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Fish Eye OLSR Scaling Properties
Cedric Adjih, Emmanuel Baccelli, Thomas Heide Clausen, Philippe Jacquet, Georgios Rodolakis

Abstract: Scalability is one of the toughest challenges in ad hoc
networking. Recent work outlines theoretical bounds on how well
routing protocols could scale in this environment. However, none
of the popular routing solutions really scales to large networks, by
coming close enough to these bounds. In this paper, we study the
case of link state routing and OLSR, one of the strongest candidate
for standardization. We analyze how these bounds are not reached
in this case, and we study how much the scalability is enhanced with
the use of Fish Eye techniques in addition to the link state routing
framework. We show that with this enhancement, the theoretical
scalability bounds are reached.

Index Terms: Ad hoc, mobile, network, routing, scalability.

I. Introduction

In their famous paper, Gupta and Kumar [1] have shown via
information theory that when the sizeN of the network in-
creases (with randomly placed nodes), the optimal neighbor-
hood size isO(log N), which leads to the maximum network
capacity per node beingO(1/

√
N log N). This in turn leads

to a neighborhood radius that shrinks in1/
√

N log N , which
yields a network diameter in hop number beingO(

√
N log N).

However, if we drop the requirement for the network to be con-
nected, and just require the existence of a giant component,we
can actually drop thelog N factor in these formulas. Indeed, the
condition to have a giant component is that the average neigh-
borhood size is greater than 1, and we can therefore considerin
our study that it is no longerO(log N), but ratherO(1). In this
case the maximum capacity per node is thenO(1/

√
N). Note

that Gupta and Kumar have also shown that when the nodes are
optimally placed, the giant component is actually the wholenet-
work.

This property means that when the network size increases, the
neighborhood size must be keptat leastconstant, and well above
1, in order to have an operational network. But as noticed by
Gupta and Kumar, this neighborhood size essentially depends
on the amount of traffic generated by each node: the larger the
generated traffic is, the smaller the neighbor size will be. When
too much transmissions occur, packet collisions prevent longer
range links from providing satisfactory neighbor link. This fact
imposes theO(1/

√
N) bound they found for the optimal band-

width assigned per node.
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In fact, part of the traffic generated by each node is the control
traffic due to the routing protocol in use. Therefore, the larger
this control traffic is, the smaller actual the neighbor sizewill
be. There is a need to have an efficient control over the routing
protocol overhead in order to avoid that the network capacity
degrades or even collapses because of too much control traffic.
The aim of this paper is to define the condition a routing pro-
tocol must satisfy in order to fit the Gupta and Kumar optimal
scaling property.

The above theoretical results need to be compared with the re-
ality when using existing routing protocols. For example, link
state routing protocols do not exactly satisfy the scaling prop-
erties outlined by Gupta and Kumar. In reality, the average
neighborhood size tends to slowly decrease as the network size
increases. This is due to the fact that the control traffic con-
sists here in topology information generated and relayed byeach
node in the network, while the amount of this information tends
to increase linearly with the size of the network. This obvi-
ously puts an upper bound on the maximal size of the network,
above which the amount of control traffic generated by topol-
ogy updates purely and simply prevents the network from being
formed and connected. In fact, this limitation is common to ev-
ery flat routing protocol, where all nodes have the same role and
are put on the same level of information importance,i.e. every
node is supposed to know the same amount of information about
its direct neighbors as about any node in the network, however
remote it may be.

One way to work around this problem is to establish a hier-
archical protocol that takes advantage of the scaling properties
of node clustering and super-clustering. This technique greatly
reduces the transit of topology information between clusters.
However, complexity remains in adequately distinguishingand
forming different clusters. This is especially difficult inan in-
herently decentralized and mobile environment like ad hoc net-
works.

An alternate solution was proposed by Gerlaet al. in [11],
who introduced the concept of Fish Eye Routing. Contrary to
the hierarchical approach, the Fish Eye technique is totally de-
centralized. Essentially, it consists in reporting remotenodes
information less frequently than nearby nodes information: the
further away a node is, the less frequently information about it
will be reported. The idea is that, in order to route data to a
remote destination, what a node really needs is just a "general
direction" in which the data is to be sent, while totally accu-
rate routing information is superfluous at that point. And asthe
data approaches the destination, the available routing informa-
tion becomes increasingly more accurate, finally enabling it to
be delivered correctly.
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Aside from being much less complex than the hierarchical ap-
proach, another advantage of the Fish Eye technique is that
network-wide, the weight of the control traffic generated bya
node decreases as a function of the distance from this node.
Therefore, if the employed Fish Eye technique uses an appro-
priate function of the distance from the node to decrease the
frequency of topology updates, we can get the control traffic
(generated or relayed by each node) to converge to a finite upper-
bound, even when the network size grows infinitely. The control
traffic density remainsO(N) per area unit and the neighborhood
radius decreases in1/

√
N , enabling the routing to scale for ar-

bitrary large networks if the parameters are appropriatelytuned
to keep the average neighbor size greater than 1.

This paper is organized as follows. The next section introduces
some basic elements in order to model ad hoc networks: slot-
ted time, propagation model, fading model, uniform densityof
transmitters dispatched on an infinite plane etc... Then thefol-
lowing section will extend this model to networks of finite size:
N nodes uniformly distributed on a finite portion of plane. We
will apply this model to study link state routing in the context
of ad hoc networking, and focus in particular on OSPF (Open
Shortest Path First [3]) and OLSR (Optimized Link State Rout-
ing [4]), two link state routing protocols.

The approach taken by link state protocols is that of a distributed
database describing the network, which is replicated and main-
tained throughout the routing domain. More precisely each node
starts by describing it’s local environmenti.e. the state of the
links with its immediate neighbors. This neighbor sensing is
done via the periodic sending/receiving of simple “Hello" pack-
ets. At the same time, each node floods topology descriptions
(LSA packets in OSPF or TC packets in OLSR) to all the other
routing nodes in the network – not only immediate neighbors
this time. These longer range packets contribute pieces to a
database which therefore (i) contains the descriptions of all the
nodes in the network, and (ii) is present and the same in each
node. This link state database is kept up-to-date in all nodes by
the same flooding mechanism, and such periodically as well as
occasionally in case of change in some node’s neighborhood.
Each node then possesses enough information at any time to
build a view of the entire network and to compute the shortest
paths to any other node (with the help of a Djikstra-like algo-
rithm).

We show that these protocols actually don’t fulfill the scaling
properties outlined by Gupta and Kumar. However, in the last
section, we study the scaling properties of OLSR and OSPF en-
hanced with the Fish Eye technique, and we show that the en-
hanced protocols fulfill the theoretical scaling properties.

Note that introducing Fish Eye features in OLSR is immediate,
by playing on TTL and V-Time parameters in topology update
packets (TC packets), as described in [12]. Introducing Fish Eye
features in the OSPF framework is a little less straightforward
since LSAs do not feature TTL inside their format. Neverthe-
less, playing on Age fields should essentially do the same job.

II. Modeling ad hoc networks

In this section we will describe how we model the different
aspects of ad hoc networks.

A. Propagation model

We consider the following model: time is slotted and the mo-
bile nodes are all synchronized, i.e. transmissions occur at the
beginning of slots and according to an ALOHA-like protocol
(i.e nodes select at random their transmission slots). We con-
sider an area of arbitrary sizeA (we will ignore border effect).
N transmitters are uniformly distributed. We callλ the density
of transmitters per slot and per area unit, andf the rate of packet
transmissions per slot and per node. In this model we will as-
sume that the distribution of active transmitters per slot and area
unit is a Poisson process.

In order to justify this assumption, note that we have a uniform
distribution of nodes and that nodes use an ALOHA-like multi-
ple access scheme. Therefore the number and positions of trans-
mitters at beginning of slots vary with time and changes from
slot to slot like a random process. The resulting distribution of
transmitters should therefore be exactly identified as a Bernoulli
distribution over a uniform distribution. However, these kind of
distributions are known to quickly converge to a Poisson distri-
bution as soon asN → ∞ andfN/A → λ. Thus we decided
to directly work with this approximation which turns out to be
very accurate in practice.

Let X be a node at a random position. We will again ig-
nore border effects and assume that all nodes transmit at the
same nominal power. The reception signal at distancer is then
P (r) = r−α with α > 2. Typically α = 2.5. Notice that the
expression of quantityP (r) does not involve any fading factor.
Fading is an alteration of the signal which is due to factors other
than the distance (obstacles, co-interferences with echos, and so
on). Fading is generally modelled via the introduction of a non-
zero factor that varies randomly with time and node location.
We will address the fading issue more thoroughly in section D.

Let W be the signal intensity received by node X at a random
slot. The quantityW is then a random variable since the number
and location of transmitters is random and vary with the slot. Let
w(x) be its density function. If we considerA to be infinite, we
can use [5] where it is shown that the Laplace transformationof
w(x), w̃(θ) =

∫

w(x)e−xθdx satisfies the identity (still with no
fading):

w̃(θ) = exp(2πλ

∫ ∞

0

(e−θr−α − 1)rdr) . (1)

Then, using standard algebra we get:

w̃(θ) = exp(−λπΓ(1 − 2

α
)θ2/α) . (2)

Note that if instead of an area, the node location map was a line
(for instance a sequence of mobiles nodes on a road) we would
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then have:

w̃(θ) = exp(−λΓ(1 − 1

α
)θ1/α) . (3)

And similarly, if the location map was a volume (for instancea
network formed by aircrafts), we would instead have:

w̃(θ) = exp(−4

3
λπΓ(1 − 3

α
)θ3/α) . (4)

In the following, we will restrict ourselves to the case where
nodes are located on a 2D map.

B. Neighbor model

A node is considered to be neighbor with another node if the
probability of successfully receiving hellos from each other is
greater than a certain thresholdp0. For example we can take
p0 = 1/3. This can be achieved by keeping track of the hello
receival success rate per neighbor, as it is done in the “advanced
neighbor sensing” of OLSR [4].

We will assume that a packet can be successfully decoded
if its signal-over-noise ratio is greater than a given threshold
K. Typically K = 10. Therefore a node will correctly re-
ceive a packet from another node at distancer with probabil-
ity P (W < r−α/K). Since hello packets are never retrans-
mitted, the hello success rate from a node at distancer is ex-
actly P (W < r−α/K). Therefore nodes at distancer are
neighbors as long asP (W < r−α/K) > p0. This is equiv-
alent tor < r(λ), wherer(λ) is the critical radius such that
∫ r(λ)−α/K

0
w(x)dx = p0. In fact quantityλ is a parameter

which is easy to handle since by simple algebra it comes that
r(λ) = λ−1/2r(1) (see appendix). The surface covered by the
radiusr(λ) is then the neighborhood areaσ(λ) = σ(1)

λ .

We will now computeσ(1). We remind that factorλ is now
omitted (λ = 1). For simplification purposes, we setC =
πΓ(1 − 2

α ) andγ = 2
α . By application of the reverse Laplace

transformation we get:

P (W < x) =
1

2iπ

∫ +i∞

−i∞

w̃(θ)

θ
eθxdθ (5)

Expandingw̃(θ) =
∑

n
(−C)n

n! θnγ , it comes:

P (W < x) =
1

2iπ

∑

n

(−C)n

n!

∫ +i∞

−i∞
θnγ−1eθxdθ (6)

Then by bending the integration path towards the negative axis
we get:

1

2iπ

∫ +i∞

−i∞
θnγ−1eθxdθ =

sin(πnγ)

π

∫ ∞

0

θnγ−1e−θxdθ

=
sin(πnγ)

π
Γ(nγ)x−nγ

Figure 1 shows the plot ofP (W < x) versusx for α = 2.5 and
λ = 1. Let x0 denote the value such thatP (W < x0) = p0,
thereforer(1) = (x0K)−1/α.

Notice that ifp0 = 1/3, thenx0 ≈ 20, r(1) = (x0K)−1/α ≈
0.12. And then thatσ(1) = πr(1)2 ≈ 0.045.

Fig. 1. Quantity P (W < x) versus x for α = 2.5, no fading.

C. Optimizing the neighborhood

In this section we estimate the best threshold onp0 to consider
a neighbor node to really be in the neighborhood. The objective
is to minimize the number of retransmissions of a packet when
routed to its destination. By retransmission we mean the retrans-
mission due to multihoping as well as the retransmissions due to
packet collisions. We assume that each slot is used by unicast
packets (re)transmittedà la ALOHA until they are correctly re-
ceived by the next node.

Therefore, we want to optimize the neighborhood by excluding
from it “bad" neighbor nodes that feature a too low probability
of successful one hop packet transmission. They might be too
far or behind an obstacle: in any case the link is not reliable
enough and the number of retransmissions needed for a correct
reception is not worthy the hop distance. In other words, we
want the best possible ratio of hop distance over number of re-
transmissions.

For this end we tune the parameterp0. The optimal value does
not depend onλ as we see below. If the probability of success-
ful transmission isp0 then the average number of retransmission
for one hop is 1

p0
. And thus we have to optimize the quantity

p0r(λ), i.e. rP (W < r−α/K). All computations done (see
Fig. 2) we get

√
λr(λ) ≈ 0.089 and we see that the optimum

p0 ≈ 0.75. So roughly, if a node logically excludes from its
neighborhood any neighbor from which it successfully receives
less than 75% of the hellos actually sent by this neighbor, we
insure a simple optimization of the overall number of retrans-
missions, on a network-wide level.

D. Modelization of fading

The propagation of radio waves in presence of random obsta-
cles experiences random fading. Usually, modelization of fading
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Fig. 2. Quantity p0r versus r for α = 2.5, no fading.

consists in the introduction of a random factorF modeling sig-
nal attenuation at distancer: r−α. For examplelog F is uniform
on [−v, v]. In this case we have a new expression ofw̃(θ):

w̃(θ) = exp(−πλΓ(1 − 2

α
)φ(− 2

α
)θ2/α) (7)

with φ(s) = E(F−s), the Dirichlet transformation of the fad-
ing. When fading is uniform on[−v, v] we haveφ(s) =
sinh(sv)

sv . For any given real numberx we also haveP (W < xF )
equaling

∑

n

(−CF (−γ))n sin(πnγ)

πn!
Γ(nγ)φ(nγ)x−nγ (8)

which helps the computation ofσ(1) with fading.

III. OSPF and OLSR scalability

Gupta and Kumar have shown in [1] that when the size of
the networkN increases, the neighborhood size isO(log N)
and the number of hops increases at least in

√
N/ logN . This

means that the average neighborhood size tends to be constant
when the network size increases. Our model in the previous
section confirms this property since it states that when the nodes
are distributed over an infinite plan, the average traffic generated
inside the neighborhood radius is equal toλσ(λ) = σ(1), a con-
stant that we determined.

The neighborhood size depends on the traffic control gener-
ated by each node: the bigger is the amount of control traffic,
the smaller is the neighborhood size. Therefore, performance
may vary with the use of different protocols, yielding differ-
ent control traffic patterns. In this section we therefore study
more precisely the scaling properties of two link state protocols:
OSPF [3] and OLSR [4].

A. Network Topology Model

We will consider that the network is uniformly distributed
with densityν over an area of finite sizeA. The total number of
nodes in the network isN = νA. If λ is the traffic density in
the network, then the average number of neighbors per node is
M = σ(λ)ν = σ(1) ν

λ .

B. General Control Traffic Model

The aim here is to derive the traffic density generated by the
protocol control packets. Generally, there are two sourcesof
control traffic: neighbor sensing on one hand, and topology dis-
covery on the other hand.

Neighbor sensing is the same for all link state protocols: it
consists in each node periodically transmitting a hello message
containing the list of neighbors heard by the node. By compar-
ing their lists the nodes can determine the set of neighbors with
which they have symmetric links. Leth be the rate at which
nodes refresh their neighbor information base and letB be the
maximum number of node identifiers that a slot can contain.
For a network with the capacity of Wifi (1-10 Mbps) we have
B = 100 and 1,000 slots per second. For instance, an OLSR
node generates hellos every 2 sec,i.e. h = 1/2000. If the
neighbor list exceedsB then the node generates several hellos
per update period and distributes the neighbor list among these
several hellos. The node must generate⌈M

B ⌉ hellos per hello
period. Therefore the hellos lead to a traffic density ofhν⌈M

B ⌉.
Omitting fractional part, we get:

λ = hν
M

B
. (9)

if the hellos is the only source of control traffic. SinceM =
σ(1) ν

λ we get:
σ(1)

M
= h

M

B
. (10)

In fact this is only an upperbound because the network size
might be smaller thanσ(1). Therefore, taking account only the
hello control traffic, the maximum manageable neighborhood
size is

√

Bσ(1)/h ≈ 71. This applies to both OLSR and OSPF
as well as to any other protocol that uses such Hellos.

Topology discovery varies with each protocol. With OSPF, each
node periodically broadcasts its list of adjacent links in an LSA
(Link State Advertisement) message, and nodes re-broadcast in
turn the LSA towards their neighbors. In OLSR, on the other
hand, the nodes periodically broadcast TC (Topology Control)
messages containing only a subset of their adjacent links - the
MPR (MultiPoint Relay) selector links. Moreover, only a subset
of the neighbors (the MPR nodes) re-broacast the TC messages.
However we will assume that in both protocols the topology dis-
covery update period is the same, in order to compare two pro-
tocols with the same agility to adapt their topology to mobility.
For instance, OLSR’s TC rate per node isτ = 1/5000.

C. OSPF Specific Model

In this section we will work on modelling the overhead in-
duced by OSPF. The idea is to expressλ only in function of the
protocol overhead. We consider no other traffic than the signal-
ing protocol. In OSPF a node periodically:

1. transmits Hellos with rateh. A Hello contains the list of all
neighbor identifiers (if the list is too long, it will take several
packets on several slots)
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2. transmits LSAs with rateτ . An LSA contains the list of all
adjacent links
3. retransmits received LSAs with a large jitter, to all neighbors
separately (one copy per neighbor)

Therefore the traffic density satisfies the following identity:

λ = hν⌈M

B
⌉ + τνNM⌈M

B
⌉ . (11)

In the following, we drop the ceil factor.

λ = hν
M

B
+ τνN

M2

B
. (12)

UsingM = σ(1) ν
λ we have the identity:

σ(1)B

M
= hM + τNM2 . (13)

This outlines a direct relation between the total size of thenet-
work N , and the average neighborhood sizeM . Notice that
whenN increases,M decreases. This corresponds to the fact
that as more and more nodes are concentrated in a single radio
range, interferences and collisions make more and more links
perform too badly to be considered valid. Therefore more and
more nodes that are theoretically directly reachable (because
physically within radio range) are not considered neighbors, and
hence,M decreases. The absolute minimum forM is 1, below
which the network does not have a significant connected com-
ponent. If a single fully connected network is wished for, this
threshold is raised toM = log N (see [1]).

Furthermore, the limitM = 1 yields a maximum network size
of:

Nmax = (σ(1)B − h)
1

τ
. (14)

Which givesNmax = 25, 000.

On the other hand, when the network size decreases, it reaches
a level whereN = M . Below this level the network is only
one hop (full meshed), and the control traffic does not saturate
the neighborhood. This corresponds to the maximum manage-
able neighborhood size. From (13) we get that the maximum
manageable neighborhood size for OSPF isN = 11. Having
an average neighborhood size as big as possible is importantin
that it reduces the average number of hops needed to go from
a given source to a given destination. This way the amount of
retranmissions network-wide (hence the overhead) is reduced.

D. OSPF-B

In this section we propose an adaptation of OSPF which aims
at reducing the overhead. OSPF-B slightly differs from OSPF
with the fact that the nodes broadcast the LSA only once, in-
stead of duplicated in several copies to each neighbor.

In this case the equation (13) should be rewritten in

σ(1)B

M
= hM + τNM (15)

It then comes that in the case of OSPF-B we get a maximum
manageable neighborhood size ofN = 22.

E. OLSR Specific Model

In this section we will work on modelling the overhead in-
duced by OLSR. With this protocol, a node periodically:

1. transmits TCs with rateτ . A TC contains the list of neighbors
having selected the node as MPR (its MPR selectors)
2. retransmits received TCs only once (and with large jitter),
and such only when the node has been selected as MPR by the
neighbor from which it first received the TC

Let Mr be the average number of MPRs selected by a node with
neighborhood sizeM . Since the network is modelled as a disk
unit graph, it comes from [10] thatMr ≤ (9π2M)1/3. Simula-
tions show thatMr ∼ βM1/3 whenM → ∞ with β ≈ 5 (see
figure 3). Simulations were performed up toM = 6, 000, 000.

Fig. 3. Average MPR set of a node versus neighborhood size.

In [2] it is proven that an MPR flooding costs on average
MrN/M retransmissions. Therefore we get the following traf-
fic density identity:

σ(1)B

M
= hM + τ(Mr)

2 N

M
(16)

It then comes that the maximum manageable neighborhood size
for OLSR is with N = 35. Also note that this identity and
the connectivity limit ofM = 1 (which in turn implies that
Mr = 1) gives the same maximum network size for OLSR as
with OSPF, that isNmax = 25, 000.

F. F-OLSR

In this section we introduce a slight modification of OLSR
called F-OLSR, for Full Optimized Link State Routing. In F-
OLSR the TCs contain the list of all the adjacent links, and not
just MPRs. Therefore every node has the knowledge of the com-
plete link state of the network instead of its restriction toMPR
links. The TCs are still forwarded via MPR nodes. The identity
for F-OLSR is then:

σ(1)B

M
= hM + τMrN (17)
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It then comes that the maximum manageable neighborhood size
for F-OLSR is atN = 27.

G. Comparisons between the Protocols

In Fig. 4 we show the respective neighborhood size versus
network size for the two versions of OSPF. With Fig. 5 we show
the respective neighborhood size versus network size for the two
versions of OLSR. And finally, Fig. 6 compares the network di-
ameter as a function of the network size (number of nodes) in
the case of OLSR and OSPF. The number of hops is estimated
as the square root of the ratio network size over neighborhood
size.

Basically, what we can conclude from this analysis is that op-
timized link state (OLSR) shows here much better performance
than classical link state (OSPF). However, as the network size
increases, both types of approaches feature slowly decreasing
(towards 0) neighborhood size. This fails to reach the Guptaand
Kumar scalability: if the network size grows to be too big, itwill
break down by not being able to create significant connectivity.

50

40

30

20

10

0
200150100500

Fig. 4. Neighborhood size versus the network size, α = 2.5, no fading,
respectively for OSPF (bottom) and OSPF-B (top).

IV. Scaling properties of OSPF and OLSR enhanced with
Fish Eye strategy

With OSPF and OLSR as well as with any other flat rout-
ing protocol, the neighborhood size tends to slowly decrease
towards zero as the network size increases. Therefore they do
not achieve the Gupta and Kumar scaling properties. This is due
to the fact that the topology information that each node in the
network has to (re)transmit tends to increase linearly withthe
size of the network. This in turn yields an upper bound on the
maximal size of the network, which we have computed to be of
about25, 000 nodes for OSPF as well as for OLSR.

However, whenN is well below this limit ofNmax = 25, 000
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200150100500

Fig. 5. Neighborhood size versus the network size, α = 2.5, no fading,
respectively for F-OLSR (bottom) and OLSR (top).

Fig. 6. Hop number estimated diameter of the network versus network
size, α = 2.5, no fading, respectively for OLSR (bottom) and OSPF
(top).

the two routing protocols have their neighborhood size almost
constant asN increases and thus the number of hops increases
in J

√
N . The constantJ depends on the nature of the routing

protocol and can vary greatly. We analysed the impact of the
routing protocol on the value of this constant: we have shown
that it changes quite a bit between pure link state (OSPF) and
optimized link state (OLSR). In particular we have shown that
as the network size increases, the maximum manageable neigh-
bor size is respectively of11 nodes with OSPF, while it is of
35 with OLSR. Note that as the maximum manageable neighbor
size decreases, the average number of hops (and hence retrans-
missions) between any random source and destination increases,
therefore augmenting the overall traffic overhead.

However, both OLSR and OSPF just need minor modifications
in order to reach the Gupta and Kumar scalability. In this sec-
tion we describe the “Fish Eye” strategy [11] that can easilybe
inserted inside both OSPF and OLSR frameworks. With this
strategy the overall incompressible overhead induced by period-
ical topology updating tends to be constant instead of linearly
increasing with the network size. Of course this doesn’t come
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without a cost,i.e. less accurate information about the link sta-
tus of remote nodes. However, this cost is not expensive: it does
not degrade the delivery reliability and it does not introduce ad-
ditional overhead in form of longer paths (see [12]).

The principle of Fish Eye strategy is that TC (or LSA) infor-
mation from remote nodes are less frequently received, and the
more remote, the less frequent. For example, inside the OLSR
framework, nodes send TC packets with variable TTL count and
VTime. The TTL limit is the maximum number of hops a packet
can be relayed before being discarded and the VTime is the max-
imum time for which the information carried by this packet is
considered valid. A node transmitting a packet with low TTL
value insures that the packet will be forwarded only inside the
vicinity of this node, and not further. Conversely, a large TTL
value (the maximum value is 255) insures that the packet willbe
forwarded in the entire network.

Each node uses a decreasing functionf(D) ≤ 1 to determine
the fraction of the TCs (or LSAs) which are generated with a
TTL larger thanD (D is an integer indicating the number of
hops away that the TC may reach). When no Fish Eye strategy
is employed,f(D) = 1 for any value ofD. We can assume
that

∑∞
D=1 Df(D) < ∞ . This is indeed always the case, since

f(D) = 0 for all D ≥ 255. Of course, information that is re-
ceived less frequently should not age as rapidly as frequently
received information. This can be achieved by adequately tun-
ing the Age field in the LSAs (for OSPF) or the VTime field in
the TC packets (for OLSR).

Let us consider a node at the center of a circular network:N
nodes uniformly dispatched on a disk.M is the average number
of neighbor of the central node. In this case, the central node
has3M two hop neighbors, and(D2 − (D − 1)2)M D-hop
neighbors, forD ≤ ⌊

√

N/M⌋ (it comes that2
√

N/M is the
diameter of the network).

A. Fish Eye Enhanced OSPF

Let us now consider the OSPF protocol enhanced with Fish
Eye strategy. The frequency of LSAs received by the central
node fromD-hop neighbors isf(D)τ . Therefore the frequency

at which the central node relays LSAs isτM
∑⌊

√
N/M⌋

D=1 (D2 −
(D − 1)2)f(D).

We will call φ(x) =
∑⌊√x⌋

D=1 (D2 − (D − 1)2)f(D). It then
comes that the control traffic of the central node equals to
hM

B + τφ( N
M )M3

B and we get the following general identity:

σ(1)B

M
= hM + τφ(

N

M
)M3 . (18)

When the networks grows andN → ∞ with φ(∞) = 4 we get
an average neighborhood size converging towardsM → 7.5.

B. Fish Eye Enhanced OLSR

In the case of OLSR the identity 18 becomes:

σ(1)B

M
= hM + τφ(

N

M
)(Mr)

2 . (19)

WhenN → ∞ with φ(∞) = 4 we get an average neighbor-
hood size converging towardsM → 18. That is: three times
better than Fish Eye enhanced OSPF.

Figure 7 shows an example for functionφ: φ(x) = 4x
3+x . Fig-

ure 8 shows the neighbor size evolution with respect to this func-
tion φ and compare it to basic OLSR.

Fig. 7. Example of function φ used for Fish eye strategy.

Fig. 8. Neighborhood size versus the network size, α = 2.5, no fading,
respectively for OLSR (bottom) and OLSR with Fish eye (top).

C. Useful Capacity

In this section we estimate the useful capacity with the OLSR
protocol. We denoteρ the average quantity of data traffic gener-
ated by each node. We assume that on average, the network di-
ameter in number of hops isℓ

√

N/M , whereℓ denotes a linear
factor that depends on the actual shape of the network areaA.

Therefore each packet must retransmitted
ℓ
√

N/M

p0
times, which

leads to an average traffic density (including control traffic and
retransmissions) of:

λ = h
M

B
+ τ(Mr)

2 N

MB
+

ρℓ

p0

√

N/M

Therefore, using the identityλ = σ(1)
M we get an expression

of ρ as a function ofN andM . Clearly, for a given fixedN , ρ
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is maximized whenM is minimized, the minimal value being
M = 1. This yields figure 9, which displays the overall maxi-
mum capacityNρ versus network size for basic OLSR and for
Fisheye OLSR (we tookℓp0

= 1). Notice that basic OLSR with
default tuning collapses atN > 12000, while Fisheye OLSR
features an overall capacity that keeps growing in

√
N .

Fig. 9. Maximum overall capacity versus the network size, α = 2.5, no
fading, respectively for OLSR (bottom) and OLSR with Fish eye (top).

V. Conclusions

With the help of a simple interference model, we have evalu-
ated and compared the scalability of classical and optimized link
state routing. We have shown that the the nature of the routing
algorithm in use impacts essentially on the maximum manage-
able neighborhood size, via the control traffic it induces. We
have modelled this overhead and we have shown how it varies
from one protocol to another. The maximum neighborhood size
is limited to 11 neighbors if OSPF is used, while with the same
update rate parameters, the OLSR neighbor size can reach up to
35 nodes - noting that the maximum neighborhood size is any-
ways limited to 71 nodes due to neighbor sensing control traffic
on its own. Having a greater neighborhood size actually reduces
the overhead network-wide, by reducing the number of needed
retransmissions on paths through the network.

We have also shown how both routing protocols (OLSR and
OSPF) fail to scale to large networks. In fact, none of the popu-
lar ad hoc routing solutions ([4][9][8] etc...) really scales. There
is a limit to the number of nodes in the network above which
there is no significant connected component, due to incompress-
ible topology update control traffic. We have computed this limit
to be 25,000 nodes for both OLSR and OSPF. However both pro-
tocols feature practical scalability issues well within this theo-
retical limit. We have also shown that OSPF performs quite
poorly compared to OLSR. This is not real surprise as OSPF
was not designed for ad hoc environments, contrary to OLSR.
These results also conform with simulations carried out inde-
pendently from our work.

Finally, a simple and practical way to enable ad hoc routing to
scale for larger networks has been described. We have shown
how link state routing can attain the famous theoretical scaling

bounds outlined by Gupta and Kumar: with the enhancement
of Fish Eye strategies. Such techniques can be very simply in-
corporated into the OLSR framework (or the OSPF protocol),
and we have outlined how. Nevertheless, we have found that
Fish Eye enhanced OLSR still clearly outperforms Fish Eye en-
hanced OSPF.
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APPENDIX

Factor λ in r(λ). By definition
∫ r(λ)−α/K

0 w(x)dx = p0.
Using the reverse Laplace transformation we havew(x) =
1

2iπ

∫ +i∞
−i∞ w̃(θ)eθxdθ. Inserting this expression in the first equa-

tion and commuting integral signs, since
∫ r(λ)−α/K

0
eθxdx =

eθr(λ)−α/K−1
θ , yields:

1

2iπ

∫ +i∞

−i∞

eθr(λ)−α/K − 1

θ
w̃(θ)dθ = p0.

The change of variableλα/2θ = θ′ makesλ disappear from the
w̃(θ) expression:

1

2iπ

∫ +i∞

−i∞

eθ′(r(λ)
√

λ)−α/K − 1

θ′
w̃(λα/2θ′)dθ′ = p0.

Sincew̃(λα/2θ′) is independent fromλ andr(λ) appears mul-
tiplied by

√
λ, we get thatr(λ) is simply proportional to1/

√
λ:

r(λ) = r(1)/
√

λ.
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