo, L., Tafazolli, R.: A Survey of QoS Routing Solutions for Mobile Ad hoc
Networks IEEE Communications Surveys & Tutorials (2007)

5. Lin, C.R., Liu, J.-S.: QoS Routing in Ad Hoc Wireless Networks, IEEE Journal on
Selected Areas in Communications, 1426–1438 (August 1999)

6. Gupta, R., Jia, Z., Tung, T., Walrand, J.: Interference-aware Qos Routing (IQRout-
ing) for Ad-Hoc Networks. In: Proc. Globecom 2005, vol. 5 (November 2005)

7. Ge, Y., Kunz, T., Lamont, L.: Quality of Service Routing in Ad-Hoc Networks
Using OLSR. In: Hawaii International Conference on System Sciences (January
2003)

8. Sarr, C., Chaudet, C., Chelius, G., Guerin-Lassous, I.: A Node-Based Available
Bandwidth Evaluation in IEEE 802.11 Ad Hoc Networks. International Journal of
Parallel, Emergent and Distributed Systems (July 2005)

9. Georgiadis, L., Jacquet, P., Mans, B.: Bandwidth Reservation in Multihop Wireless
Networks: Complexity, Heuristics and Mechanisms, WWAN, Japan (2004)

10. Allard, G., Jacquet, P.: Heuristics for Bandwidth Reservation in Multihop Wireless
Networks, INRIA Research Report RR-5075 (January 2004)

11. Nguyen, D., Minet, P.: Quality of Service Routing in a MANET with OLSR. Jour-
nal of Universal Computer Science (JUCS) 13(1), 56–86 (2007)

12. Nguyen, D., Minet, P., Adjih, C.: Quality of service for OLSR: Implementation and
Measures on a Real Military MANET, 3rd OLSR Interop, Japan (October 2006)

13. Royer, E., Perkins, C.: Multicast Ad hoc On-Demand Distance Vector (MAODV)
Routing, IETF, Intemet Draft: draft- ietf-manet-maodv-00.txt (2000)

14. Laouiti, A., Jacquet, P., Minet, P., Viennot, L., Clausen, T., Adjih, C.: Multicast
Optimized Link State Routing, INRIA research report RR-4721 (2003)

15. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (AODV)
routing, RFC 3561 (2003)

16. Clausen, T., Jacquet, P., Adjih, C., Laouiti, A., Mühletaler, P., Minet, P., Qayyum,
A., Viennot, L.: Optimized link state routing protocol, RFC 3626 (2003)

17. Lee, S., Su, W., Gerla, M.: On demand multicast routing protocol in multihop
wireless mobile networks, ACM/Baltzer Mobile Networks and Applications (2000)

18. Tebbe, H., Kassler, A.: QAMNet: Providing Quality of Service to Ad-hoc Multicast
Enabled Networks, ISWPC, Thailand (2006)

19. Saghir, M., Wan, T.C., Budiarto, R.: Load Balancing QoS Multicast Routing Pro-
tocol in Mobile Ad hoc Networks, AINTEC, Bangkok, Thailand (2005)

20. Ahn, G., Campbell, A.T., Veres, A., Sun, L.: Supporting Service Differentiation for
Real-Time and Best Effort Traffic in Stateless Wireless Ad Hoc Networks (SWAN),
IEEE Transactions on Mobile Computing (September 2002)

21. Saghir, M., Wan, T.C., Budiarto, R.: QoS Multicast Routing Based on Bandwidth
Estimation in Mobile Ad Hoc Networks, ICCCE, Malaysia (2006)

	Quality-of-Service Multicast Overlay Spanning Tree Algorithms for Wireless Ad Hoc Networks
	Introduction
	Related Work
	Methodology
	Network and Interferences Model
	Problem Statement
	Heuristics

	QoS Multicast Overlay Spanning Tree Algorithms
	Simulations
	Protocol and Future Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

