Advanced Mathematical Programming Formulations & Applications

Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

INF580

Outline

Introduction

Some combinatorial **NP-hardness** Distance geometry problem Distance geometry in MP Barvinok's Naive Algorithm Isomap for the DGP **Concluding remarks**

Clustering on graphs Clustering in Euclidean Clustering in high Solution retrieval **Quantile regression** Sparsity and ℓ_1 minimization Lower bounds Upper bounds from SDP Gregory's upper bound Delsarte's upper bound Pfender's upper bound

What is *Mathematical Programming*?

- Formal declarative language for describing optimization problems
- ► As expressive as any imperative language
- Interpreter = solver
- ▶ Shifts focus from *algorithmics* to *modelling*

A valid sentence:

$$\begin{array}{ccc}
\min & x_1 + 2x_2 - \log(x_1 x_2) \\ & x_1 x_2^2 \ge 1 \\ & 0 \le x_1 \le 1 \\ & x_2 \in \mathbb{N}. \end{array} \right\} \qquad [P]$$

An invalid one:

$$\min \quad \frac{1}{x_2} + x_1 + +\sin \cos \gamma$$

$$x_{x_2} \ge x_{x_1}$$

$$\sum_{i \le x_1} x_i = 0$$

$$x_1 \ne x_2$$

$$x_1 < x_2.$$

MINLP Formulation

Given functions $f, g_1, \ldots, g_m : \mathbb{Q}^n \to \mathbb{Q}$ and $Z \subseteq \{1, \ldots, n\}$

$$\begin{array}{ccc} \min & f(x) & \\ \forall i \le m & g_i(x) & \le & 0 \\ \forall j \in Z & x_j & \in & \mathbb{Z} \end{array} \right\} \quad [P]$$

- $\blacktriangleright \ L \leq x \leq U \quad \Leftrightarrow \quad (L-x \leq 0 \wedge x U \leq 0)$
- f, g_i represented by *expression DAGs*

$$x_1 + \frac{x_1 x_1}{\log(x_1)} + \frac{1}{\log(x_1)}$$

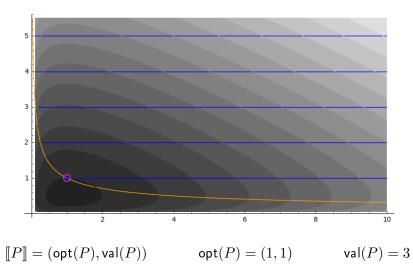
Class of all formulations $P: \mathbb{MP}$

Semantics

- ▶ Given P ∈ MP, there are three possibilities:
 [P]] exists, P is unbounded, P is infeasible
- ► *P* is feasible iff [[*P*]] exists or is unbounded otherwise it is infeasible
- P has an optimum iff [[P]] exists otherwise it is infeasible or unbounded
- Are feasibility and optimality really different?
 - Feasibility prob. g(x) ≤ 0: can be written as MP min{0 | g(x) ≤ 0}
 - ▶ Bounded MP min{ $f(x) | g(x) \le 0$ }: bisection on f_0 in $f(x) \le f_0 \land g(x) \le 0$
 - ► Unbounded MP: not equivalent to feasibility

Example

 $P \equiv \min\{x_1 + 2x_2 - \log(x_1 x_2) \mid x_1 x_2^2 \ge 1 \land 0 \le x_1 \le 1 \land x_2 \in \mathbb{N}\}\$



Solvers (or "interpreters")

- ► Take formulation *P* as input
- ▶ Output [P] and possibly other information
- Trade-off between generality and efficiency

```
(i) LINEAR PROGRAMMING (LP)
f, g_i linear, Z = \emptyset
```

- (ii) MIXED-INTEGER LP (MILP) $f, g_i \text{ linear}, Z \neq \emptyset$
- (iii) NONLINEAR PROGRAMMING (NLP) some nonlinearity in $f, g_i, Z = \emptyset$ f, g_i convex: convex NLP (cNLP)
- (iv) MIXED-INTEGER NLP (MINLP) some nonlinearity in $f, g_i, Z \neq \emptyset$ f, g_i convex: convex MINLP (cMINLP)
- Each solver targets a given class

Some application fields

- Production industry planning, scheduling, allocation, ...
- ► Transportation & logistics facility location, routing, rostering, ...
- Service industry pricing, strategy, product placement, ...
- ► Energy industry (all of the above)
- Machine Learning & Artificial Intelligence clustering, approximation error minimization
- Biochemistry & medicine protein structure, blending, tomography, ...
- Mathematics

Kissing number, packing of geometrical objects,...

Outline

Introduction Decidability

Efficiency and Hardness Some combinatorial problems NP-hardness

Systematics

Distance Geometry

The universal isometric embedding Dimension reduction Distance geometry problem Distance geometry in MP DGP cones Barvinok's Naive Algorithm Isomap for the DGP Concluding remarks

Clustering in Natural Language

Clustering on graphs Clustering in Euclidean Clustering in high Projecting optimality Solution retrieval **Quantile regression** Sparsity and ℓ_1 minimization Lower bounds Upper bounds from SDP Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Can we solve MPs?

► "Solve MPs": is there an algorithm *D* s.t.:

$$\forall P \in \mathbb{MP} \quad \mathcal{D}(P) = \begin{cases} \text{ infeasible } P \text{ is infeasible} \\ \text{unbounded } P \text{ is unbounded} \\ \llbracket P \rrbracket & otherwise \end{cases}$$

► I.e. does there exist a single, all-powerful solver?

Formal systems (FS)

► A *formal system* consists of:

- ▶ an *alphabet*
- a formal grammar allowing the determination of formulæ and sentences
- a set A of axioms (given sentences)
- a set R of inference rules allowing the derivation of new sentences from old ones
- ► A *theory* T is the smallest set of sentences that is obtained by recursively applying R to A

Example: PA1

- ► Theory: 1st order sentences about N
- ▶ Alphabet: $+, \times, \wedge, \lor, \forall, \exists, \neg, =, S(\cdot)$ and variable names
- Peano's Axioms:

1.
$$\forall x \ (0 \neq S(x))$$

2. $\forall x, y \ (S(x) = S(y) \rightarrow x = y)$
3. $\forall x \ (x + 0 = x)$
4. $\forall x \ (x \times 0 = 0)$
5. $\forall x, y \ (x + S(y) = S(x + y))$
6. $\forall x, y \ (x \times S(y) = x \times y + x)$
7. axiom schema over all $(k + 1)$ -ary ϕ : $\forall y = (y_1, \dots, y_k)$
 $(\phi(0, y) \land \forall x \phi(x, y) \rightarrow \phi(S(x), y)) \rightarrow \forall x \phi(x, y)$

► Inference: see

 $\label{eq:list_of_rules_of_rules_of_inference} \texttt{e.g.} \ \textit{modus ponens} \ ((P \to Q) \land P) \to Q)$

► Generates ring $(\mathbb{Z}, +, \times)$ and arithmetical proofs e.g. $\exists x \in \mathbb{N}^n \ \forall i \ (p_i(x) \leq 0)$ (polynomial MINLP feasibility)

Example: Reals

- ▶ Theory: polynomial systems over \mathbb{R}
- ▶ Alphabet: $+, \times, \wedge, \lor, \forall, \exists, =, <, \leq, 0, 1$, variable names
- Axioms: field and order
- ► Inference: see

 $\begin{aligned} &\texttt{https://en.wikipedia.org/wiki/List_of_rules_of_inference} \\ &\texttt{e.g.} \textit{modus ponens} \left((P \to Q) \land P \right) \to Q) \end{aligned}$

► Generates polynomial rings $\mathbb{R}[X_1, ..., X_k]$ (for all k) e.g. $\exists x \in \mathbb{R}^n \forall i \ (p_i(x) \leq 0)$ (polynomial NLP feasibility)

The use of formal systems

Given a FS \mathcal{F} :

- A decision problem is a set P of sentences
 Decide if a given sentence f belongs to P
- Decidability in formal systems:
 P = provable sentences
- *Proof of f*: finite sequence of sentences ending with *f*; sentences either axioms or derived from predecessors by inference rules
- ▶ PA1: decide if sentence f about \mathbb{N} has a proof PA1 contains $\exists x \in \mathbb{Z}^n \ \forall i \ p_i(x) \leq 0$ (poly p)
- ▶ Reals: decide if sentence f about \mathbb{R} has a proof Reals contains $\exists x \in \mathbb{Z}^n \forall i \ p_i(x) \leq 0$ (poly p)
- ► Formal study of MINLP/NLP feasibility

Decidability, computability, solvability

- Decidability: applies to decision problems
- Computability: applies to function evaluation
 - ► Is the function *f*, mapping *i* to the *i*-th prime integer, computable?
 - ► Is the function *g*, mapping Cantor's CH to 1 if provable in ZFC axiom system and to 0 otherwise, computable?
- Solvability: applies to other problems *E.g. to optimization problems!*

Completeness and decidability

► Complete FS F: for f ∈ F, either f or ¬f is provable otherwise F is incomplete

► Decidable FS F: ∃ algorithm D s.t.

$$\forall f \in \mathcal{F} \left\{ \begin{array}{ll} \mathcal{D}(f) = 1 & \text{iff } f \text{ is provable} \\ \mathcal{D}(f) = 0 & \text{iff } f \text{ is not provable} \end{array} \right.$$

otherwise \mathcal{F} is *undecidable*

Example: PA1

- Gödel's 1st incompleteness theorem: PA1 is incomplete
- ► Turing's theorem: PA1 is undecidable
- ► PA1 is undecidable and incomplete

Gödel's 1st incompleteness theorem

- ► *F*: any FS extending PA1
- Thm. \mathcal{F} is either incomplete or inconsistent
- - Assume \mathcal{F} is complete: either $\mathcal{F} \vdash \phi$ or $\mathcal{F} \vdash \neg \phi$
 - ▶ If $\mathcal{F}\vdash\phi$ then $\mathcal{F}\vdash(\mathcal{F}\not\vdash\phi)$ i.e. $\mathcal{F}\not\vdash\phi$, contradiction
 - ▶ If $\mathcal{F} \vdash \neg \phi$ then $\mathcal{F} \vdash \neg (\mathcal{F} \not\vdash \phi)$ i.e. $\mathcal{F} \vdash (\mathcal{F} \vdash \phi)$ this implies $\mathcal{F} \vdash \phi$, i.e. $\mathcal{F} \vdash \phi \land \neg \phi$, \mathcal{F} inconsistent
 - ► Assume F is inconsistent: any sentence is provable, i.e. F complete

details: 0 = 1, hence $0 \lor \psi$ and $1 \lor \psi$, hence $(0 \land 1) \lor \psi$, i.e. ψ , and symmetrically for $\neg \psi$, for any ψ

 $\blacktriangleright \text{ WARNING: } \mathcal{F} \not\vdash \phi \not\equiv \mathcal{F} \vdash \neg \phi$

Turing's theorem

- ► Turing Machine (TM): *computation model*
 - ▶ infinite tape with cells storing finite alphabet letters
 - head reads/writes/skips i-th cell, moves left/right
 - states=program (e.g. if s write 0 & move left)
 - ▶ initial tape content: input, final tape content: output
 - final state \perp : termination; \varnothing nonterm.
- ► TM dynamics can be written in PA1 statements
- ► Any PA1 sentence p(x) can be represented by TM: while(1) i=0; if p(x) return YES; else i=i+1 only terminates if true; loops forever if false
- ► ∃ universal TM (UTM) representing *all* PA1 sentences
- TM termination \Leftrightarrow decidability in PA1
- ► HALTING PROBLEM (HP):

TM *M* & input *x*, is $M(x) = \bot$?

► HP is undecidable

Turing's theorem

- enumerate all TMs: $(M_i \mid i \in \mathbb{N})$
- ▶ halting function $H(i, x) = \begin{cases} 1 & M_i(x) = \bot \\ 0 & M_i(x) = \varnothing \end{cases}$
- show $H \neq F$ for any computable F(i, x):
 - ▶ let $G(i) = \begin{cases} 0 & F(i,i) = 0 \\ 1 & \text{othw} \end{cases}$

G is partial computable because F is computable

- let M_y be the TM computing G
- consider H(y, y):
 - if F(y, y) = 0 then G(y) = 0
 so M_y(y) = ⊥ and H(y, y) = 1
 - so $M_y(y) = \pm$ and H(y, y) = 1► if $F(y, y) \neq 0$ then G(y) is undefined
 - so $M_y(y) = \emptyset$ and H(y, y) = 0

▶ so $H(y, y) \neq F(y, y)$ for all y

• H is uncomputable \Rightarrow PA1 is undecidable

Example: Reals

- ► Tarski's theorem: Reals is decidable
- Algorithm:

constructs solution sets (YES) or derives contradictions(NO) ⇒ provides proofs or contradictions for all sentences!

- $\blacktriangleright \Rightarrow \mathsf{Reals} \text{ is complete}$
- ► Reals is decidable and complete

Tarski's theorem

- Algorithm based on quantifier elimination
- ► Feasible sets of polynomial systems p(x) ≤ 0 have finitely many connected components
- Each connected component recursively built of cylinders over points or intervals

extremities: pts., $\pm\infty$, algebraic curves at previous recursion levels

• In some sense, generalization of Reals in \mathbb{R}^1

Dense linear orders

Given a sentence ϕ in DLO

- Reduce to DNF $\exists x_i q_i(x)$ with $q_i = \bigwedge q_{ij}$
- Each q_{ij} has form s = t or s < t (s, t vars or consts)
 - s, t both constants:
 - s < t, s = t verified and replaced by $1 \mbox{ or } 0$
 - s, t the same variable x_i :

 $s < t \, {\rm replaced \, by} \, 0, s = t \, {\rm replaced \, by} \, 1$

- if s is x_i and t is not:
 - s = t means "replace x_i by t" (eliminate x_i)
- ► remaining case:

 $q_i \operatorname{conj.of} s < x_i \operatorname{and} x_i < t$:

replace by s < t (eliminate x_i)

- ► q_i no longer depends on x_i , rewrite $\exists x_i \ q_i$ as q_i
- $\blacktriangleright\,$ Repeat over vars. $x_i,$ obtain real intervals or contradictions

Quantifier elimination!

Decidability and completeness

- PA1 is incomplete and undecidable
- ► Reals is complete and decidable
- Are there FS \mathcal{F} that are:
 - incomplete and decidable?
 - complete and undecidable?

Incomplete and decidable (trivial)

- NoInference:
 - Any FS with $<\infty$ axiom schemata and no inference rules
- Only possible proofs: sequences of axioms
- Only provable sentences: axioms
- ► For any other sentence f: no proof of f or $\neg f$
- ► Trivial decision algorithm: given f, output YES if f is a finite axiom sequence, NO otherwise
- ► NoInference is decidable and incomplete

Incomplete and decidable (nontrivial)

- ACF: Algebraically Closed Fields (e.g. C) field axioms + "every polynomial splits" schema
- ► ACF decidable by quantifier elimination
- $ACF_p: ACF \cup AXIOM(C_p \equiv [\sum_{j \leq p} 1 = 0]) (p \text{ prime})$
- ► $\forall p \text{ (prime) } C_p \text{ independent of } ACF \Rightarrow$ $\Rightarrow decidability as in ACF$
- ► ∃ fields of every prime characteristic p⇒ each ACF_p satisfies C_p and negates C_q for $q \neq p$
- In ACF, no proof of C_p nor $\neg C_p$ possible
- Decision alg. $\mathcal{D}(\psi)$ for ACF:
 - if $\psi \equiv C_p$ or $\neg C_p$ for some prime p, return NO
 - else run quantifier elimination on ψ
- ► ACF is decidable and incomplete

if ACF axioms include $\neg C_p$ for all p, then ACF complete

Complete and undecidable (impossible)

► FS *F* complete:

 $\forall \psi \in \mathcal{F} \exists \operatorname{\mathbf{\bar{p}roof}} \operatorname{\mathbf{of}} \psi \operatorname{\mathbf{or}} \neg \psi$

- ► Proofs are finite sequences of sentences
- ► Algorithm *D*:
 - 1. iteratively generate all (countably many) proofs combine axioms w/inference rules and repeat
 - 2. for each new sentence τ , is $\tau \equiv \psi$ or $\tau \equiv \neg \psi$? Return 1 or 0 and break; else continue
- \mathcal{D} terminates because \mathcal{F} is complete
- ► If FS is complete, then it is decidable

The two meanings of *completeness*

► WARNING!!!

- "complete" is used in two different ways in logic
 - $1. \ G\"odel's \,1st\,incompleteness\,theorem$
 - **FS** \mathcal{F} complete if ϕ or $\neg \phi$ provable $\forall \phi$
 - 2. A: sentences; R: inference rules A complete wrt R if $A \vDash \psi \Rightarrow A \vdash \psi$
 - A ⊨ ψ: ψ is logically valid never false for any FS w/axioms A and infer. rules R
 - ► Gödel's completeness theorem: FOL is complete
- Pay attention when reading literature/websites

Undecidability & Incompleteness

- ▶ [Nonexistence of a proof for f] $\not\equiv$ [Proof of $\neg f$] If FS decidable & incomplete, decision alg. answers NO to f and $\neg f$ for f independent
- Information complexity: decision = 1 bit, proof = many bits
- Undecidability and incompleteness are different!

Is MP solvable?

- Hilbert's 10th problem: is there an algorithm for solving polynomial Diophantine equations?
- Modern formulation: are polynomial systems over Z solvable?
- ► [Matiyasevich 1970]: NO can use them to model UTM dynamics
- Let $p(\alpha, x) = 0$ be a Univ. Dioph. Eq. (UDE)
- $\min\{0 \mid p(\alpha, x) = 0\}$ is an undecidable (feasibility) MP
- $\min(p(\alpha, x))^2$ is an unsolvable (optimization) MP

Outline

Introduction Decidability

Efficiency and Hardness

Some combinatorial problems NP-hardness

Systematics

The universal isometric embedding Dimension reduction Distance geometry problem Distance geometry in MP DGP cones Barvinok's Naive Algorithm Isomap for the DGP Concluding remarks

Clustering on graphs Clustering in Euclidean Clustering in high Projecting optimality Solution retrieval **Quantile regression** Sparsity and ℓ_1 minimization Lower bounds Upper bounds from SDP Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Worst-case algorithmic complexity

- Computational complexity theory: worst-case time/space taken by an algorithm to complete
- Algorithm A
 - e.g. to determine whether a graph G = (V, E) is connected or not
 - input: G; size of input: $\nu = |V| + |E|$
- How does the CPU time $\tau(A)$ used by A vary with ν ?
 - $\tau(\mathcal{A}) = O(\nu^k)$ for fixed k: polytime
 - $\tau(\mathcal{A}) = O(2^{\nu})$: exponential
- ► polytime ↔ efficient
- exponential \leftrightarrow inefficient

Polytime algorithms are "efficient"

- Why are polynomials special?
- Many different variants of Turing Machines (TM)
- ► Polytime is *invariant* to all definitions of TM
- ► In practice, O(ν)-O(ν³) is an acceptable range covering most practically useful efficient algorithms
- Many exponential algorithms are also usable in practice for limited sizes

Instances and problems

- ► An input to an algorithm A: *instance*
- Collection of all inputs for A: problem consistent with "set of sentences" from decidability
- ► **BUT**:
 - A problem can be solved by different algorithms
 - ► There are problems which no algorithm can solve
- Given a problem P, what is the complexity of the best algorithm that solves P?

Complexity classes

- ▶ Focus on *decision problems*
- ▶ If \exists polytime algorithm for *P*, then *P* ∈ **P**
- ► If there is a polytime checkable *certificate* for all YES instances of *P*, then *P* ∈ **NP**
- ► No-one knows whether **P** = **NP** (we think not)
- NP includes problems for which we don't think a polytime algorithms exist
 e.g. k-clique, subset-sum, knapsack, hamiltonian

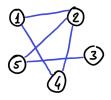
CYCLE, SAT, ...

Subsection 1

Some combinatorial problems

k-clique

- Instance: (G = (V, E), k)
- Problem: determine whether G has a clique of size k



- ► 1-CLIQUE? YES (every graph is YES)
- ► 2-CLIQUE? YES (every non-empty graph is YES)
- ► 3-CLIQUE? YES (triangle {1, 2, 4} is a certificate) certificate can be checked in O(k) < O(n)</p>
- ► 4-CLIQUE? NO no polytime certificate unless P = NP

MP formulations for CLIQUE

Variables? Objective? Constraints?

MP formulations for CLIQUE

Variables? Objective? Constraints?*Pure feasibility problem*:

$$\left. \begin{array}{ccc} \forall \{i,j\} \notin E & x_i + x_j &\leq 1 \\ & \sum\limits_{i \in V} x_i &= k \\ & x &\in \{0,1\}^n \end{array} \right\}$$

MP formulations for CLIQUE

Variables? Objective? Constraints?*Pure feasibility problem*:

$$\left. \begin{array}{ccc} \forall \{i,j\} \notin E & x_i + x_j &\leq 1 \\ & \sum\limits_{i \in V} x_i &= k \\ & x &\in \{0,1\}^n \end{array} \right\}$$

MAX CLIQUE:

$$\left. \begin{array}{ccc} \max & \sum_{i \in V} x_i \\ \forall \{i, j\} \notin E & x_i + x_j &\leq 1 \\ & x &\in \{0, 1\}^n \end{array} \right\}$$

SUBSET-SUM

- Instance: list $a = (a_1, \dots, a_n) \in \mathbb{N}^n$ and $b \in \mathbb{N}$
- <u>Problem</u>: is there $J \subseteq \{1, ..., n\}$ such that $\sum_{j \in J} a_j = b$?

•
$$a = (1, 1, 1, 4, 5), b = 3$$
: YES $J = \{1, 2, 3\}$

all $b \in \{0, \ldots, 12\}$ yield YES instances

•
$$a = (3, 6, 9, 12), b = 20$$
: **NO**

MP formulations for SUBSET-SUM

Variables? Objective? Constraints?

MP formulations for SUBSET-SUM

Variables? Objective? Constraints?*Pure feasibility problem*:

$$\left. \begin{array}{rcl} \sum\limits_{j \leq n} a_j x_j &=& b \\ & x &\in \quad \{0,1\}^n \end{array} \right\}$$

KNAPSACK

- Instance: $c, w \in \mathbb{N}^n, K \in \mathbb{N}$
- ▶ <u>Problem</u>: find $J \subseteq \{1, ..., n\}$ s.t. $c(J) \le K$ and w(J) is maximum

•
$$c = (1, 2, 3), w = (3, 4, 5), K = 3$$

- ▶ $c(J) \leq K$ feasible for J in $\emptyset, \{j\}, \{1, 2\}$
- ▶ $w(\emptyset) = 0, w(\{1, 2\}) = 3 + 4 = 7, w(\{j\}) \le 5$ for $j \le n$ ⇒ $J_{\max} = \{1, 2\}$
- K = 0: infeasible
- natively expressed as an optimization problem

• notation:
$$c(J) = \sum_{j \in J} c_j$$
 (similarly for $w(J)$)

MP formulation for KNAPSACK

Variables? Objective? Constraints?

MP formulation for KNAPSACK

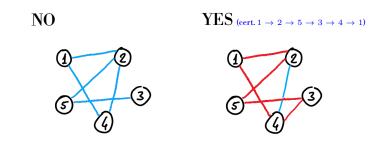
Variables? Objective? Constraints?

$$\max \left\{ \begin{array}{ccc} \sum_{j \leq n} w_j x_j \\ \sum_{j \leq n} c_j x_j &\leq K \\ x &\in \{0,1\}^n \end{array} \right\}$$

HAMILTONIAN CYCLE

- Instance: G = (V, E)
- Problem: does G have a Hamiltonian cycle?

 $\mathit{cycle}\ \mathit{covering}\ \mathit{every}\ v\in \mathit{V}\ \mathit{exactly}\ \mathit{once}$



MP formulation for HAMILTONIAN CYCLE

Variables? Objective? Constraints?

MP formulation for HAMILTONIAN CYCLE

Variables? Objective? Constraints?

$$\forall i \in V \qquad \sum_{\substack{j \in V \\ \{i,j\} \in E}} x_{ij} = 1$$
(1)

$$\forall j \in V \qquad \sum_{\substack{i \in V \\ \{i,j\} \in E}} x_{ij} = 1$$
(2)

$$\forall \varnothing \subsetneq S \subsetneq V \qquad \sum_{\substack{i \in S, j \notin S \\ \{i,j\} \in E}} x_{ij} \ge 1$$
(3)

WARNING: second order statement!

quantified over sets

other warning: need arcs not edges in (1)-(3)

SATISFIABILITY (SAT)

► <u>Instance</u>: boolean logic sentence *f* in CNF

 $\bigwedge_{i\leq m}\bigvee_{j\in C_i}\ell_j$

where $\ell_j \in \{x_j, \bar{x}_j\}$ for $j \leq n$

• <u>Problem</u>: is there $\phi : x \to \{0, 1\}^n$ s.t. $\phi(f) = 1$?

MP formulation for SAT

Exercise

Subsection 2

NP-hardness

NP-Hardness

- Do hard problems exist? Depends on $\mathbf{P} \neq \mathbf{NP}$
- ► Next best thing: define *hardest problem in* NP
- A problem P is NP-hard if
 Every problem Q in NP can be solved in this way:
 - 1. given an instance q of Q transform it in polytime to an instance $\rho(q)$ of P s.t. q is YES iff $\rho(q)$ is YES
 - 2. run the best algorithm for P on $\rho(q)$, get answer $\alpha \in \{\text{YES}, \text{NO}\}$
 - **3.** return α
 - ρ is called a $polynomial\ reduction\ from\ Q$ to P
- ► If *P* is in **NP** and is **NP**-hard, it is called **NP**-complete
- Every problem in NP reduces to SAT [Cook 1971]

Cook's theorem

Theorem 1: If a set S of strings is accepted by some nondeterministic Turing machine within polynomial time, then S is P-reducible to {DNF tautologies}.

Boolean decision variables store TM dynamics

Proposition symbols:

 $\begin{array}{l} P_{s,t}^{i} \quad \text{for } 1 \leq i \leq \ell, \ l \leq s,t \leq T. \\ P_{s,t}^{i} \quad \text{is true iff tape square number s} \\ \text{at step } t \quad \text{contains the symbol } \sigma_{i} \\ Q_{t}^{i} \quad \text{for } 1 \leq i \leq r, \ l \leq t \leq T. \ Q_{t}^{i} \quad \text{is true iff at step } t \quad \text{the machine is in state } q_{i}. \end{array}$

 $S_{s,t}$ for l≤s,t≤T is true iff at time t square number s is scanned by the tape head.

Definition of TM dynamics in CNF

 ${\rm B}_{\rm t}$ asserts that at time t one and only one square is scanned:

 $B_{t} = (S_{1,t} \vee S_{2,t} \vee \dots \vee S_{T,t})$

 $\begin{bmatrix} & (\neg S_{i,t} \lor \neg S_{j,t}) \end{bmatrix}$

 $\begin{array}{c} \boldsymbol{G}_{i,\,j}^{t} & \text{asserts} \\ \text{that if at time } t & \text{the machine is in} \\ \text{state } \boldsymbol{q}_{i} & \text{scanning symbol } \boldsymbol{\sigma}_{j}, & \text{then at} \\ \text{time } t + 1 & \text{the machine is in} & \text{state } \boldsymbol{q}_{k}, \\ \text{where } \boldsymbol{q}_{k} & \text{is the state given by the} \\ \text{transition function for M.} \end{array}$

 $\begin{array}{c} t & T \\ G_{i,j} &= & \begin{cases} T & (\neg Q_t^i \lor \neg S_{s,t} \lor \neg P_{s,t}^j \lor Q_{t+1}^k) \\ \end{array}$

Description of a dynamical system using a declarative programming language (SAT) — what MP is all about!

Cook's theorem: sets and params

- ► Reduce nondeterministic polytime TM M to MILP
- Tuple (Q, Σ, s, F, δ): states, alphabet, initial, final, transition
- Transition relation δ : $(Q \smallsetminus F \times \Sigma) \times (Q \times \Sigma \times \{-1, 1\})$
- ► M polytime: terminates in p(n) n size of input, p(·) polynomial
- Index sets:

states Q, characters $\Sigma,$ tape cells I, steps K |K| = O(p(n)), |I| = 2|K|

► Parameters:

initial tape string $\tau_i =$ symbol $j \in \Sigma$ in cell i

Cook's theorem: decision vars

$$\forall \ell \in Q, k \in K q_{\ell k} = 1 \text{ iff } M \text{ is in state } \ell \text{ at step } k$$

Cook's theorem: constraints (informal)

1. Initialization:

- **1.1** initial string τ on tape at step k = 0
- **1.2** *M* in initial state *s* at step k = 0
- **1.3** head initial position on cell i = 0 at k = 0

2. Execution:

- **2.1** $\forall i, k$: cell *i* has exactly one symbol *j* at step *k*
- 2.2 $\forall i, k$: if cell *i* changes symbol between step *k* and k + 1, head must be on cell *i* at step *k*
- **2.3** $\forall k: M \text{ is in exactly one state}$
- 2.4 $\forall k, i, j \in \Sigma$: cell *i* and symbol *j* in state *k* lead to possible cells, symbol and states as given by δ

3. *Termination:*

3.1 *M* reaches termination at some step $k \le p(n)$

Cook's theorem: constraints (informal)

1. Initialization:

$$\begin{array}{ll} \textbf{1.1} & \forall i \ (t_{i,\tau_i,0}=1) \\ \textbf{1.2} & q_{s,0}=1 \\ \textbf{1.3} & h_{0,0}=1 \end{array}$$

2. Execution:

2.1
$$\forall i, k \ (\sum_{j} t_{ijk} = 1)$$

2.2 $\forall i, j \neq j', k < p(n) \ (t_{ijk} t_{i,j',k+1} = h_{ik})$
2.3 $\forall k \ \sum_{i} h_{ik} = 1$
2.4 $\forall i, \ell, j, k$
 $(h_{ik} q_{\ell k} t_{ijk} = \sum_{((\ell,j), (\ell',j',d)) \in \delta} h_{i+d,k+1} q_{\ell',k+1} t_{i+d,j',k+1})$

3. Termination:

3.1
$$\sum_{k,f\in F} q_{fk} = 1$$

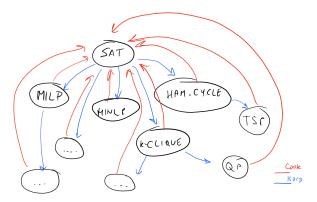
Cook's theorem: conclusion

- Nonlinear constraints can be linearized:
 - $z=xy\wedge x,y\in\{0,1\}\wedge z\in[0,1]\quad \equiv\quad$
 - $z \leq x \wedge z \leq y \wedge z \geq x+y-1 \wedge x \in \{0,1\} \wedge z \in [0,1]$
- ► MILP is feasibility only
- MILP has polynomial size
- $\blacktriangleright \Rightarrow MILP is \mathbf{NP}-hard$

Reduction graph

After Cook's theorem

To prove NP-hardness of a new problem P, pick a known NP-hard problem Q that "looks similar enough" to P and find a polynomial reduction ρ from Q to P [Karp 1972]



Why it works: suppose P easier than Q, solve Q by calling $\rho \circ \text{Alg}_P$, conclude Q as easy as P, contradiction

Example of polynomial reduction

- ▶ STABLE: given G = (V, E) and $k \in \mathbb{N}$, does it contain a stable set of size k?
- ► We know *k*-CLIQUE is NP-complete, reduce from it
 - ▶ Given instance (G, k) of CLIQUE consider the complement graph (computable in polytime)

$$\bar{G} = (V, \bar{E} = \{\{i, j\} \mid i, j \in V \land \{i, j\} \notin E\})$$

- ► Thm.: G has a clique of size k iff G has a stable set of size k
 ► ρ(G) = G is a polynomial reduction from CLIQUE to STABLE
- \Rightarrow stable is \mathbb{NP} -hard
- stable is also in NP

 $U \subseteq V$ is a stable set iff $E(G[U]) = \emptyset$ (polytime verification)

• \Rightarrow stable is \mathbb{NP} -complete

MILP is NP-hard (from SAT)

 SAT is NP-hard by Cook's theorem, Reduce from SAT in CNF

 $\bigwedge_{i \le m} \bigvee_{j \in C_i} \ell_j$

where ℓ_j is either x_j or $\bar{x}_j \equiv \neg x_j$

Polynomial reduction ρ

▶ E.g. ρ maps $(x_1 \lor x_2) \land (\bar{x}_2 \lor x_3)$ to

 $\min\{0 \mid x_1 + x_2 \ge 1 \land x_3 - x_2 \ge 0 \land x \in \{0, 1\}^3\}$

SAT is YES iff MILP is feasible (same solution, actually)

Complexity of Quadratic Programming

$$\min \begin{array}{cc} x^{\top}Qx & + & c^{\top}x \\ Ax & \geq & b \end{array} \right\}$$

- Quadratic Programming = QP
- Quadratic objective, linear constraints, continuous variables
- Many applications (e.g. portfolio selection)
- If Q PSD then objective is convex, problem is in P
- ▶ If Q has at least one negative eigenvalue, NP-hard
- ▶ Decision problem: "is the min. obj. fun. value ≤ 0?"

QP is NP-hard

- By reduction from SAT, let σ be an instance
- ► $\hat{\rho}(\sigma, x) \ge 1$: linear constraints of sat \rightarrow MILP reduction
- Consider QP

$$\min \quad f(x) = \sum_{j \le n} x_j (1 - x_j) \\ \hat{\rho}(\sigma, x) \ge 1 \\ 0 \le x \le 1$$
 $\left. \right\}$ (\dagger)

- Claim: σ is YES iff val $(\dagger) = 0$
- ► Proof:
 - ► assume σ YES with soln. x^* , then $x^* \in \{0, 1\}^n$, hence $f(x^*) = 0$, since $f(x) \ge 0$ for all x, val $(\dagger) = 0$
 - ► assume σ NO, suppose val(\dagger) = 0, then (\dagger) feasible with soln. x', since f(x') = 0 then $x' \in \{0, 1\}$, feasible in sat hence σ is YES, contradiction

Box-constrained QP is NP-hard

- ► Add surplus vars v to SAT→MILP constraints: $\hat{\rho}(\sigma, x) - 1 - v = 0$ (denote by $\forall i \leq m \ (a_i^\top x - b_i - v_i = 0)$)
- Now sum them on the objective

$$\min \left\{ \begin{array}{l} \sum_{j \le n} x_j (1-x_j) + \sum_{i \le m} (a_i^\top x - b_i - v_i)^2 \\ 0 \le x \le 1, v \ge 0 \end{array} \right\}$$

- ► Issue: v not bounded above
- ▶ Reduce from 3SAT, get ≤ 3 literals per clause \Rightarrow can consider $0 \leq v \leq 2$

cQKP is NP-hard

- continuous Quadratic Knapsack Problem (cQKP)

$$\min f(x) = x^{\top}Qx + c^{\top}x \\ \sum_{j \le n} a_j x_j = \gamma \\ x \in [0,1]^n,$$

► Reduction from SUBSET-SUM

given list $a \in \mathbb{Q}^n$ and γ , is there $J \subseteq \{1, \ldots, n\}$ s.t. $\sum_{j \in J} a_j = \gamma$?

reduce to $f(x) = \sum_j x_j (1 - x_j)$

• σ is a YES instance of SUBSET-SUM

- let $x_j^* = 1$ iff $j \in J, x_j^* = 0$ otherwise
- feasible by construction
- f is non-negative on $[0,1]^n$ and $f(x^*) = 0$: optimum
- σ is a NO instance of SUBSET-SUM
 - suppose $opt(cQKP) = x^*$ s.t. $f(x^*) = 0$
 - then $x^* \in \{0,1\}^n$ because $f(x^*) = 0$
 - ► feasibility of $x^* \to \operatorname{supp}(x^*)$ solves σ , contradiction, hence $f(x^*) > 0$

QP on a simplex is NP-hard

$$\min \quad f(x) = x^{\top}Qx \quad + \quad c^{\top}x \\ \sum_{\substack{j \le n \\ \forall j \le n \quad x_j \ge 0}} x_j \quad = \quad 1 \\ \forall j \le n \quad x_j \quad \ge \quad 0 \end{cases}$$

- Reduce MAX CLIQUE to subclass $f(x) = -\sum_{\{i,j\}\in E} x_i x_j$ Motzkin-Straus formulation (MSF)
- Theorem [Motzkin& Straus 1964]

 $\begin{array}{l} \hline \text{Let } C \text{ be the maximum clique of the instance } G = (V, E) \text{ of MAX CLIQUE} \\ \exists x^* \in \text{opt (MSF)} \qquad f^* = f(x^*) = \frac{1}{2} \left(1 - \frac{1}{\omega(G)} \right) \\ \forall j \in V \qquad x_j^* = \left\{ \begin{array}{l} \frac{1}{\omega(G)} & \text{if } j \in C \\ 0 & \text{otherwise} \end{array} \right. \end{array}$

Proof of the Motzkin-Straus theorem

 $x^* = \mathsf{opt}(\max_{\substack{x \in [0,1]^n \\ \sum_j x_j = 1}} \sum_{ij \in E} x_i x_j) \text{ s.t. } |C = \{j \in V \mid ; x_j^* > 0\}| \text{ smallest (\ddagger)}$

1. *C* is a clique

- ▶ Suppose 1, 2 ∈ C but {1, 2} ∉ E[C], then $x_1^*, x_2^* > 0$, can perturb by small $\epsilon \in [-x_1^*, x_2^*]$, get $x^{\epsilon} = (x_1^* + \epsilon, x_2^* \epsilon, \ldots)$, feasible w.r.t. simplex and bounds
- ▶ {1,2} $\notin E \Rightarrow x_1x_2$ does not appear in $f(x) \Rightarrow f(x^{\epsilon})$ depends linearly on ϵ ; by optimality of x^* , f achieves max for $\epsilon = 0$, in interior of its range $\Rightarrow f(\epsilon)$ constant
- ▶ set $\epsilon = -x_1^*$ or $= x_2^*$ yields global optima with more zero components than x^* , against assumption (‡), hence $\{1, 2\} \in E[C]$, by relabeling C is a clique

Proof of the Motzkin-Straus theorem

 $x^* = \mathsf{opt}(\max_{\substack{x \in [0,1]^n \\ \sum_j x_j = 1}} \sum_{ij \in E} x_i x_j) \text{ s.t. } |C = \{j \in V \mid ; x_j^* > 0\}| \text{ smallest (\ddagger)}$

2. $|C| = \omega(G)$ • square simplex constraint $\sum_j x_j = 1$, get

$$\sum_{j \in V} x_j^2 + 2 \sum_{i < j \in V} x_i x_j = 1$$

▶ by construction
$$x_j^* = 0$$
 for $j \notin C \Rightarrow$

$$\psi(x^*) = \sum_{j \in C} (x_j^*)^2 + 2\sum_{i < j \in C} x_j^* x_j^* = \sum_{j \in C} (x_j^*)^2 + 2f(x^*) = 1$$

- $\psi(x) = 1$ for all feasible x, so f(x) achieves maximum when $\sum_{i \in C} (x_i^*)^2$ is minimum, i.e. $x_j^* = \frac{1}{|C|}$ for all $j \in C$
- again by simplex constraint

$$f(x^*) = 1 - \sum_{j \in C} (x_j^*)^2 = 1 - |C| \frac{1}{|C|^2} \le 1 - \frac{1}{\omega(G)}$$

so $f(x^*)$ attains maximum $1 - 1/\omega(G)$ when $|C| = \omega(G)$

Copositive programming

- ► STQP: min $x^{\top}Qx$: $\sum_j x_j = 1 \land x \ge 0$ NP-hard by Motzkin-Straus
- Linearize: $X = xx^{\top}$

•
$$A \bullet B = \operatorname{tr}(A^{\top}B)$$

write StQP objective as min $Q \bullet X$

- Let $C = \{X \mid X = xx^\top \land x \ge 0\}, C = \operatorname{conv}(C)$
- $\blacktriangleright \ \sum_j x_j = 1 \Leftrightarrow (\sum_j x_j)^2 = 1^2 \Leftrightarrow \mathbf{1} \bullet X = 1$
- STQP $\equiv \min Q \bullet X : \mathbf{1} \bullet X = 1 \land X \in \mathcal{C}$
- ► **Dual** $\equiv \max y : Q y\mathbf{1} \in C^*$ $C^* = \{A \mid \forall x \ge 0 \ (x^\top A x \ge 0)\}$ (copositive cone)
- $\blacktriangleright \Rightarrow cNLP which is NP-hard!$

Two exercises

- Prove that quartic polynomial optimization is NP-hard; reduce from one of the combinatorial problems given during the course, and make sure that at least one monomial of degree four appears with non-zero coefficient in the MP formulation.
- ► As above, but for *cubic polynomial optimization*.

Portfolio optimization

You, a private investment banker, are seeing a customer. She tells you "I have 3,450,000\$ I don't need in the next three years. Invest them in low-risk assets so I get at least 2.5% return per year."

Model the problem of determining the required portfolio. Missing data are part of the fun (and of real life).

[Hint: what are the decision variables, objective, constraints? What data are missing?]

Outline

Introduction Decidability Efficiency and Hardness Some combinatorial problems NP-hardness

Systematics

Distance Geometry

- The universal isometric embedding Dimension reduction Distance geometry problem Distance geometry in MP DGP cones Barvinok's Naive Algorithm Isomap for the DGP Concluding remarks
- **Clustering on graphs Clustering in Euclidean Clustering in high** Solution retrieval **Quantile regression** Sparsity and ℓ_1 minimization Lower bounds Upper bounds from SDP Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Types of MP

Continuous variables:

- LP (linear functions)
- QP (quadratic obj. over affine sets)
- QCP (linear obj. over quadratically def'd sets)
- QCQP (quadr. obj. over quadr. sets)
- cNLP (convex sets, convex obj. fun.)
- ► SOCP (LP over 2nd ord. cone)
- SDP (LP over PSD cone)
- COP (LP over copositive cone)
- NLP (nonlinear functions)

Types of MP

Mixed-integer variables:

- ► IP (integer programming), MIP (mixed-integer programming)
- ► extensions: MILP, MIQ, MIQCP, MIQCQP, cMINLP, MINLP
- ▶ **BLP (LP over** {0,1}^{*n*})
- ▶ **BQP** (**QP** over {0,1}^{*n*})

More "exotic" classes:

- MOP (multiple objective functions)
- BLevP (optimization constraints)
- SIP (semi-infinite programming)

Outline

Introduction Decidability Efficiency and Hardness Some combinatorial problems NP-hardness

Systematics

Distance Geometry

The universal isometric embedding Dimension reduction Distance geometry problem Distance geometry in MP DGP cones Barvinok's Naive Algorithm Isomap for the DGP Concluding remarks

Clustering in Natural Language

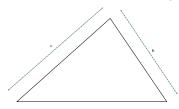
Clustering on graphs Clustering in Euclidean Clustering in high Solution retrieval **Quantile regression** Sparsity and ℓ_1 minimization Lower bounds Upper bounds from SDP Gregory's upper bound Delsarte's upper bound Pfender's upper bound

A gem in Distance Geometry

Heron's theorem

 Heron lived around year 0

 Hang out at Alexandria's library

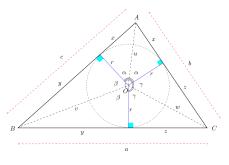


$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

A = area of triangle
 s = ¹/₂(a + b + c)

Useful to measure areas of agricultural land

Heron's theorem: *Proof* [M. Edwards, high school student, 2007] A. $2\alpha + 2\beta + 2\gamma = 2\pi \Rightarrow \alpha + 2\beta$



$$\begin{aligned} \alpha + 2\beta + 2\gamma &= 2\pi \Rightarrow \alpha + \beta + \gamma = \pi \\ r + ix &= ue^{i\alpha} \\ r + iy &= ve^{i\beta} \\ r + iz &= we^{i\gamma} \end{aligned}$$

$$\Rightarrow (r+ix)(r+iy)(r+iz) = (uvw)e^{i(\alpha+\beta+\gamma)} = uvw e^{i\pi} = -uvw \in \mathbb{R}$$

$$\Rightarrow \operatorname{Im}((r+ix)(r+iy)(r+iz)) = 0$$

$$\Rightarrow r^{2}(x+y+z) = xyz \Rightarrow r = \sqrt{\frac{xyz}{x+y+z}}$$

B.
$$s = \frac{1}{2}(a+b+c) = x+y+z$$

$$s-a = x+y+z-y-z = x s-b = x+y+z-x-z = y s-c = x+y+z-x-y = z$$

$$\mathcal{A} = \frac{1}{2}(ra + rb + rc) = r\frac{a+b+c}{2} = rs = \sqrt{s(s-a)(s-b)(s-c)}$$

Subsection 1

The universal isometric embedding

Representing metric spaces in \mathbb{R}^n

- ► Given metric space (X, d) with dist. matrix $D = (d_{ij})$, embed X in a Euclidean space with same dist. matrix
- Consider *i*-th row $\delta_i = (d_{i1}, \ldots, d_{in})$ of D
- Embed $i \in X$ by vector $\delta_i \in \mathbb{R}^n$
- **Define** $f(X) = \{\delta_1, \dots, \delta_n\}, f(d(i, j)) = ||f(i) f(j)||_{\infty}$
- ► Thm.: (f(X), ℓ_∞) is a metric space with distance matrix D
- Practical issue: embedding is high-dimensional (\mathbb{R}^n)

[Kuratowski 1935]

Proof

- Consider $i, j \in X$ with distance $d(i, j) = d_{ij}$
- ► Then

 $f(d(i,j)) = \|\delta_i - \delta_j\|_{\infty} = \max_{k \le n} |d_{ik} - d_{jk}| \le \max_{k \le n} |d_{ij}| = d_{ij}$

ineq. \leq above from triangular inequalities in metric space: $d_{ik} \leq d_{ij} + d_{jk} \wedge d_{jk} \leq d_{ij} + d_{ik} \Rightarrow |d_{ik} - d_{jk}| \leq d_{ij}$

• $\max |d_{ik} - d_{jk}|$ over $k \le n$ is achieved when

$$k \in \{i, j\} \Rightarrow f(d(i, j)) = d_{ij}$$

Subsection 2

Dimension reduction

Schoenberg's theorem

- [I. Schoenberg, Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe d'espaces distanciés vectoriellement applicable sur l'espace de Hilbert", Ann. Math., 1935]
- Question: Given $n \times n$ symmetric matrix D, what are necessary and sufficient conditions s.t. D is a EDM¹ corresponding to n points $x_1, \ldots, x_n \in \mathbb{R}^K$ with Kminimum?
- Main theorem: Thm. $D = (d_{ij})$ is an EDM iff $\frac{1}{2}(d_{1i}^2 + d_{1j}^2 - d_{ij}^2 \mid 2 \le i, j \le n)$ is PSD of rank K
- ► Gave rise to one of the most important results in data science: Classic Multidimensional Scaling

¹Euclidean Distance Matrix

Gram in function of EDM

- $x = (x_1, \dots, x_n) \subseteq \mathbb{R}^K$, written as $n \times K$ matrix
- matrix $G = xx^{\top} = (x_i \cdot x_j)$ is the Gram matrix of xLemma: $G \succeq 0$ and each $M \succeq 0$ is a Gram matrix of some x
- A variant of Schoenberg's theorem Relation between EDMs and Gram matrices:

$$G = -\frac{1}{2}JD^2J \qquad (\S)$$

► where
$$D^2 = (d_{ij}^2)$$
 and

$$J = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^\top = \begin{pmatrix} 1 - \frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\ -\frac{1}{n} & 1 - \frac{1}{n} & \cdots & -\frac{1}{n} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & \cdots & 1 - \frac{1}{n} \end{pmatrix}$$

Multidimensional scaling (MDS)

- Often get approximate EDMs D from raw data (dissimilarities, discrepancies, differences)
- ▶ $\tilde{G} = -\frac{1}{2}J\tilde{D}^2J$ is an approximate Gram matrix
- Approximate Gram \Rightarrow spectral decomposition $P\tilde{\Lambda}P^{\top}$ has $\tilde{\Lambda} \not\geq 0$
- Let Λ closest PSD diagonal matrix to Λ̃:
 zero the negative components of Λ̃
- $x = P\sqrt{\Lambda}$ is an "approximate realization" of \tilde{D}

Classic MDS: Main result

1. Prove lemma: matrix is Gram iff it is PSD 2. Prove Schoenberg's theorem: $G = -\frac{1}{2}JD^2J$

Proof of lemma

• $Gram \subseteq PSD$

- x is an $n \times K$ real matrix
- $G = xx^{\top}$ its Gram matrix
- For each $y \in \mathbb{R}^n$ we have

$$yGy^{\top} = y(xx^{\top})y^{\top} = (yx)(x^{\top}y^{\top}) = (yx)(yx)^{\top} = ||yx||_2^2 \ge 0$$

- $\blacktriangleright \Rightarrow G \succeq 0$
- ▶ $PSD \subseteq Gram$
 - Let $G \succeq 0$ be $n \times n$
 - Spectral decomposition: G = PΛP^T (P orthogonal, Λ ≥ 0 diagonal)
 - $\Lambda \ge 0 \Rightarrow \sqrt{\Lambda} \text{ exists}$
 - $G = P\Lambda P^{\top} = (P\sqrt{\Lambda})(\sqrt{\Lambda}^{\top}P^{\top}) = (P\sqrt{\Lambda})(P\sqrt{\Lambda})^{\top}$
 - Let $x = P\sqrt{\Lambda}$, then G is the Gram matrix of x

Schoenberg's theorem proof (1/2)

- Assume zero centroid WLOG (can translate x as needed)
- Expand: $d_{ij}^2 = ||x_i x_j||_2^2 = (x_i x_j)(x_i x_j) = x_i x_i + x_j x_j 2x_i x_j$ (*)
- Aim at "inverting" (*) to express $x_i x_j$ in function of d_{ij}^2
- Sum (*) over $i: \sum_{i} d_{ij}^2 = \sum_{i} x_i x_i + n x_j x_j 2x_j \sum_{i} x_i$ o by zero centroid
- Similarly for *j* and divide by *n*, get:

$$\frac{1}{n} \sum_{i \le n} d_{ij}^2 = \frac{1}{n} \sum_{i \le n} x_i x_i + x_j x_j \quad (\dagger)$$
$$\frac{1}{n} \sum_{j \le n} d_{ij}^2 = x_i x_i + \frac{1}{n} \sum_{j \le n} x_j x_j \quad (\ddagger)$$

Sum (\dagger) over j, get:

$$\frac{1}{n}\sum_{i,j} d_{ij}^2 = n\frac{1}{n}\sum_i x_i x_i + \sum_j x_j x_j = 2\sum_i x_i x_i$$

Divide by n, get:

$$\frac{1}{n^2} \sum_{i,j} d_{ij}^2 = \frac{2}{n} \sum_i x_i x_i \quad (**)$$

Schoenberg's theorem proof (2/2)

Rearrange (*), (†), (‡) as follows:

$$2x_i x_j = x_i x_i + x_j x_j - d_{ij}^2$$
(4)

$$x_{i}x_{i} = \frac{1}{n}\sum_{j}d_{ij}^{2} - \frac{1}{n}\sum_{j}x_{j}x_{j}$$
(5)

$$x_{j}x_{j} = \frac{1}{n}\sum_{i}d_{ij}^{2} - \frac{1}{n}\sum_{i}x_{i}x_{i}$$
(6)

Replace LHS of Eq. (5)-(6) in RHS of Eq. (4), get

$$2x_i x_j = \frac{1}{n} \sum_k d_{ik}^2 + \frac{1}{n} \sum_k d_{kj}^2 - d_{ij}^2 - \frac{2}{n} \sum_k x_k x_k$$

► By (**) replace $\frac{2}{n} \sum_{i} x_i x_i$ with $\frac{1}{n^2} \sum_{i,j} d_{ij}^2$, get $2x_i x_j = \frac{1}{n} \sum_{k} (d_{ik}^2 + d_{kj}^2) - d_{ij}^2 - \frac{1}{n^2} \sum_{h,k} d_{hk}^2 \quad (\S)$

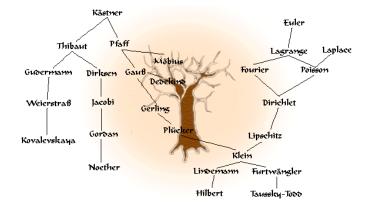
which expresses $x_i x_j$ in function of D

Principal Component Analysis (PCA)

- ► Given an approximate distance matrix D
- find $x = \mathbf{MDS}(D)$
- However, you want $x = P\sqrt{\Lambda}$ in K dimensions **but** rank $(\Lambda) > K$
- ► Only keep K largest components of A zero the rest
- Get realization in desired space

Example 1/3

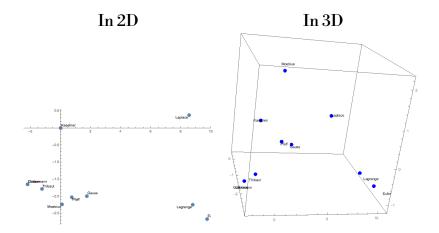
$Mathematical\ genealogy\ skeleton$



Example 2/3

A partial view

	Euler	Thibaut	Pfaff	Lagrange		Laplac	e M	Möbius		lermann	Dirksen	Gauss
Kästner	10	1	1	9		8		2		2	2	2
Euler		11	9			3		10		12	12	8
Thibaut			2	10)	10	10 3		1		1	3
Pfaff				8		8	8 1		3		3	1
Lagrange						2	9		11		11	7
Laplace								9		11	11	7
Möbius										4	4	2
Gudermann											2	4
Dirksen												4
	D	$= \begin{pmatrix} 0 \\ 10 \\ 1 \\ 9 \\ 8 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}$	$ \begin{array}{r} 10 \\ 0 \\ 11 \\ 9 \\ 1 \\ 3 \\ 10 \\ 12 \\ 12 \\ 8 \\ 8 \end{array} $	11 9 0 2 2 0 10 8 10 8 3 1 1 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 3 \\ 10 \\ 8 \\ 2 \\ 0 \\ 9 \\ 111 \\ 11 \end{array}$	$2 \\ 10 \\ 3 \\ 1 \\ 9 \\ 9 \\ 0 \\ 4 \\ 4 \\ 2$	$2 \\ 12 \\ 1 \\ 3 \\ 11 \\ 11 \\ 4 \\ 0 \\ 2 \\ 4$	$2 \\ 12 \\ 1 \\ 3 \\ 11 \\ 11 \\ 4 \\ 2 \\ 0 \\ 4$	$ \begin{array}{c} 2 \\ 8 \\ 3 \\ 1 \\ 7 \\ 2 \\ 4 \\ 4 \\ 0 \end{array} \right) $		



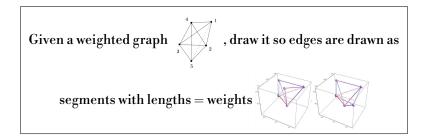
Subsection 3

Distance geometry problem

The Distance Geometry Problem (DGP)

Given $K \in \mathbb{N}$ and G = (V, E, d) with $d : E \to \mathbb{R}_+$, find $x : V \to \mathbb{R}^K$ s.t.

$$\forall \{i, j\} \in E \quad ||x_i - x_j||_2^2 = d_{ij}^2$$



Some applications

- clock synchronization (K = 1)
- sensor network localization (K = 2)
- molecular structure from distance data (K = 3)
- autonomous underwater vehicles (K = 3)
- ► distance matrix completion (whatever *K*)

Clock synchronization

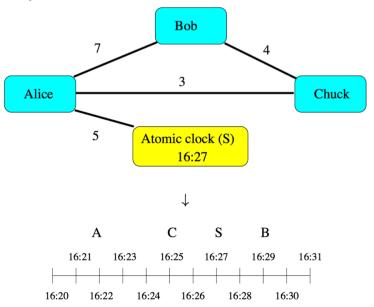
From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from partial measurements of their time differences

- ► *K* = 1
- V: timestamps
- ▶ $\{u, v\} \in E$ if known time difference between u, v
- d: values of the time differences

Used in time synchronization of distributed networks

Clock synchronization



Sensor network localization

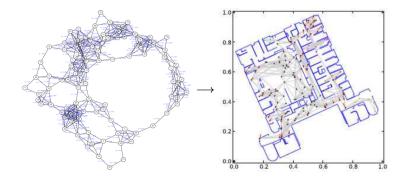
From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to locate a set of geographically distributed objects using measurements of the distances between some object pairs

- ► *K* = 2
- ► V: (mobile) sensors
- ▶ $\{u, v\} \in E$ iff distance between u, v is measured
- d: distance values

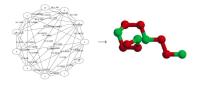
Used whenever GPS not viable (e.g. underwater) $d_{uv} \propto$ battery consumption in P2P communication betw. u, v

Sensor network localization



Molecular structure from distance data

From [Liberti et al., SIAM Rev., 2014]



- ► V: atoms
- ▶ $\{u, v\} \in E$ iff distance between u, v is known
- d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid) Covalent bond lengths and angles known precisely Distances ≤ 5.5 measured approximately by NMR

Complexity

- **DGP**₁ with $d : E \to \mathbb{Q}_+$ is in **NP**
 - if instance YES \exists realization $x \in \mathbb{R}^{n \times 1}$
 - if some component $x_i \notin \mathbb{Q}$ translate x so $x_i \in \mathbb{Q}$
 - consider some other x_j

• let
$$\ell = |$$
sh. path $p : i \to j | = \sum_{\{u,v\} \in p} d_{uv} \in \mathbb{Q}$

• then
$$x_j = x_i \pm \ell \to x_j \in \mathbb{Q}$$

• \Rightarrow verification of

$$\forall \{i, j\} \in E \quad |x_i - x_j| = d_{ij}$$

in polytime

▶ DGP_K may not be in NP for K > 1don't know how to verify $||x_i - x_j||_2 = d_{ij}$ for $x \notin \mathbb{Q}^{nK}$

Hardness

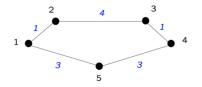
PARTITION is NP-hardGiven
$$a = (a_1, \ldots, a_n) \in \mathbb{N}^n, \exists I \subseteq \{1, \ldots, n\}$$
 s.t. $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

► Reduce Partition to DGP₁

 $\blacktriangleright a \longrightarrow \text{cycle } C$ $V(C) = \{1, \dots, n\}, E(C) = \{\{1, 2\}, \dots, \{n, 1\}\}$

► For
$$i < n$$
 let $d_{i,i+1} = a_i$
 $d_{n,n+1} = d_{n1} = a_n$

• *E.g. for*
$$a = (1, 4, 1, 3, 3)$$
, get cycle graph:



Partition is $YES \Rightarrow DGP_1$ is YES

• Given:
$$I \subset \{1, \ldots, n\}$$
 s.t. $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$

• Construct: realization x of C in \mathbb{R}

1. $x_1 = 0$ // start 2. induction step: suppose x_i known if $i \in I$ let $x_{i+1} = x_i + d_{i,i+1}$ // go right else

$$\operatorname{let} x_{i+1} = x_i - d_{i,i+1} \qquad \qquad // \text{ go left}$$

► Correctness proof: by the same induction but careful when i = n: have to show x_{n+1} = x₁

Partition is $YES \Rightarrow DGP_1$ is YES

$$(1) = \sum_{i \in I} (x_{i+1} - x_i) = \sum_{i \in I} d_{i,i+1} =$$
$$= \sum_{i \in I} a_i = \sum_{i \notin I} a_i =$$
$$= \sum_{i \notin I} d_{i,i+1} = \sum_{i \notin I} (x_i - x_{i+1}) = (2)$$

$$(1) = (2) \Rightarrow \sum_{i \in I} (x_{i+1} - x_i) = \sum_{i \notin I} (x_i - x_{i+1}) \Rightarrow \sum_{i \le n} (x_{i+1} - x_i) = 0$$

$$\Rightarrow (x_{n+1} - x_n) + (x_n - x_{n-1}) + \dots + (x_3 - x_2) + (x_2 - x_1) = 0$$

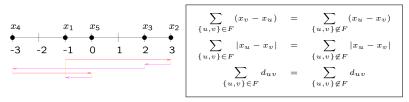
$$\Rightarrow x_{n+1} = x_1$$

Partition is $NO \Rightarrow DGP_1$ is NO

▶ By contradiction: suppose DGP₁ is YES, *x* realization of *C*

►
$$F = \{\{u, v\} \in E(C) \mid x_u \le x_v\},\ E(C) \smallsetminus F = \{\{u, v\} \in E(C) \mid x_u > x_v\}$$

▶ Trace x_1, \ldots, x_n : follow edges in $F (\rightarrow)$ and in $E(C) \smallsetminus F (\leftarrow)$



► Let
$$J = \{i < n \mid \{i, i+1\} \in F\} \cup \{n \mid \{n, 1\} \in F\}$$

⇒ $\sum_{i \in J} a_i = \sum_{i \notin J} a_i$

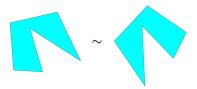
- So J solves Partition instance, contradiction
- $\blacktriangleright \Rightarrow DGP \text{ is } NP\text{-hard}, DGP_1 \text{ is } NP\text{-complete}$

Number of solutions

- (G, K): DGP instance
- $\tilde{X} \subseteq \mathbb{R}^{Kn}$: set of solutions
- ► *Congruence*: composition of translations, rotations, reflections
- $C = \text{set of congruences in } \mathbb{R}^K$
- ► $x \sim y$ means $\exists \rho \in C \ (y = \rho x)$: distances in x are preserved in y through ρ
- $\blacktriangleright \Rightarrow \mathrm{if} \ |\tilde{X}| > 0, |\tilde{X}| = 2^{\aleph_0}$

Number of solutions modulo congruences

► Congruence is an *equivalence relation* ~ on X̃ (reflexive, symmetric, transitive)



- Partitions \tilde{X} into equivalence classes
- ▶ $X = \tilde{X} / \sim$: sets of representatives of equivalence classes
- Focus on |X| rather than $|\tilde{X}|$

Rigidity, flexibility and |X|

- infeasible $\Leftrightarrow |X| = 0$
- rigid graph $\Leftrightarrow |X| < \aleph_0$
- globally rigid graph $\Leftrightarrow |X| = 1$
- flexible graph $\Leftrightarrow |X| = 2^{\aleph_0}$
- ► $|X| = \aleph_0$: impossible by Milnor's theorem

Milnor's theorem implies $|X| \neq \aleph_0$

► System S of polynomial equations of degree 2

$$\forall i \le m \quad p_i(x_1, \dots, x_{nK}) = 0$$

- Let X be the set of $x \in \mathbb{R}^{nK}$ satisfying S
- ► Number of connected components of X is O(3^{nK}) [Milnor 1964]
- ▶ Assume |X| is countable; then G cannot be flexible
 ⇒ each incongruent rlz is in a separate component
 ⇒ by Milnor's theorem, there's finitely many of them

Examples

 $V^{1} = \{1, 2, 3\}$ $E^{1} = \{\{u, v\} \mid u < v\}$ $d^{1} = 1$

$$V^{2} = V^{1} \cup \{4\}$$

$$E^{2} = E^{1} \cup \{\{1,4\},\{2,4\}\}$$

$$d^{2} = 1 \land d_{14} = \sqrt{2}$$

$$\begin{split} V^3 &= V^2 \\ E^3 &= \{\{u, u+1\} | u \leq 3\} \cup \{1, 4\} \\ d^1 &= 1 \end{split}$$

 ρ congruence in \mathbb{R}^2 $\Rightarrow \rho x$ valid realization |X| = 1

 ρ reflects x_4 wrt $\overline{x_1, x_2}$ $\Rightarrow \rho x$ valid realization $|X| = 2 (\triangle, \bigcirc)$

 $\begin{array}{l} \rho \text{ rotates } \overline{x_2 x_3}, \ \overline{x_1 x_4} \text{ by } \theta \\ \Rightarrow \rho x \text{ valid realization} \\ |X| \text{ is uncountable} \\ (\Box, \Box, \Box, \Box, \ldots) \end{array}$

Subsection 4

Distance geometry in MP

DGP formulations and methods

- System of equations
- Unconstrained global optimization (GO)
- Constrained global optimization
- SDP relaxations and their properties
- Diagonal dominance
- Concentration of measure in SDP
- Isomap for DGP

System of quadratic equations

$$\forall \{u, v\} \in E \quad \|x_u - x_v\|^2 = d_{uv}^2 \tag{7}$$

Computationally: useless reformulate using slacks:

$$\min_{x,s} \left\{ \sum_{\{u,v\}\in E} s_{uv}^2 \mid \forall \{u,v\} \in E \quad \|x_u - x_v\|^2 = d_{uv}^2 + s_{uv} \right\}$$
(8)

Unconstrained Global Optimization

$$\min_{x} \sum_{\{u,v\} \in E} (\|x_u - x_v\|^2 - d_{uv}^2)^2$$
(9)

Globally optimal obj. fun. value of (9) is 0 iff x solves (7)

Computational experiments in [Liberti et al., 2006]:

- GO solvers from 10 years ago
- randomly generated protein data: ≤ 50 atoms
- cubic crystallographic grids: ≤ 64 atoms

Constrained global optimization

- $\min_x \sum_{\{u,v\}\in E} ||x_u x_v||^2 d_{uv}^2|$ exactly reformulates (7)
- ► Relax objective f to concave part, remove constant term, rewrite min - f as max f
- ► Reformulate convex part of obj. fun. to convex constraints
- ▶ Exact reformulation

$$\max_{\substack{\{u,v\} \in E \\ \forall \{u,v\} \in E \\ \|x_u - x_v\|^2 \le d_{uv}^2 } }$$
 (10)

Theorem (Activity)

At a glob. opt. x^* of a YES instance, all constraints of (10) are active

Linearization

$$\Rightarrow \quad \forall \{i, j\} \in E \quad \|x_i\|_2^2 + \|x_j\|_2^2 - 2x_i \cdot x_j = d_{ij}^2$$
$$\Rightarrow \begin{cases} \forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \\ X = x x^\top \end{cases}$$

Relaxation

$$\begin{array}{rcl} X &=& x \, x^{\top} \\ \Rightarrow & X - x \, x^{\top} &=& 0 \end{array}$$
$$(\text{relax}) &\Rightarrow & X - x \, x^{\top} &\succeq& 0 \\\\ \text{Schur}(X, x) = \left(\begin{array}{c} I_K & x^{\top} \\ x & X \end{array} \right) &\succeq& 0 \end{array}$$

If x does not appear elsewhere \Rightarrow get rid of it (e.g. choose x = 0):

replace Schur $(X, x) \succeq 0$ *by* $X \succeq 0$

SDP relaxation

$\min F \bullet X$ $\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2$ $X \succeq 0$

How do we choose *F*?

 $F \bullet X = \mathsf{Tr}(F^\top X)$

Some possible objective functions

For protein conformation:

$$\min\sum_{\{i,j\}\in E} (X_{ii} + X_{jj} - 2X_{ij})$$

with = changed to \geq in constraints (or max and \leq) "push-and-pull" the realization

► [Ye, 2003], application to wireless sensors localization

$\min \mathsf{Tr}(X)$

 $\begin{array}{l} {\rm Tr}(X)={\rm Tr}(P^{-1}\Lambda P)={\rm Tr}(P^{-1}P\Lambda)={\rm Tr}(\Lambda)=\sum_i\lambda_i\\ \Rightarrow \textit{hope to minimize rank} \end{array}$

How about "just random"?

How do you choose?

for want of some better criterion...

TEST!

- Download protein files from Protein Data Bank (PDB) they contain atom realizations
- Mimick a Nuclear Magnetic Resonance experiment Keep only pairwise distances < 5.5
- Try and reconstruct the protein shape from those weighted graphs
- Quality evaluation of results:

► LDE(x) =
$$\max_{\{i,j\}\in E} | ||x_i - x_j|| - d_{ij} |$$

► MDE(x) = $\frac{1}{|E|} \sum_{\{i,j\}\in E} | ||x_i - x_j|| - d_{ij} |$

Objective function tests

SDP solved with Mosek

SDP + PCA												
Insta	Instance			LDE			MDE			CPU		
Name	V	E	PP	Ye	Rnd	PP	Ye	Rnd	PP	Ye	Rnd	
C0700odd.1	15	39	3.31	4.57	4.44	1.92	2.52	2.50	0.13	0.07	0.08	
C0700odd.C	36	242	10.61	4.85	4.85	3.02	3.02	3.02	0.69	0.43	0.44	
C0700.odd.G	36	308	4.57	4.77	4.77	2.41	2.84	2.84	0.86	0.54	0.54	
C0150alter.1	37	335	4.66	4.88	4.86	2.52	3.00	3.00	0.97	0.59	0.58	
C0080create.1	60	681	7.17	4.86	4.86	3.08	3.19	3.19	2.48	1.46	1.46	
tiny	37	335	4.66	4.88	4.88	2.52	3.00	3.00	0.97	0.60	0.60	
1guu-1	150	959	10.20	4.93	4.93	3.43	3.43	3.43	9.23	5.68	5.70	

SDP + PCA + NLP

I	nstance			LDE			MDE			CPU	
Name	V	E	PP	Ye	Rnd	PP	Ye	Rnd	PP	Ye	Rnd
1b03	89	456	0.00	0.00	0.00	0.00	0.00	0.00	8.69	6.28	9.91
1crn	138	846	0.81	0.81	0.81	0.07	0.07	0.07	33.33	31.32	44.48
1guu-1	150	959	0.97	4.93	0.92	0.10	3.43	0.08	56.45	7.89	65.33

Choice

- ► Ye very fast but often imprecise
- ► *Random* good but nondeterministic
- ► Push-and-Pull: can relax $X_{ii} + X_{jj} 2X_{ij} = d_{ij}^2$ to $X_{ii} + X_{jj} - 2X_{ij} \ge d_{ij}^2$ easier to satisfy feasibility, useful later on
- Heuristic: add $+\eta \operatorname{Tr}(X)$ to objective, with $\eta \ll 1$ might help minimize solution rank

•
$$\min \sum_{\{i,j\}\in E} (X_{ii} + X_{jj} - 2X_{ij}) + \eta \mathsf{Tr}(X)$$

When SDP solvers hit their size limit

- SDP solver: technological bottleneck
- How can we best use an LP solver?
- Diagonally Dominant (DD) matrices are PSD
- Not vice versa: inner approximate PSD cone $Y \succeq 0$
- ▶ Idea by A.A. Ahmadi [Ahmadi & Hall 2015]

You won't see this in TD, Octave+YALMIP is very slow, interface bottleneck

Diagonally dominant matrices

$n \times n$ matrix X is DD if

$$\forall i \le n \quad X_{ii} \ge \sum_{j \ne i} |X_{ij}|.$$

E.g. $\begin{pmatrix} 1 & 0.1 & -0.2 & 0 & 0.04 & 0 \\ 0.1 & 1 & -0.05 & 0.1 & 0 & 0 \\ -0.2 & -0.05 & 1 & 0.1 & 0.01 & 0 \\ 0 & 0.1 & 0.1 & 1 & 0.2 & 0.3 \\ 0.04 & 0 & 0.01 & 0.2 & 1 & -0.3 \\ 0 & 0 & 0 & 0.3 & -0.3 & 1 \end{pmatrix}$

DD Linearization

$$\forall i \le n \quad X_{ii} \ge \sum_{j \ne i} |X_{ij}| \tag{*}$$

- ► introduce "sandwiching" variable T
- write |X| as T
- add constraints $-T \le X \le T$
- by \geq constraint sense, write (*) as

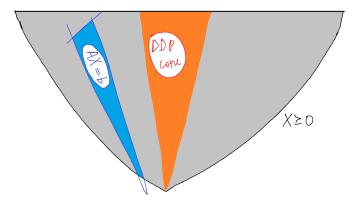
$$X_{ii} \ge \sum_{j \ne i} T_{ij}$$

DD Programming (DDP)

$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \\ X \quad is \quad DD$$

$$\Rightarrow \begin{cases} \forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \\ \forall i \le n \qquad \sum_{\substack{j \le n \\ j \ne i}} T_{ij} \le X_{ii} \\ -T \le X \le T \end{cases}$$

The issue with inner approximations



DDP could be infeasible!

Exploit push-and-pull

Enlarge the feasible region

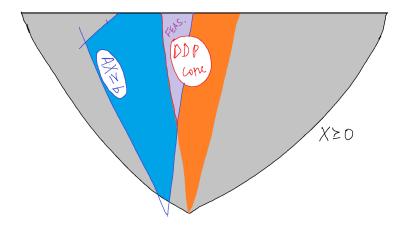
► From

$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2$$

- Use "push" objective min $\sum_{ij \in E} X_{ii} + X_{jj} 2X_{ij}$
- Relax to

$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} \ge d_{ij}^2$$

Hope to achieve LP feasibility



DDP formulation for the DGP

$$\min \sum_{\substack{\{i,j\}\in E \\ \forall \{i,j\}\in E \\ \forall i \leq n \\ T \leq n \\ -T \leq X \leq T \\ T \geq 0 }} (X_{ii} + X_{jj} - 2X_{ij}) \geq d_{ij}^2 \\ \sum_{\substack{j\leq n \\ j\neq i \\ T \geq 0}} T_{ij} \leq X_{ii} \\ -T \leq X \leq T \\ T \geq 0$$

SDP vs. DDP: tests

Using "push-and-pull" objective in SDP SDP solved with Mosek, DDP with CPLEX

SDP + PCA										
		S	OP	DDP						
Instance	LDE	MDE	CPU modl/soln	LDE	MDE	CPU modl/soln				
C0700odd.1	0.79	0.34	0.06/0.12	0.38	0.30	0.15/0.15				
C0700.odd.G	2.38	0.89	0.57/1.16	1.86	0.58	1.11/0.95				
C0150alter.1	1.48	0.45	0.73/1.33	1.54	0.55	1.23/1.04				
C0080create.1	2.49	0.82	1.63/7.86	0.98	0.67	3.39/4.07				
1guu - 1	0.50	0.15	6.67/684.89	1.00	0.85	37.74/ 153.17				

Subsection 5

DGP cones

Cones

▶ Set C is a cone if:

 $\forall A,B\in C,\ \alpha,\beta\geq 0\quad \alpha A+\beta B\in C$

• If C is a cone, the *dual cone* is

 $C^* = \{ y \mid \forall x \in C \ \langle x, y \rangle \ge 0 \}$

► If $C \subset \mathbb{S}_n$ (set $n \times n$ symmetric matrices) $C^* = \{Y \mid \forall X \in C \ (Y \bullet X \ge 0)\}$

• A $n \times n$ matrix cone C is finitely generated by $\mathcal{X} \subset \mathbb{R}^n$ if $\forall X \in C \ \exists \delta \in \mathbb{R}^{|\mathcal{X}|}_+ \quad X = \sum_{x \in \mathcal{X}} \delta_x x x^\top$

PSD, DD are cones (prove it)

Representations of $\mathbb{D}\mathbb{D}$

► Consider $E_{ii}, E_{ij}^+, E_{ij}^-$ in \mathbb{S}_n Define $\mathcal{E}_0 = \{E_{ii} \mid i \le n\}, \mathcal{E}_1 = \{E_{ij}^{\pm} \mid i < j\}, \mathcal{E} = \mathcal{E}_0 \cup \mathcal{E}_1$

$$\begin{aligned} & \bullet \quad E_{ii} = \operatorname{diag}(0, \dots, 0, 1_i, 0, \dots, 0) \\ & \bullet \quad E_{ij}^+ \operatorname{has\,minor} \left(\begin{array}{cc} 1_{ii} & 1_{ij} \\ 1_{ji} & 1_{jj} \end{array} \right), 0 \text{ elsewhere} \\ & \bullet \quad E_{ij}^- \operatorname{has\,minor} \left(\begin{array}{cc} 1_{ii} & -1_{ij} \\ -1_{ji} & 1_{jj} \end{array} \right), 0 \text{ elsewhere} \end{aligned}$$

- ▶ Thm. $\mathbb{DD} = \text{cone generated by } \mathcal{E}$ [Barker & Carlson 1975] Pf. Rays in \mathcal{E} are extreme, all DD matrices generated by \mathcal{E}
- ► Cor. DD finitely gen. by $\mathcal{X}_{DD} = \{e_i \mid i \leq n\} \cup \{e_i \pm e_j \mid j < \ell \leq n\}$ Pf. Write $E_{ii} = e_i e_i^\top, E_{ij}^\pm = (e_i \pm e_j)(e_i \pm e_j)^\top$, where e_i is the *i*-th std basis element of \mathbb{R}^n

Finitely generated dual cone theorem Thm. If C finitely gen. by \mathcal{X} , then

$$C^* = \{ Y \mid \forall x \in \mathcal{X} \ (Y \bullet xx^\top \ge 0) \}$$

- (\Rightarrow) Let Y s.t. $\forall x \in \mathcal{X} (Y \bullet xx^{\top} \ge 0)$
 - $\forall X \in C, X = \sum_{x \in \mathcal{X}} \delta_x x x^\top$ (by fin. gen.)
 - hence $Y \bullet X = \sum_x \delta_x Y \bullet x x^\top \ge 0$ (by hyp.)
 - whence $Y \in C^*$
- ► (⇐) Suppose $Z \in C^* \smallsetminus \{Y \mid \forall x \in \mathcal{X} \ (Y \bullet xx^\top \ge 0)\}$
 - then $\exists \mathcal{X}' \subset \mathcal{X}$ s.t. $\forall x \in \mathcal{X}' \ (Z \bullet xx^{\top} < 0)$ (by hyp.)
 - consider any $Y = \sum_{x \in \mathcal{X}'} \delta_x x x^\top \in C$ with $\delta \ge 0$
 - then $Z \bullet Y = \sum_{x \in \mathcal{X}'} \delta_x Z \bullet x x^\top < 0$ so $Z \notin C^*$
 - contradiction $\Rightarrow C^* = \{Y \mid \forall x \in \mathcal{X} (Y \bullet xx^\top \ge 0)\}$

Dual cone constraints

- **Remark:** $X \bullet vv^{\top} = v^{\top}Xv$
- ► Use finitely generated dual cone theorem
- Decision variable matrix X
- ► Constraints:

 $\forall v \in \mathcal{X} \quad v^\top X v \ge 0$

- ► If |X| polysized, get compact formulation otherwise use column generation
- $\blacktriangleright |\mathcal{X}_{\mathbb{DD}}| = |\mathcal{E}| = O(n^2)$

Dual cone DDP formulation for DGP

$$\begin{array}{ccc} \min & \sum_{\{i,j\}\in E} \left(X_{ii} + X_{jj} - 2X_{ij} \right) \\ \forall \{i,j\}\in E & X_{ii} + X_{jj} - 2X_{ij} &= d_{ij}^2 \\ \forall v \in \mathcal{X}_{\mathbb{DD}} & v^\top X v \geq 0 \end{array} \right\}$$

• $v^{\top}Xv \ge 0$ for $v \in \mathcal{X}_{\mathbb{DD}}$ equivalent to:

$$\forall i \leq n \quad X_{ii} \geq 0$$

$$\forall \{i, j\} \notin E \quad X_{ii} + X_{jj} - 2X_{ij} \geq 0$$

 $\forall i < j \quad X_{ii} + X_{jj} + 2X_{ij} \geq 0$

Properties

- SDP relaxation of original problem
- ▶ **Thm.** Dual cone DDP is a relaxation of SDP **Pf.** If $X \succeq 0$, then $\forall v \in \mathbb{R}^n \ v^\top X v \ge 0$ by defin, and $\mathcal{X}_{\mathbb{D}\mathbb{D}} \subset \mathbb{R}^n$
- Yields extremely tight obj fun bounds
- Solutions have large negative rank, unfortunately retrieving feasible solutions is difficult

Subsection 6

Barvinok's Naive Algorithm

Concentration of measure

From [Barvinok, 1997]

The value of a "well behaved" function at a random point of a "big" probability space X is "very close" to the mean value of the function.

and

In a sense, measure concentration can be considered as an extension of the law of large numbers.

Concentration of measure

Given Lipschitz function $f: X \to \mathbb{R}$ s.t.

$$\forall x, y \in X \quad |f(x) - f(y)| \le L ||x - y||_2$$

for some $L \ge 0$, there is *concentration of measure* if \exists constants c, C s.t.

$$\forall \varepsilon > 0 \quad \mathsf{P}_x(|f(x) - \mathsf{E}(f)| > \varepsilon) \le c \, e^{-C\varepsilon^2/L^2}$$

 \equiv "discrepancy from mean is unlikely"

Barvinok's theorem

Consider:

• for each $k \leq m$, manifolds $\mathcal{X}_k = \{x \in \mathbb{R}^n \mid x^\top Q^k x = a_k\}$

• a feasibility problem
$$x \in \bigcap_{k \le m} \mathcal{X}_k$$

• its SDP relaxation $\forall x \leq m \ (Q^k \bullet X = a_k)$ with soln. \bar{X}

Let
$$T = factor(\bar{X})$$
, $y \sim \mathcal{N}^n(0, 1)$ and $x' = Ty$

Then $\exists c \text{ and } n_0 \in \mathbb{N} \text{ s.t. if } n \geq n_0$,

$$\mathsf{Prob}\left(orall k \le m \operatorname{dist}(x', \mathcal{X}_k) \le c \sqrt{\|ar{X}\|_2 \ln n}
ight) \ge 0.9.$$

IDEA: since x' is "close" to each \mathcal{X}_k , try local descent!

Application to the DGP

- $\forall \{i, j\} \in E \quad \mathcal{X}_{ij} = \{x \mid ||x_i x_j||_2^2 = d_{ij}^2\}$
- ► DGP can be written as $\bigcap_{\{i,j\}\in E} \mathcal{X}_{ij}$
- ▶ SDP relaxation $X_{ii} + X_{jj} 2X_{ij} = d_{ij}^2 \land X \succeq 0$ with soln. \overline{X}
- Difference with Barvinok: $x \in \mathbb{R}^{Kn}$, $\mathbf{rk}(\bar{X}) \leq K$
- IDEA: sample $y \sim \mathcal{N}^{nK}(0, \frac{1}{\sqrt{K}})$
- Thm. Barvinok's theorem works in rank K

The heuristic

1. Solve SDP relaxation of DGP, get soln. \bar{X} use DDP+LP if SDP+IPM too slow

2. **a.**
$$T = \text{factor}(\bar{X})$$

b. $y \sim \mathcal{N}^{nK}(0, \frac{1}{\sqrt{K}})$
c. $x' = Ty$

3. Use x' as starting point for a local NLP solver on formulation

$$\min_{x} \sum_{\{i,j\} \in E} \left(\|x_i - x_j\|^2 - d_{ij}^2 \right)^2$$

and return improved solution x

SDP+Barvinok vs. DDP+Barvinok

		SDP			DDP	
Instance	LDE	MDE	CPU	LDE	MDE	CPU
C0700odd.1	0.00	0.00	0.63	0.00	0.00	1.49
C0700.odd.G	0.00	0.00	21.67	0.42	0.01	30.51
C0150alter.1	0.00	0.00	29.30	0.00	0.00	34.13
C0080create.1	0.00	0.00	139.52	0.00	0.00	141.49
1b03	0.18	0.01	132.16	0.38	0.05	101.04
1 crn	0.78	0.02	800.67	0.76	0.04	522.60
1 guu - 1	0.79	0.01	1900.48	0.90	0.04	667.03

Most of the CPU time taken by local NLP solver

Subsection 7 Isomap for the DGP

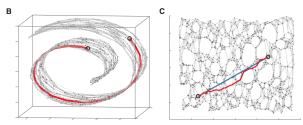
Isomap for DG

- 1. Let D' be the (square) weighted adjacency matrix of G
- 2. Complete D' to approximate sqEDM \tilde{D}
- 3. Perform PCA on \tilde{D} given K dimensions

(a) Let
$$\tilde{B} = -(1/2)J\tilde{D}J$$
, where $J = I - (1/n)\mathbf{1}\mathbf{1}^{\top}$

- **(b)** Find eigenval/vects Λ , P so $\tilde{B} = P^{\top} \Lambda P$
- (c) Keep $\leq K$ largest nonneg. eigenv. of Λ to get $\tilde{\Lambda}$

(d) Let
$$\tilde{x} = P^{\top} \sqrt{\tilde{\Lambda}}$$



Vary Step 2 to generate Isomap heuristics

Variants for Step 2

- A. Floyd-Warshall all-shortest-paths algorithm on G (classic Isomap)
- B. Find a spanning tree (SPT) of G and compute a random realization in $\bar{x} \in \mathbb{R}^{K}$, use its sqEDM
- C. Solve a push-and-pull SDP relaxation to find a realization $\bar{x} \in \mathbb{R}^n$, use its sqEDM
- **D.** Solve an SDP relaxation with Barvinok objective to find $\bar{x} \in \mathbb{R}^r$ (with $r \leq \lfloor (\sqrt{8|E|+1}-1)/2 \rfloor$), use its sqEDM haven't really talked about this, sorry

Post-processing: Use \tilde{x} as starting point for local NLP solver

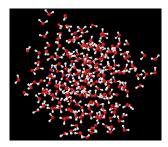
Results

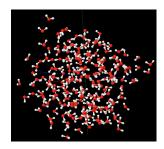
Comparison with dgsol [Moré, Wu 1997]

				4	ß	с	P		-	~	B	С	D		\sim	A	B	С	D	
Instan	ce				n	nde					1	de					C	PU		
Name	n	E	Isomap	IsoNLP	SPT	SDP	Barvinok	DGSol	Isomap	IsoNLP	SPT	SDP	Barvinok	DGSol	Isomap	IsoNLP	SPT	SDP	Barvinok	DGSol
C0700odd.1	15	39	0.585	0.001	0.190	0.068	0.000	0.135	0.989	0.004	0.896	0.389	0.001	0.634	0.002	1.456	1.589	0.906	1.305	1.747
C0700odd.2	15	39	0.599	0.000	0.187	0.086	0.000	0.128	0.985	0.002	0.956	0.389	0.009	1.000	0.003	1.376	1.226	1.002	1.063	0.887
C0700odd.3	15	39	0.599	0.000	0.060	0.086	0.000	0.128	0.985	0.002	0.326	0.389	0.009	1.000	0.003	1.259	1.256	0.861	1.167	0.877
C0700odd.4	15	39	0.599	0.000	0.283	0.086	0.001	0.128	0.985	0.002	2.449	0.389	0.008	1.000	0.003	1.347	1.222	0.976	1.063	1.033
C0700odd.5	15	39	0.599	0.000	0.225	0.086	0.000	0.128	0.985	0.002	0.867	0.389	0.007	1.000	0.003	1.284	1.157	0.987	1.100	0.700
C0700odd.6	15	39	0.599	0.000	0.283	0.086		0.128	0.985	0.002	1.520	0.389	0.002		0.002	1.372	1.196	0.998	1.305	0.909
C0700odd.7	15	39	0.585	0.001	0.080	0.068		0.135	0.989	0.004	0.361	0.389		0.634		1.469	1.322	0.894	1.093	1.719
C0700odd.8	15	39	0.585	0.001	0.056	0.068		0.135	0.989	0.004	0.275					1.408	1.306	0.692	1.079	1.744
C0700odd.9	15	39	0.585		0.057			0.135	0.989	0.004	0.301			0.634		1.430	1.172	0.791	1.093	1.745
C0700odd.A	15	39	0.585			0.068		0.135	0.989	0.004				0.634		1.294	1.269	0.722	1.220	1.523
C0700odd.B	15	39	0.585		0.151			0.135	0.989	0.004			0.004	0.634		1.297	1.279	0.871	1.111	1.747
C0700odd.C	15	39		0.022			0.031	0.025		0.147	0.393		0.294		0.004	6.803	6.369	7.371	7.030	7.000
C0700odd.D	36	242		0.022				0.025		0.147	0.423		0.268		0.006	6.806	6.575	7.422	7.603	7.095
C0700odd.E	36	242		0.022			0.031	0.025		0.147	0.894		0.260	0.167		6.911	6.638	7.365	6.979	7.008
C0700odd.F	36	242	0.599	0.000				0.128		0.002	0.308	0.389	0.005		0.002	1.299	1.310	1.008	1.100	1.040
C0150alter.1	37	335	0.786		0.066		0.015		0.992	0.571		0.256		0.253		9.492	9.456	10.276	10.120	9.272
C0080create.1	60	681	0.887	0.053	0.083	0.024	0.024	0.054	1.967	0.949	0.789	0.511	0.516	0.718	0.012	18.835	19.720	21.247	20.906	19.962
C0080create.2		681	0.887			0.024	0.024		1.967	0.949	0.585			0.718		18.791	20.009	21.728	20.885	19.740
C0020pdb	107		0.939			0.059		0.103	1.242		1.349			0.798		29.024	27.772	35.273	35.486	32.479
1guu	150		0.986		0.069			0.061	0.999	0.854	0.830		0.751	0.768		30.869	28.784	41.488	41.852	37.848
1guu-1	150		0.986			0.058		0.060	1.000	0.711	0.855		0.829		0.053	31.322		42.308	41.590	37.218
1guu-4000	150		0.974	0.081	0.080	0.072		0.079	1.000		0.728	0.760	0.961	0.826	0.050	30.352		42.330	39.832	42.015
C0030pk1		3247	0.961			0.076	0.077	0.137	1.197	1.354	2.230		2.054	1.401			104.775			
1PPT		3102	0.984	0.121				0.123	1.000	1.519	1.219	1.944	1.956						187.182	
100d	488	5741	0.987			0.155	0.157		1.000	1.577	1.397	1.764	1.749						659.280	
GeoMean			0.74		0.09	0.06	0.00	0.08	1.07	0.04	0.73	0.50	0.06	0.66		6.30	6.04	5.93	6.63	6.30
Avg			0.76	0.04	0.11	0.07	0.03	0.10	1.09	0.44	0.88	0.63	0.47	0.77	0.06	26.12	25.21	49.69	49.55	27.96
StDev			0.17	0.05	0.07	0.03	0.04	0.04	0.27	0.55	0.57	0.52	0.65	0.34	0.18	51.69	48.82	135.08	134.97	53.26
Harrison and the second										$\overline{}$			~		~	·				

Large instances

	Instance	e	m	de	ld	e	CPU		
Name	V	E	IsoNLP	dgsol	IsoNLP	dgsol	IsoNLP	dgsol	
water	648	11939	0.005	0.15	0.557	0.81	26.98	15.16	
3al1	678	17417	0.036	0.007	0.884	0.810	170.91	210.25	
1hp v	1629	18512	0.074	0.078	0.936	0.932	374.01	60.28	
i12	2084	45251	0.012	0.035	0.910	0.932	465.10	139.77	
1tii	5684	69800	0.078	0.077	0.950	0.897	7400.48	454.375	





Subsection 8

Concluding remarks

Summary of difficulties

- Quadratic nonconvex too difficult?
- Solve SDP relaxation
- SDP relaxation too large?
- Solve DDP approximation
- Get $n \times n$ matrix solution, need $K \times n!$

Rank reduction methods

- Multidimensional Scaling (MDS)
- Principal Component Analysis (PCA)
- Barvinok's naive algorithm (BNA)
- Isomap

Can also use them for dimensionality reduction! n vectors in $\mathbb{R}^n \longrightarrow \mathbb{R}^K$

Outline

Some combinatorial **NP-hardness** Distance geometry problem Distance geometry in MP Barvinok's Naive Algorithm Isomap for the DGP **Concluding remarks Clustering in Natural Language**

Clustering on graphs **Clustering in Euclidean** spaces Distance resolution limit MP formulations Clustering in high dimensions Solution retrieval **Quantile regression** Sparsity and ℓ_1 minimization Lower bounds Upper bounds from SDP Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Job offers

Optimisation / Operations Senior Manager

VINCI Airports

SLOBAL

Rueil-Malmaison, Île-de-France, France

... for the delivery of the various optimization projects... to the success of each optimization project...

Pricing Data Scientist/Actuary - Price Optimization Specialist(H-F) AXA Global Direct

Région de Paris, France

...optimization. The senior price optimization... Optimization and Innovation team, and will be part...

Growth Data scientist - Product Features Team

Deezer

Paris, FR

OverviewPress play on your next adventure! Music... to join the Product Performance & Optimization team... www.deezer.com

Analystes et Consultants - Banque -Optimisation des opérations financières... Accenture

Région de Paris, France

Nous recherchons des analystes jeunes diplômés et des consultants H/F désireux de travailler sur des problématiques d'optimisation des opérations bancaires (optimisation des modèles opérationnels et des processus) en France et au Benelux. Les postes sont à pourvoir en CDI, sur base d'un rattachement...

Electronic Health Record (EHR) Coordinator (Remote)

Aledade, Inc. - Bethesda, MD

Must have previous implementation or optimization experience with ambulatory EHRs and practice management software, preferably with expertise in Greenway,...

Operations Research Scientist

Ford Motor Company - ***** 2,381 reviews - Dearborn, MI

Strong knowledge of optimization techniques (e.g. Develop optimization frameworks to support models related to mobility solution, routing problem, pricing and...

IS&T Controller

ALSTOM Alstom

Saint-Ouen, FR

The Railway industry today is characterized... reviews, software deployment optimization. running ... jobsearch.alstom.com

Fares Specialist / Spécialiste Optimisation des Tarifs Aériens

Egencia, an Expedia company

Courbevoie - FR

EgenciaChaque année. Egencia accompagne des milliers de sociétés réparties dans plus de 60 pays à mieux gérer leurs programmes de voyage. Nous proposons des solutions modernes et des services d'exception à des millions de voyageurs, de la planification à la finalisation de leur vovage. Nous répondons...

Automotive HMI Software Experts or Software Engineers

Elektrobit (EB)

Paris Area France

Elektrobit Automotive offers in Paris interesting... performances and optimization area, and/or software...

Deployment Engineer, Professional Services, Google Cloud

Google

Paris, France

Note: By applying to this position your... migration, network optimization, security best...

Operations Research Scientist

Marriott International, Inc - ***** 4.694 reviews - Bethesda, MD 20817 Analyzes data and builds optimization., Programming models and familiarity with optimization software (CPLEX, Gurobi)....

Research Scientist - AWS New Artificial Intelligence Team!

Research Scientist - AWS New Artificial Intelligence Team Views - Palo Alto, CA We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center...

An example

Under the responsibility of the Commercial Director, the Optimisation / Operations Senior Manager will have the responsibility to optimise and develop operational aspects for VINCI Airports current and future portfolio of airports. They will also be responsible for driving forward and managing key optimisation projects that assist the Commercial Director in delivering the objectives of the Technical Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial Director in the development and implementation of plans, strategies and reporting processes. As part of the exercise of its function, the Optimisation Manager will undertake the following: Identification and development of cross asset synergies with a specific focus on the operations and processing functions of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives of the various technical services agreements, the strategy of the individual airports and the Group. This function will include: Participation in the definition of airport strategy. Definition of this airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various technical services agreements with our airports by developing specific technical competences from the Head Office level. Oversee the management and definition of all optimisation projects. Identification, overview and management of the project managers responsible for the delivery of the various optimization projects at each asset. Construction of good relationships with the key stakeholders, in order to contribute to the success of each optimization project. Development and implementation of the Group optimisation plan. Definition of economic and quality of service criteria, in order to define performance goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the strategies, trends and best practices of the airport industry and other reference industries in terms of the applicability to the optimization plan. Study of the needs and preferences of the passengers, through a continuous process of marketing research at all of the airports within the VINCI Airports portfolio. Development of benchmarking studies in order to evaluate the trends, in international airports or in the local market. Development and participation in the expansion or refurbishment projects of the airports, to assure a correct configuration and positioning of the operational and commercial area that can allow the optimization of the revenues and operational efficiency. Support the Director Business Development through the analysis and opportunity assessment of areas of optimization for all target assets in all bids and the preparation and implementation of the strategic plan once the assets are acquired. Maintain up to date knowledge of market trends and key initiatives related to the operational and commercial aspects of international airports [...]

... and blah blah: IS THIS APPROPRIATE FOR MY CV?

Try Natural Language Processing

- Automated summary
- ▶ Relation Extraction
- Named Entity Recognition (NER)
- ► Keywords

Automated summary ./summarize.py job01.txt

They will also be responsible for driving forward and managing key optimisation projects that assist the Commercial Director in delivering the objectives of the Technical Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial Director in the development and implementation of plans, strategies and reporting processes. Identification and development of cross asset synergies with a specific focus on the operations and processing functions of the airport. Construction of good relationships with the key stakeholders, in order to contribute to the success of each optimization project. Definition of economic and quality of service criteria, in order to define performance goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service levels, passenger convenience and harmonization of the non-aeronautical activities. Development of benchmarking studies in order to evaluate the trends, in international airports or in the local market. Maintain up to date knowledge of market trends and key initiatives related to the operational and commercial aspects of international airports. You have a diverse range of experiences working at or with airports across various disciplines such as operations, ground handling, commercial, etc. Demonstrated high level conceptual thinking, creativity and analytical skills.

Does it help? hard to say

Relation Extraction

./relextr-mitie.py job01.txt

```
====== RELATIONS =======
Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports
Self [ INCLUDES EVENT ] Head Office
Head Office [ INFLUENCED BY ] Self
Head Office [ INTERRED HERE ] Self
VINCI Airports [ INTERRED_HERE ] Optimisation Strategy
Head Office [ INVENTIONS ] Self
Optimisation Strategy [ LOCATIONS ] VINCI Airports
Self [ LOCATIONS ] Head Office
Self [ ORGANIZATIONS WITH THIS SCOPE ] Head Office
Self [ PEOPLE INVOLVED ] Head Office
Self [ PLACE OF DEATH ] Head Office
Head Office [ RELIGION ] Self
VINCI Airports [ RELIGION ] Optimisation Strategy
```

Does it help? hardly

Named Entity Recognition

./ner-mitie.py job01.txt

==== NAMED ENTITIES ===== English MISC French MISC Head Office ORGANIZATION Optimisation / Operations ORGANIZATION Optimisation Strategy ORGANIZATION Self PERSON Technical Services Agreements MISC VINCI Airports ORGANIZATION

Does it help? ... maybe

For a document D, let NER(D) = named entity words

${\small Subsection 1} \\$

Clustering on graphs

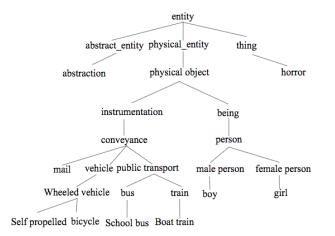
Exploit NER to infer relations

- 1. Recognize named entities from all documents
- 2. Use them to compute distances among documents
- 3. Use modularity clustering

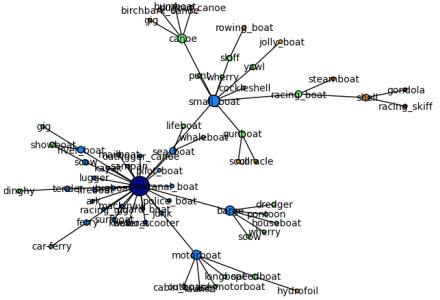
The named entities

- Operations Head Airports Office VINCI Technical Self French / Strategy Agreements English Services Optimisation
 Europe and P&C Work Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate
- 2. Europe and P&C Work Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate International English
- 3. Scientist Product Analyze Java Features & Statistics Science PHP Pig/Hive/Spark Optimization Crunch/analyze Team Press Performance Deezer Data Computer
- 4. Lean6Sigma Lean-type Office Banking Paris CDI France RPA Middle Accenture English Front Benelux
- Partners Management Monitor BC Provide Support Sites Regions Miters Program Performance market develop Finance & IS&T Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector and Alstom Tax Directors Strategic Committee
- Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia English Fares with Company Inc
- Paris Integration France Automation Automotive French. Linux/Genivi HMI UI Software EB Architecture Elektrobit technologies GUIDE Engineers German Technology SW well-structured Experts Tools
- 8. Product Google Managers Python JavaScript AWS JSON BigQuery Java Platform Engineering HTML MySQL Services Professional Googles Ruby Cloud OAuth
- 9. EHR Aledades Provide Wellness Perform ACO Visits EHR-system-specific Coordinator Aledade Medicare Greenway Allscripts
- Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata & Python Company GDIA Ford Visa SPARK Data Applied Science Work C++ R Unix/Linux Physics Microsoft Operations Monte JAVA Mobility Insight Analytics Engineering Computer Motor SQL Operation Carlo PowerPoint
- 11. Management Java CANDIDATE Application Statistics Gurobi Provides Provider Mathematics Service Maintains Deliver SM&G SAS/HPF SAS Data Science Economics Marriott PROFILE Providers OR Engineering Computer SQL Education
- 12. Alto Statistics Java Sunnyvale Research ML Learning Science Operational Machine Amazon Computer C++ Palo Internet R Seattle
- 13. LLamasoft Work Fortune Chain Supply C# Top Guru What Impactful Team LLamasofts Makes Gartner Gain
- 14. Worldwide Customer Java Mosel Service Python Energy Familiarity CPLEX Research Partnering Amazon R SQL CS Operations
- 15. Operations Science Research Engineering Computer Systems or Build
- Statistics Italy Broad Coins France Australia Python Amazon Germany SAS Appstore Spain Economics Experience R Research US Scientist UK SQL Japan Economist
- 17. Competency Statistics Knowledge Employer communication Research Machine EEO United ORMA Way OFCCP Corporation Mining & C# Python Visual Studio Opportunity Excellent Modeling Data Jacksonville Arena Talent Skills Science Florida Life Equal AnyLogic Facebook CSX Oracle The Strategy Vision Operations Industrial Stream of States Analytics Engineering Computer Framework Technology
- 18. Java Asia Research Safety in Europe Activities North Company WestRocks Sustainability America Masters WRK C++ Norcross Optimization GA ILOG South NYSE Operations AMPL CPLEX Identify Participate OPL WestRock
- 19. Management Federal Administration System NAS Development JMP Traffic Aviation FAA Advanced McLean Center CAASD Flow Air Tableau Oracle MITRE TFM Airspace National SQL Campus
- 20. Abilities & Skills 9001-Quality S Management ISO GED
- 21. Statistics Group RDBMS Research Mathematics Teradata ORSA Greenplum Java SAS U.S. Solution Time Oracle Military Strategy Physics Linear/Non-Linear Operations both Industrial Series Econometrics Engineering Clarity Regression 160/306

Word similarity: WordNet



WordNet: hyponyms of "boat"



Wu-Palmer word similarity Semantic WordNet distance between words w_1, w_2

 $\mathsf{wup}(w_1,w_2) = \frac{2\operatorname{depth}(\mathsf{lcs}(w_1,w_2))}{\mathsf{len}(\mathsf{shortest_path}(w_1,w_2)) + 2\operatorname{depth}(\mathsf{lcs}(w_1,w_2))}$

► lcs: lowest common subsumer

earliest common word in paths from both words to WordNet root

depth: length of path from root to word

Example: wup(dog, boat)?

```
depth( whole ) = 4
18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate
    -> chordate -> animal -> organism -> living_thing -> whole -> artifact
    -> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat
```

```
13 -> dog -> domestic_animal -> animal -> organism -> living_thing
-> whole -> artifact -> instrumentality -> conveyance -> vehicle
-> craft -> vessel -> boat
```

wup(dog, boat) = 8/21 = 0.380952380952

Extensions of Wu-Palmer similarity

► to lists of words *H*, *L*:

$$\mathrm{wup}(H,L) = \frac{1}{|H|\,|L|} \sum_{v \in H} \sum_{w \in L} \mathrm{wup}(v,w)$$

► to pairs of documents *D*₁, *D*₂:

 $\mathsf{wup}(D_1, D_2) = \mathsf{wup}(\mathsf{NER}(D_1), \mathsf{NER}(D_2))$

▶ wup and its extensions are always in [0, 1]

The similarity matrix

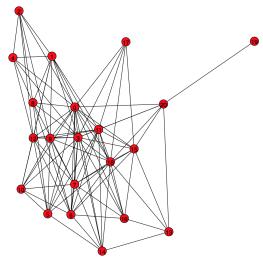
 $1.00\ 0.63\ 0.51\ 0.51\ 0.66\ 0.45\ 0.46\ 0.47\ 0.72\ 0.58\ 0.54\ 0.50\ 0.72\ 0.38\ 0.49\ 0.47\ 0.47\ 0.44\ 0.54\ 0.31\ 0.44$ $0.63\ 1.00\ 0.45\ 0.45\ 0.54\ 0.40\ 0.42\ 0.42\ 0.57\ 0.49\ 0.46\ 0.45\ 0.59\ 0.35\ 0.43\ 0.42\ 0.42\ 0.41\ 0.47\ 0.32\ 0.40$ 0.51 0.45 1.00 0.40 0.53 0.35 0.37 0.37 0.58 0.47 0.43 0.40 0.59 0.28 0.39 0.37 0.38 0.35 0.43 0.24 0.350.51 0.45 0.40 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.38 0.48 0.47 0.47 0.45 0.53 0.33 0.44 $0.66\ 0.54\ 0.53\ 0.63\ 1.00\ 0.34\ 0.35\ 0.35\ 0.49\ 0.42\ 0.39\ 0.37\ 0.50\ 0.29\ 0.36\ 0.35\ 0.35\ 0.34\ 0.40\ 0.26\ 0.34$ 0.45 0.40 0.35 0.45 0.34 1.00 0.42 0.43 0.66 0.54 0.49 0.45 0.67 0.34 0.44 0.43 0.43 0.40 0.49 0.28 0.40 $0.46\ 0.42\ 0.37\ 0.46\ 0.35\ 0.42\ 1.00\ 0.44\ 0.66\ 0.54\ 0.49\ 0.47\ 0.67\ 0.34\ 0.45\ 0.45\ 0.44\ 0.42\ 0.50\ 0.28\ 0.40$ $0.47\ 0.42\ 0.37\ 0.46\ 0.35\ 0.43\ 0.44\ 1.00\ 0.67\ 0.55\ 0.51\ 0.48\ 0.68\ 0.36\ 0.47\ 0.45\ 0.45\ 0.43\ 0.51\ 0.30\ 0.42$ $0.72\ 0.57\ 0.58\ 0.67\ 0.49\ 0.66\ 0.66\ 0.67\ 1.00\ 0.33\ 0.31\ 0.29\ 0.40\ 0.23\ 0.28\ 0.27\ 0.28\ 0.26\ 0.31\ 0.21\ 0.26$ 0.58 0.49 0.47 0.56 0.42 0.54 0.54 0.55 0.33 1.00 0.46 0.43 0.59 0.34 0.42 0.41 0.41 0.39 0.46 0.31 0.39 $0.54\ 0.46\ 0.43\ 0.52\ 0.39\ 0.49\ 0.49\ 0.51\ 0.31\ 0.46\ 1.00\ 0.39\ 0.56\ 0.29\ 0.38\ 0.36\ 0.36\ 0.34\ 0.41\ 0.24\ 0.35$ $0.50\ 0.45\ 0.40\ 0.49\ 0.37\ 0.45\ 0.47\ 0.48\ 0.29\ 0.43\ 0.39\ 1.00\ 0.70\ 0.40\ 0.50\ 0.49\ 0.48\ 0.46\ 0.54\ 0.35\ 0.46$ 0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.40 0.59 0.56 0.70 1.00 0.23 0.29 0.29 0.29 0.28 0.33 0.20 0.27 $0.38\ 0.35\ 0.28\ 0.38\ 0.29\ 0.34\ 0.34\ 0.36\ 0.23\ 0.34\ 0.29\ 0.40\ 0.23\ 1.00\ 0.48\ 0.45\ 0.46\ 0.42\ 0.52\ 0.30\ 0.43$ $0.49\ 0.43\ 0.39\ 0.48\ 0.36\ 0.44\ 0.45\ 0.47\ 0.28\ 0.42\ 0.38\ 0.50\ 0.29\ 0.48\ 1.00\ 0.39\ 0.39\ 0.39\ 0.36\ 0.45\ 0.26\ 0.37$ 0.47 0.42 0.37 0.47 0.35 0.43 0.45 0.45 0.27 0.41 0.36 0.49 0.29 0.45 0.39 1.00 0.48 0.46 0.54 0.33 0.440.47 0.42 0.38 0.47 0.35 0.43 0.44 0.45 0.28 0.41 0.36 0.48 0.29 0.46 0.39 0.48 1.00 0.43 0.51 0.32 0.43 $0.44\ 0.41\ 0.35\ 0.45\ 0.34\ 0.40\ 0.42\ 0.43\ 0.26\ 0.39\ 0.34\ 0.46\ 0.28\ 0.42\ 0.36\ 0.46\ 0.43\ 1.00\ 0.53\ 0.31\ 0.43$ $0.54\ 0.47\ 0.43\ 0.53\ 0.40\ 0.49\ 0.50\ 0.51\ 0.31\ 0.46\ 0.41\ 0.54\ 0.33\ 0.52\ 0.45\ 0.54\ 0.51\ 0.53\ 1.00\ 0.36\ 0.46$ $0.31\ 0.32\ 0.24\ 0.33\ 0.26\ 0.28\ 0.28\ 0.30\ 0.21\ 0.31\ 0.24\ 0.35\ 0.20\ 0.30\ 0.26\ 0.33\ 0.32\ 0.31\ 0.36\ 1.00\ 0.47$ $0.44\ 0.40\ 0.35\ 0.44\ 0.34\ 0.40\ 0.40\ 0.42\ 0.26\ 0.39\ 0.35\ 0.46\ 0.27\ 0.43\ 0.37\ 0.44\ 0.43\ 0.43\ 0.43\ 0.46\ 0.47\ 1.00$

The similarity matrix

Too uniform! Try zeroing values below median

 $1.00\ 0.63\ 0.51\ 0.51\ 0.66\ 0.45\ 0.46\ 0.47\ 0.72\ 0.58\ 0.54\ 0.50\ 0.72\ 0.00\ 0.49\ 0.47\ 0.47\ 0.44\ 0.55\ 0.54$ $0.63 \ 1.00 \ 0.45 \ 0.45 \ 0.54$ 0.00 0.00 0.00 0.57 0.49 0.46 0.45 0.59 0.00 0.47 $0.51 \ 0.45 \ 1.00 \ 0.00 \ 0.53$ 0.00 0.00 0.00 0.58 0.47 0.00 0.00 0.59 0.00 $0.51 \ 0.45 \ 0.00 \ 1.00 \ 0.63 \ 0.45 \ 0.46 \ 0.46 \ 0.67 \ 0.56 \ 0.52 \ 0.49 \ 0.68 \ 0.00 \ 0.48 \ 0.47 \ 0.47 \ 0.45 \ 0.53$ $0.66 \ 0.54 \ 0.53 \ 0.63 \ 1.00$ 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.50 $0.45 \ 0.00 \ 0.00 \ 0.45 \ 0.00 \ 1.00 \ 0.00 \ 0.00 \ 0.66 \ 0.54 \ 0.49 \ 0.45 \ 0.67 \$ 00 0.44 0.490.00 0.00 0.46 $0.00\ 0.00\ 1.00\ 0.44\ 0.66\ 0.54\ 0.49\ 0.47\ 0.67\ 0.00\ 0.45\ 0.45\ 0.44$ 0.500.46 $0.47 \ 0.00 \ 0.00 \ 0.46$ $0.00 \ 0.00 \ 0.44 \ 1.00 \ 0.67 \ 0.55 \ 0.51 \ 0.48 \ 0.68$ 0 47 0 45 0 45 0.510.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.000.58 0.49 0.47 0.56 0.00 0.54 0.54 0.55 0.00 1.00 0.46 0.43 0.59 0.460.00 0.46 1.00 0.00 0.56 $0.54 \ 0.46$ 0.00 0.52 0.00 0.49 0.49 0.51 $0.50 \ 0.45$ $0.00\ 0.49\ 0.00\ 0.45\ 0.47\ 0.48$ $0.00\ 0.43\ 0.00\ 1.00\ 0.70\ 0.00\ 0.50\ 0.49\ 0.48\ 0.46\ 0.54$ 0 46 0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.680.59 0.56 0.70 1.00 $0.00 \ 0.00 \ 0.00 \ 1.00 \ 0.48 \ 0.45 \ 0.46$ 0.520.4300.0.48 0.00 0.44 0.45 0.47 $0.00 \ 0.00 \ 0.50 \ 0.00 \ 0.48 \ 1.00$ 0.450.490.00 0.00 0.47 $0.00 \ 0.00 \ 0.45 \ 0.45$ $0.00 \ 0.00 \ 0.49 \ 0.00 \ 0.45$ 0.470.00 1.00 0.48 0.46 0.540.440.00 0.00 0.47 $0.00 \ 0.00 \ 0.44 \ 0.45$ 0.00 0.00 0.48 0.00 0.46 0.48 1.00 0.47 $0.00 \ 0.51$ 0.44 0.00 0.00 0.45 $0.46 \ 0.00 \ 1.00 \ 0.53$ 0.54 0.47 0 0.530.00 0.49 0.50 0.51 0.00 0.46 000.54 $0.00\ 0.52\ 0.45\ 0.54\ 0.51\ 0.53\ 1.00$ 00 0.460.00 1.00 0.47.00 0.00 0.00 0.00 **0.46** 0 00 0 43 0.440 46 0 47 1 00

The graph



G = (V, E), weighted adjacency matrix A

A is like B with zeroed low components

Modularity clustering

"Modularity is the fraction of the edges that fall within a cluster minus the expected fraction if edges were distributed at random."

- *"at random"* = random graphs over same degree sequence
- degree sequence = (k_1, \ldots, k_n) where $k_i = |N(i)|$
- "expected" = all possible "half-edge" recombinations

• expected edges between $u, v: k_u k_v / (2m)$ where m = |E|

$$\blacktriangleright \mod(u,v) = (A_{uv} - k_u k_v / (2m))$$

▶
$$mod(G) = \sum_{\{u,v\} \in E} mod(u, v) x_{uv}$$

 $x_{uv} = 1 \text{ if } u, v \text{ in the same cluster and 0 otherwise}$

• "Natural extension" to weighted graphs: $k_u = \sum_v A_{uv}, m = \sum_{uv} A_{uv}$

Use modularity to define clustering

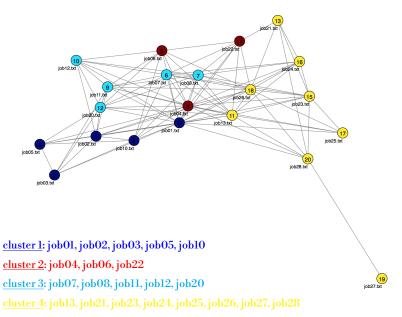
- What is the "best clustering"?
- Maximize discrepancy between actual and expected "as far away as possible from average"

$$\begin{array}{ll} \max & \sum\limits_{\{u,v\}\in E} \mathsf{mod}(u,v) x_{uv} \\ \forall u \in V, v \in V \quad x_{uv} \in \{0,1\} \end{array}$$

- ► Issue: trivial solution *x* = 1 "one big cluster"
- Idea: treat clusters as cliques (even if zero weight) then clique partitioning constraints for transitivity

 $\textit{if} i, j \in C \textit{ and } j, k \in C \textit{ then } i, k \in C$

The resulting clustering



Is it good?

Vinci Axa Deezer Alstom Aledade

Accenture F Expedia G fragmentl F I

ElektrobitAmazon 1-3GoogleCSXFordWestrockMarriottMitreLlamasoftClarityfragment2

? — named entities rarely appear in WordNet
Desirable property: chooses number of clusters

Subsection 2

Clustering in Euclidean spaces

Clustering vectors Most frequent words w over collection C of documents d ./keywords.py

global environment customers strategic processes teams sql job industry use java developing project process engineering field models opportunity drive results statistical based operational performance using mathematical computer new technical highly market company science role dynamic background products level methods design looking modeling manage learning service customer effectively technology requirements build mathematics problems plan services time scientist implementation large analytical techniques lead available plus technologies sas provide machine product functions organization algorithms position model order identify activities innovation key appropriate different complex best decision simulation strategy meet client assist quantitative finance commercial language mining travel chain amazon pricing practices cloud supply

$$\mathsf{tfidf}_C(w,d) = \frac{|(t \in d \mid t = w)| \, |C|}{|\{d \in C \mid w \in d\}|}$$

Transforms documents to vectors

Minimum sum-of-squares clustering

- ▶ MSSC, a.k.a. the *k*-means problem
- Given points $p_1, \ldots, p_n \in \mathbb{R}^m$, find clusters C_1, \ldots, C_k

$$\min \sum_{j \le k} \sum_{i \in C_j} \|p_i - \operatorname{centroid}(C_j)\|_2^2$$

where centroid $(C_j) = \frac{1}{|C_j|} \sum_{i \in C_j} p_i$

• k-means alg.: given initial clustering C_1, \ldots, C_k

1: $\forall j \leq k$ compute $y_j = \text{centroid}(C_j)$ **2:** $\forall i \leq n, j \leq k \text{ if } y_j \text{ is the closest centr. to } p_i \text{ let } x_{ij} = 1 \text{ else } 0$ **3:** $\forall j \leq k \text{ update } C_j \leftarrow \{p_i \mid x_{ij} = 1 \land i \leq n\}$ **4:** repeat until stability

k-means with k = 2

Vinci Deezer Accenture Expedia Google Aledade Llamasoft

AXA Alstom Elektrobit Ford Marriott Amazon 1-3 CSX **WestRock MITRE** Clarity fragments 1-2

k-means with k = 2: another run

Deezer Elektrobit Google Aledade

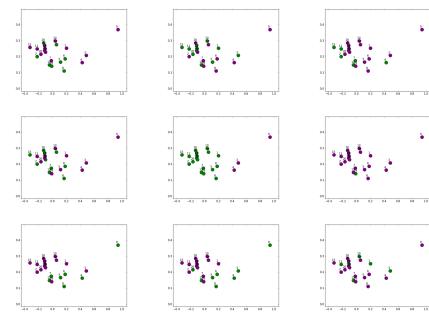
Vinci AXA Accenture Alstom **Expedia** Ford Marriott Llamasoft Amazon 1-3 CSX **WestRock MITRE** Clarity fragments 1-2

k-means with k = 2: third run!

AXA Deezer Expedia Ford Marriott Llamasoft Amazon 1-3 CSX WestRock MITRE Clarity fragments 1-2 Vinci Accenture Alstom Elektrobit Google Aledade

A fickle algorithm

We can't trust *k*-means: why?



178/306

Subsection 3

Distance resolution limit

Nearest Neighbours

- $k \in \mathbb{N}$
- a distance function $d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$
- a set $\mathcal{X} \subset \mathbb{R}^n$
- a point $z \in \mathbb{R}^n \setminus \mathcal{X}$,

find the subset $\mathcal{Y} \subset \mathcal{X}$ such that:

(a)
$$|\mathcal{Y}| = k$$

(b) $\forall y \in \mathcal{Y}, x \in \mathcal{X} \quad (d(z, y) \le d(z, x))$

basic problem in data science

- pattern recognition, computational geometry, machine learning, data compression, robotics, recommender systems, information retrieval, natural language processing and more
- Example: Used in Step 2 of k-means: assign points to closest centroid

[Cover & Hart 1967]

With random variables

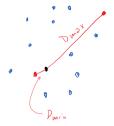
- ► Consider 1-NN
- Let $\ell = |\mathcal{X}|$
- ► Distance function family $\{d^m : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+\}_m$
- ► For each *m*:



- ▶ for $i \leq \ell$, random variable X_i^m with some distrib. over \mathbb{R}^n
- X_i^m iid w.r.t. i, Z^m independent of all X_i^m

$$D_{\min}^m = \min_{i < \ell} d^m (Z^m, X_i^m)$$

•
$$D_{\max}^m = \max_{i \le \ell} d^m(Z^m, X_i^m)$$



Distance Instability Theorem

Let p > 0 be a constant
 If

 $\exists i \leq \ell \quad (d^m(Z^m, X^m_i))^p \text{ converges as } m \to \infty$ then, for any $\varepsilon > 0$,

closest and furthest point are at about the same distance

Note " $\exists i$ " suffices since $\forall m$ we have X_i^m iid w.r.t. i

[Beyer et al. 1999]

Distance Instability Theorem

Let p > 0 be a constant
 If

 $\exists i \leq \ell \quad \lim_{m \to \infty} \operatorname{Var}((d^m(Z^m, X^m_i))^p) = 0$ then, for any $\varepsilon > 0$,

$$\lim_{m \to \infty} \mathbb{P}(D_{\max}^m \le (1 + \varepsilon) D_{\min}^m) = 1$$

Note " $\exists i$ " suffices since $\forall m$ we have X_i^m iid w.r.t. i

[Beyer et al. 1999]

Preliminary results

▶ <u>Lemma</u>. $\{B^m\}_m$ seq. of rnd. vars with finite variance and $\lim_{m\to\infty} \mathbb{E}(B^m) = b \land \lim_{m\to\infty} Var(B^m) = 0$; then

 $\forall \varepsilon > 0 \ \lim_{m \to \infty} \mathbb{P}(\|B^m - b\| \le \varepsilon) = 1$

denoted $B^m \to_{\mathbb{P}} b$

- ▶ <u>Slutsky's theorem</u>. $\{B^m\}_m$ seq. of rnd. vars and g a continuous function; if $B^m \rightarrow_{\mathbb{P}} b$ and g(b) exists, then $g(B^m) \rightarrow_{\mathbb{P}} g(b)$
- $\begin{array}{l} \bullet \quad \underbrace{ \textit{Corollary}}_{\textbf{rnd. vars. s.t. }} \textit{If } \{A^m\}_m, \{B^m\}_m \textit{ seq. of} \\ \hline \textbf{rnd. vars. s.t. } A^m \rightarrow_{\mathbb{P}} a \textit{ and } B^m \rightarrow_{\mathbb{P}} b \neq 0 \textit{ then} \\ \{\frac{A^m}{B^m}\}_m \rightarrow_{\mathbb{P}} \frac{a}{b} \end{array}$

Proof

1. $\mu_m = \mathbb{E}((d^m(Z^m, X^m_i))^p)$ independent of i (since all X^m_i iid)

2.
$$V_m = \frac{(d^m(Z^m, X_i^m))^p}{\mu_m} \to_{\mathbb{P}} 1$$
:

- ▶ $\mathbb{E}(V_m) = 1 \text{ (rnd. var. over mean)} \Rightarrow \lim_m \mathbb{E}(V_m) = 1$
- Hypothesis of thm. $\Rightarrow \lim_m \operatorname{Var}(V_m) = 0$

• Lemma
$$\Rightarrow V_m \rightarrow_{\mathbb{P}} 1$$

- **3.** $\mathbf{D}^m = ((d^m(Z^m, X^m_i))^p \mid i \leq \ell) \rightarrow_{\mathbb{P}} \mathbf{1} (X^m_i \text{ iid})$
- 4. Slutsky's thm. $\Rightarrow \min(\mathbf{D}^m) \rightarrow_{\mathbb{P}} \min(\mathbf{1}) = 1$, simy for max

5. Corollary
$$\Rightarrow \frac{\max(\mathbf{D}^m)}{\min(\mathbf{D}^m)} \rightarrow_{\mathbb{P}} 1$$

6. $\frac{D_{\max}^m}{D_{\min}^m} = \frac{\mu_m \max(\mathbf{D}^m)}{\mu_m \min(\mathbf{D}^m)} \rightarrow_{\mathbb{P}} 1$

7. Result follows (defn. of $\rightarrow_{\mathbb{P}}$ and $D_{\max}^m \ge D_{\min}^m$)

When it applies

- iid random variables from any distribution
- ► Particular forms of correlation e.g. $U_i \sim \text{Uniform}(0, \sqrt{i}), X_1 = U_1, X_i = U_i + (X_{i-1}/2)$ for i > 1
- ► Variance tending to zero e.g. $X_i \sim N(0, 1/i)$
- Discrete uniform distribution on *m*-dimensional hypercube for both data and query
- ► Computational experiments with *k*-means: instability already with *n* > 15

...and when it doesn't

- Complete linear dependence on all distributions can be reduced to NN in 1D
- ► Exact and approximate matching query point = (or ≈) data point
- Query point in a well-separated cluster in data
- Implicitly low dimensionality project; but NN must be stable in lower dim.

${\bf Subsection}\,4$

MP formulations

MP formulation

$\min_{x,y,s}$	$\sum_{i \le n} \sum_{j \le k} \ p_i - y_j\ _2^2 x_{ij}$)	
$\forall j \leq k$	$rac{1}{s_j}\sum_{i\leq n}p_ix_{ij}$	=	y_j		
$\forall i \leq n$		=	1		
$\forall j \leq k$	$\sum_{i\leq n}^{j\leq n} x_{ij}$	=	s_j	Ì	(MSSC)
$\forall j \leq k$	$-y_j$		\mathbb{R}^m		
	x	\in	$\{0,1\}^{nk}$		
	s	\in	\mathbb{N}^k	J	

MINLP: nonconvex terms; continuous, binary and integer variables

Reformulation

The (MSSC) formulation has the same optima as:

 The only nonconvexities are products of binary by continuous bounded variables

Products of binary and continuous vars.

- ► Suppose term *xy* appears in a formulation
- Assume $x \in \{0, 1\}$ and $y \in [0, 1]$ is <u>bounded</u>
- means "either z = 0 or z = y"
- ▶ Replace xy by a new variable z
- Adjoin the following constraints:

$$z \in [0, 1]$$

$$y - (1 - x) \leq z \leq y + (1 - x)$$

$$-x \leq z \leq x$$

• \Rightarrow Everything's linear now!

[Fortet 1959]

Products of binary and continuous vars.

- ► Suppose term *xy* appears in a formulation
- Assume $x \in \{0, 1\}$ and $y \in [y^L, y^U]$ is bounded
- means "either z = 0 or z = y"
- Replace xy by a new variable z
- Adjoin the following constraints:

$$z \in [\min(y^{L}, 0), \max(y^{U}, 0)]$$

$$y - (1 - x) \max(|y^{L}|, |y^{U}|) \leq z \leq y + (1 - x) \max(|y^{L}|, |y^{U}|)$$

$$-x \max(|y^{L}|, |y^{U}|) \leq z \leq x \max(|y^{L}|, |y^{U}|)$$

• \Rightarrow Everything's linear now!

[L. et al. 2009]

MSSC is a convex MINLP

$$\begin{split} \min_{x,y,P,\chi,\xi} & \sum_{i \leq n} \sum_{j \leq k} \chi_{ij} \\ \forall i \leq n, j \leq k \quad 0 \leq \chi_{ij} \leq P_{ij} \\ \forall i \leq n, j \leq k \quad P_{ij} - (1 - x_{ij})P^U \leq \chi_{ij} \leq x_{ij}P^U \\ \forall i \leq n, j \leq k \quad \|p_i - y_j\|_2^2 \leq P_{ij} \quad \Leftarrow \text{ convex} \\ \forall j \leq k \quad \sum_{i \leq n} p_i x_{ij} &= \sum_{i \leq n} \xi_{ij} \\ \forall i \leq n, j \leq k \quad y_j - (1 - x_{ij}) \max(|y^L|, |y^U|) \leq \xi_{ij} \leq y_j + (1 - x_{ij}) \max(|y^L|, |y^U|) \\ \forall i \leq n, j \leq k \quad -x_{ij} \max(|y^L|, |y^U|) \leq \xi_{ij} \leq x_{ij} \max(|y^L|, |y^U|) \\ \forall i \leq n, j \leq k \quad -x_{ij} \max(|y^L|, |y^U|) \leq \xi_{ij} = 1 \\ \forall j \leq k \quad y_j \in [y^L, y^U] \\ x \in \{0, 1\}^{nk} \\ P \in [0, P^U]^{nk} \\ \chi \in [0, P^U]^{nk} \\ \forall i \leq n, j \leq k \quad \xi_{ij} \in [\min(y^L, 0), \max(y^U, 0)] \end{split}$$

 y_j, ξ_{ij}, y^L, y^U are vectors in \mathbb{R}^m

How to solve it

cMINLP is NP-hard

- ► Algorithms: *Outer Approximation* (OA), *Branch-and-Bound* (BB)
- ► Best (open source) solver: BONMIN
- With k = 2, unfortunately...

Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution, best possible 6.1855969 (32142.17 seconds)

▶ Interesting feature: the <u>bound</u>

guarantees we can't to better than *bound* all BB algorithms provide it

BONMIN's first solution

Alstom Elektrobit Ford Deezer Llamasoft Accenture Amazon 2 Expedia Google CSX MITRE Aledade Clarity Marriott Amazon 1 & 3 fragment 2 WestRock

Vinci

AXA

fragment 1

Couple of things left to try

• Approximate ℓ_2 by ℓ_1 norm ℓ_1 is a linearizable norm

Randomly project the data lose dimensions but keep approximate shape

Linearizing convexity

- **Replace** $||p_i y_j||_2^2$ by $||p_i y_j||_1$
- Warning: optima will change but still within "clustering by distance" principle

$$\forall i \le n, j \le k \quad \|p_i - y_j\|_1 = \sum_{a \le d} |p_{ia} - y_{ja}|$$

- ► Replace each $|\cdot|$ term by new vars. $Q_{ija} \in [0, P^U]$ Adjust P^U in terms of $||\cdot||_1$
- Adjoin constraints

$$\begin{array}{rcl} \forall i \leq n, j \leq k & \sum_{a \leq d} Q_{ija} & \leq & P_{ij} \\ \forall i \leq n, j \leq k, a \leq d & -Q_{ija} & \leq & p_{ia} - y_{ja} \leq Q_{ija} \end{array}$$

• Obtain a MILP

Most advanced MILP solver: CPLEX

CPLEX's first solution

objective 112.24, bound 39.92, in 44.74s

AXA Deezer Ford Marriott Amazon 1-3 Llamasoft CSX **WestRok** MITRE Clarity fragments 1-2 Vinci Accenture Alstom Expedia Elektrobit Google Aledade

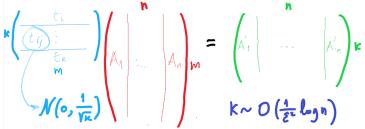
Interrupted after 281s with bound 59.68

Subsection 5

Clustering in high dimensions

The magic of random projections

- "Mathematics of big data"
- In a nutshell



- ▶ Clustering on A' rather than A
- Approximate results with arbitrarily high probability (wahp)

[Johnson & Lindenstrauss, 1984]

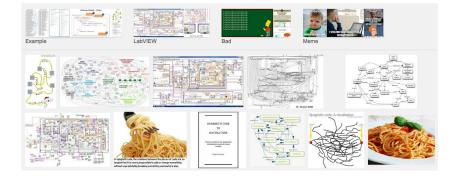
The magic of random projections

- "Mathematics of big data"
- In a nutshell
 - **1.** Given pts. $A_i, \ldots, A_n \in \mathbb{R}^m$ with m large and $\varepsilon \in (0, 1)$
 - **2.** Pick "appropriate" $k \approx O(\frac{1}{\varepsilon^2} \ln n)$
 - 3. Sample $k \times d$ matrix T (each comp. i.i.d. $\mathcal{N}(0, \frac{1}{\sqrt{k}})$)
 - 4. Consider *projected* points $A'_i = TA_i \in \mathbb{R}^k$ for $i \leq n$
 - **5.** With prob $\rightarrow 1$ exponentially fast as $k \rightarrow \infty$

 $\forall i,j \leq n \quad (1-\varepsilon) \|A_i - A_j\|_2 \leq \|A_i' - A_j'\|_2 \leq (1+\varepsilon) \|A_i - A_j\|_2$

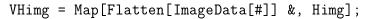
[Johnson & Lindenstrauss, 1984]

Clustering Google images



[L. & Lavor, in press]

k-means without random projections



VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]
Out[29]= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 3}}

Too slow!

k-means with random projections

Get["Projection.m"]; VKimg = JohnsonLindenstrauss[VHimg, 0.1]; VKcl = Timing[ClusteringComponents[VKimg, 3, 1]] Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

From 0.405s CPU time to 0.00232s Same clustering

Works on the MSSC MP formulation too!

where T is a $k \times m$ random projector replace Ty by y'

Works on the MSSC MP formulation too!

 $\min_{\substack{x,y',s \\ \forall j \leq d}} \sum_{i \leq n} \sum_{j \leq d} \|Tp_i - y'_j\|_2^2 x_{ij}$ $\forall i < n$ $\forall j \leq d$ $\forall j \leq d$

(MSSC')

- where $k = O(\frac{1}{\varepsilon^2} \ln n)$
- ▶ less data, $|y'| < |y| \Rightarrow$ get solutions faster
- Yields smaller cMINLP

BONMIN on randomly proj. data

objective 5.07, bound 0.48, stopped at 180s

Deezer Ford Amazon 1-3 CSX MITRE fragment 1

Vinci AXA Accenture Alstom Expedia Elektrobit Google Aledade Marriott Llamasoft WestRock Clarity fragment 2

CPLEX on randomly proj. data

...although it doesn't make much sense for $\|\cdot\|_1$ norm...

objective 53.19, bound 20.68, stopped at 180s

Vinci Deezer Expedia Google Aledade Ford Amazon 1-3 CSX Clarity f

AXA Accenture Alstom Elektrobit Marriott Llamasoft WestRock MITRE fragment 1-2

Many clusterings

This ain't finished...

- ▶ We obtained many different clusterings
- Is there any common sense?
- How do we compare them?
- Can we extract useful information from the comparison?
- How many clusters should we look for? Is k = 2 OK?
- Did we just turn the issue of "I have too many data" into "I have too many solutions"?

Outline

Some combinatorial **NP-hardness** Distance geometry problem Distance geometry in MP Barvinok's Naive Algorithm Isomap for the DGP **Concluding remarks**

Clustering on graphs Clustering in Euclidean Clustering in high Random projections in LP Projecting feasibility Projecting optimality Solution retrieval Quantile regression Sparsity and ℓ_1 minimization Lower bounds Upper bounds from SDP Gregory's upper bound Delsarte's upper bound Pfender's upper bound

The gist

► Let A, b be very large, consider LP

 $\min\{c^{\top}x \mid Ax = b \land x \ge 0\}$

T short & fat normally sampled Then

$$Ax = b \land x \ge 0 \iff TAx = Tb \land x \ge 0$$

with high probability

Linear feasibility

Restricted Linear Membership (RLM_X) Given $A_1, \ldots, A_n, b \in \mathbb{R}^m$ and $X \subseteq \mathbb{R}^n, \exists ? x \in X$ s.t. $b = \sum_{i \leq n} x_i A_i$

- Linear Feasibility Problem (LFP) with $X = \mathbb{R}^n_+$
- Integer Feasibility Problem (IFP) with $X = \mathbb{Z}_+^n$

The shape of a set of points

- ► Lose dimensions but not too much accuracy Given $A_1, ..., A_n \in \mathbb{R}^m$ find $k \ll m$ and points $A'_1, ..., A'_n \in \mathbb{R}^k$ s.t. A and A' "have almost the same shape"
- What is the shape of a set of points?

congruent sets have the same shape

► Approximate congruence ⇔ distortion: A, A' have almost the same shape if

 $\forall i < j \le n \quad (1 - \varepsilon) \|A_i - A_j\| \le \|A'_i - A'_j\| \le (1 + \varepsilon) \|A_i - A_j\|$ for some small $\varepsilon > 0$

Assume norms are all Euclidean

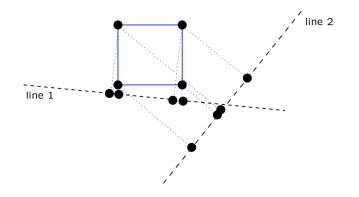
A'

Losing dimensions in the RLM

Given $X \subseteq \mathbb{R}^{n}$ and $b, A_{1}, \dots, A_{n} \in \mathbb{R}^{m}$, find $k \ll m$, $b', A'_{1}, \dots, A'_{n} \in \mathbb{R}^{k}$ such that: $\underbrace{\exists x \in X \ b = \sum_{i \leq n} x_{i}A_{i}}_{\text{high dimensional}} \quad \text{iff} \quad \underbrace{\exists x \in X \ b' = \sum_{i \leq n} x_{i}A'_{i}}_{\text{low dimensional}}$ with high probability

Losing dimensions = "projection"

In the plane, hopeless



In 3D: no better

Johnson-Lindenstrauss Lemma

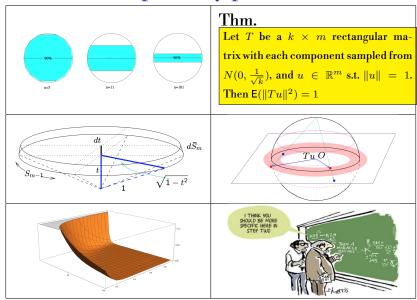
<u>Thm.</u>

Given $A \subseteq \mathbb{R}^m$ with |A| = n and $\varepsilon > 0$ there is $k \sim O(\frac{1}{\varepsilon^2} \ln n)$ and a $k \times m$ matrix T s.t.

 $\forall x, y \in A \quad (1 - \varepsilon) \|x - y\| \leq \|Tx - Ty\| \leq (1 + \varepsilon) \|x - y\|$

If $k \times m$ matrix T is sampled componentwise from $N(0, \frac{1}{\sqrt{k}})$, then A and TA have almost the same shape

Sketch of a JLL proof by pictures



Sampling to desired accuracy

Distortion has low probability:

$$\begin{aligned} \forall x, y \in A \quad \mathbf{P}(\|Tx - Ty\| \le (1 - \varepsilon)\|x - y\|) &\le \frac{1}{n^2} \\ \forall x, y \in A \quad \mathbf{P}(\|Tx - Ty\| \ge (1 + \varepsilon)\|x - y\|) &\le \frac{1}{n^2} \end{aligned}$$

▶ Probability \exists pair $x, y \in A$ distorting Euclidean distance: *union bound over* $\binom{n}{2}$ *pairs*

 $P(\neg(A \text{ and } TA \text{ have almost the same shape})) \leq {n \choose 2} \frac{2}{n^2} = 1 - \frac{1}{n}$

 $P(A \text{ and } TA \text{ have almost the same shape}) \geq \frac{1}{\pi}$

 \Rightarrow re-sampling T gives JLL with arbitrarily high probability

1

In practice

Empirically, sample T very few times (e.g. once will do!)

on average $||Tx - Ty|| \approx ||x - y||$, and distortion decreases exponentially with n

We only need a logarithmic number of dimensions in function of the number of points

Surprising fact:

k is independent of the original number of dimensions m

${\small Subsection 1} \\$

Projecting feasibility

Projecting infeasibility (easy cases)

<u>Thm.</u>

 $T : \mathbb{R}^m \to \mathbb{R}^k$ a JLL random projection, $b, A_1, \ldots, A_n \in \mathbb{R}^m$ a RLM_X instance. For any given vector $x \in X$, we have:

(i) If
$$b = \sum_{i=1}^{n} x_i A_i$$
 then $Tb = \sum_{i=1}^{n} x_i TA_i$
(ii) If $b \neq \sum_{i=1}^{n} x_i A_i$ then $P\left(Tb \neq \sum_{i=1}^{n} x_i TA_i\right) \ge 1 - 2e^{-Ck}$
(iii) If $b \neq \sum_{i=1}^{n} y_i A_i$ for all $y \in X \subseteq \mathbb{R}^n$, where $|X|$ is finite, then
 $P\left(\forall y \in X \ Tb \neq \sum_{i=1}^{n} y_i TA_i\right) \ge 1 - 2|X|e^{-Ck}$

for some constant C > 0 (independent of n, k).

[arXiv:1507.00990v1/math.OC]

Separating hyperplanes

When |X| is large, project separating hyperplanes instead

- ▶ Convex $C \subseteq \mathbb{R}^m$, $x \notin C$: then \exists hyperplane c separating x, C
- In particular, true if $C = \operatorname{cone}(A_1, \ldots, A_n)$ for $A \subseteq \mathbb{R}^m$
- We can show $x \in C \Leftrightarrow Tx \in TC$ with high probability
- ▶ As above, if $x \in C$ then $Tx \in TC$ by linearity of TDifficult part is proving the converse

We can also project point-to-cone distances

Projecting the separation

Thm.

Given $c, b, A_1, \ldots, A_n \in \mathbb{R}^m$ of unit norm s.t. $b \notin \operatorname{cone}\{A_1, \ldots, A_n\}$ pointed, $\varepsilon > 0$, $c \in \mathbb{R}^m$ s.t. $c^\top b < -\varepsilon, c^\top A_i \ge \varepsilon$ $(i \le n)$, and T a random projector:

$$\mathbf{P}[Tb \notin \mathsf{cone}\{TA_1, \dots, TA_n\}] \ge 1 - 4(n+1)e^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k}$$

for some constant C.

Proof

Let \mathscr{A} be the event that T approximately preserves $||c - \chi||^2$ and $||c + \chi||^2$ for all $\chi \in \{b, A_1, \ldots, A_n\}$. Since \mathscr{A} consists of 2(n + 1) events, by the JLL Corollary (squared version) and the union bound, we get

$$\mathbf{P}(\mathscr{A}) \ge 1 - 4(n+1)e^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k}$$

Now consider $\chi = b$

$$\begin{split} \langle Tc, Tb \rangle &= \frac{1}{4} (\|T(c+b)\|^2 - \|T(c-b)\|^2) \\ \text{by JLL} &\leq \frac{1}{4} (\|c+b\|^2 - \|c-b\|^2) + \frac{\varepsilon}{4} (\|c+b\|^2 + \|c-b\|^2 \\ &= c^\top b + \varepsilon < 0 \end{split}$$

and similarly $\langle Tc, TA_i \rangle \geq 0$

[arXiv:1507.00990v1/math.OC]

The feasibility projection theorem

Thm. Given $\delta > 0, \exists$ sufficiently large $m \le n$ such that: for any LFP input A, b where A is $m \times n$ we can sample a random $k \times m$ matrix T with $k \ll m$ and

P(orig. LFP feasible \iff proj. LFP feasible) $\geq 1 - \delta$

Subsection 2

Projecting optimality

Notation

- $P \equiv \min\{cx \mid Ax = b \land x \ge 0\}$ (original problem)
- $TP \equiv \min\{cx \mid TAx = Tb \land x \ge 0\}$ (projected problem)
- v(P) =optimal objective function value of P
- v(TP) = optimal objective function value of TP

The optimality projection theorem

- ► Assume feas(*P*) is bounded
- Assume all optima of P satisfy ∑_j x_j ≤ θ for some given θ > 0

(prevents cones from being "too flat")

Thm. Given $\delta > 0$,

$$v(P) - \delta \le v(TP) \le v(P) \qquad (*)$$

holds with arbitrarily high probability (w.a.h.p.)

in fact (*) holds with prob. $1 - 4ne^{-C(\varepsilon^2 - \varepsilon^3)k}$ where $\varepsilon = \delta/(2(\theta + 1)\eta)$ and $\eta = O(||y||_2)$ where y is a dual optimal solution of P having minimum norm

The easy part

Show $v(TP) \le v(P)$:

- Constraints of $P: Ax = b \land x \ge 0$
- Constraints of $TP: TAx = Tb \land x \ge 0$
- ▶ \Rightarrow constraints of *TP* are lin. comb. of constraints of *P*
- ► ⇒ any solution of P is feasible in TP (btw, <u>the converse holds almost never</u>)
- ▶ *P* and *TP* have the same objective function

▶ \Rightarrow *TP* is a relaxation of *P* \Rightarrow $v(TP) \le v(P)$

The hard part (sketch)

• Eq. (11) equivalent to P for $\delta = 0$

$$\left.\begin{array}{ll} cx &=& v(P) - \delta \\ Ax &=& b \\ x &\geq& 0 \end{array}\right\}$$

(11)

Note: for $\delta > 0$, Eq. (11) is infeasible

By feasibility projection theorem,

$$\begin{array}{ccc} cx &= & v(P) - \delta \\ TAx &= & Tb \\ x &\geq & 0 \end{array} \right\}$$

is infeasible w.a.h.p. for $\delta > 0$

- Hence $cx < v(P) \delta \wedge TAx = Tb \wedge x \ge 0$ infeasible w.a.h.p.
- ► $\Rightarrow cx \ge v(P) \delta$ holds w.a.h.p. for $x \in feas(TP)$

$$\blacktriangleright \Rightarrow v(P) - \delta \le v(TP)$$

Subsection 3

Solution retrieval

Projected solutions are infeasible in *P*

- $Ax = b \Rightarrow TAx = Tb$ by linearity
- ► However, Thm. For $x \ge 0$ s.t. TAx = Tb, Ax = b with probability zero

Can't get solution for original LFP using projected LFP!

Solution retrieval from optimal basis

▶ Primal min{
$$c^{\top}x \mid Ax = b \land x \ge 0$$
} ⇒
dual max{ $b^{\top}y \mid A^{\top}y \le c$ }

• Let
$$x' = \operatorname{sol}(TP)$$
 and $y' = \operatorname{sol}(\operatorname{dual}(TP))$

$$\blacktriangleright \Rightarrow (TA)^\top y' = (A^\top T^\top) y' = A^\top (T^\top y') \le c$$

- $\Rightarrow T^{\top}y'$ is a solution of dual(*P*)
- \Rightarrow we can compute an optimal basis *J* for *P*
- Solve $A_J x_J = b$, get x_J , obtain a solution x^* of P

${\bf Subsection}\,4$

Quantile regression

Regression

- ▶ multivariate random var. X function y = f(X) sample {(a_i, b_i) ∈ ℝ^p × ℝ | i ≤ m}
- sample mean:

$$\hat{\mu} = \arg\min_{\mu \in \mathbb{R}} \sum_{i \le m} (b_i - \mu)^2$$

▶ sample mean conditional to $X = A = (a_{ij})$:

$$\hat{\nu} = \operatorname*{arg\,min}_{\nu \in \mathbb{R}^p} \sum_{i \le m} (b_i - \nu a_i)^2$$

Quantile regression

► sample median:

$$\hat{\xi} = \arg\min_{\xi \in \mathbb{R}} \sum_{i \le m} |b_i - \xi|$$

$$= \arg\min_{\xi \in \mathbb{R}} \sum_{i \le m} \left(\frac{1}{2} \max(b_i - \xi, 0) - \frac{1}{2} \min(b_i - \xi, 0) \right)$$

• sample τ -quantile:

$$\hat{\xi} = \operatorname*{arg\,min}_{\xi \in \mathbb{R}} \sum_{i \le m} \left(\tau \max(b_i - \xi, 0) - (1 - \tau) \min(b_i - \xi, 0) \right)$$

• sample τ -quantile conditional to $X = A = (a_{ij})$:

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \sum_{i \le m} \left(\tau \max(b_i - \beta a_i, 0) - (1 - \tau) \min(b_i - \beta a_i, 0) \right)$$

Linear Programming formulation

$$\begin{array}{ccc} \min & \tau u^{+} + (1 - \tau) u^{-} \\ & A(\beta^{+} - \beta^{-}) + u^{+} - u^{-} &= b \\ & \beta, u &\geq 0 \end{array} \right\}$$

- **Parameters:** A is $m \times p, b \in \mathbb{R}^m, \tau \in \mathbb{R}$
- ▶ **Decision variables:** $\beta^+, \beta^- \in \mathbb{R}^p, u^+, u^- \in \mathbb{R}^m$
- ► LP constraint matrix is $m \times (2p + 2m)$ density: p/(p+m) — can be high

Large datasets

- Russia Longitudinal Monitoring Survey household data (hh1995f)
 - ▶ m = 3783, p = 855
 - $\blacktriangleright \ A = \texttt{hf1995f}, b = \log \texttt{avg}(A)$
 - ► 18.5% dense
 - ► poorly scaled data, CPLEX yields infeasible (!!!) after around 70s CPU
 - quantreg in R fails

▶ 14596 RGB photos on my HD, scaled to 90 × 90

- ▶ *m* = 14596, *p* = 24300
- each row of A is an image vector, $b = \sum A$
- ► 62.4% dense
- ► CPLEX killed by OS after ≈30min (presumably for lack of RAM) on 16GB

Results on large datasets

	Instance		Projection				Original		
τ	m	p	k	opt	CPU	feas	opt	CPU	qnterr
hh1995f									
0.25	3783	856	411	0.00	8.53	0.038%	71.34	17.05	0.16
0.50				0.00	8.44	0.035%	89.17	15.25	0.05
0.75				0.00	8.46	0.041%	65.37	31.67	3.91
jpegs									
0.25	14596	24300	506	0.00	231.83	0.51%	0.00	3.69E+5	0.04
0.50				0.00	227.54	0.51%	0.00	3.67E+5	0.05
0.75				0.00	228.57	0.51%	0.00	3.68E+5	0.05
random									
0.25	1500	100	363	0.25	2.38	0.01%	1.06	6.00	0.00
0.50				0.40	2.51	0.01%	1.34	6.01	0.00
0.75				0.25	2.57	0.01%	1.05	5.64	0.00
0.25	2000	200	377	0.35	4.29	0.01%	2.37	21.40	0.00
0.50				0.55	4.37	0.01%	3.10	23.02	0.00
0.75				0.35	4.24	0.01%	2.42	21.99	0.00

feas =
$$100 \frac{\|Ax - b\|_2}{\|b\|_1/m}$$

qnt err = $\frac{\|qnt - proj. qnt\|_2}{\# cols}$

IPM with no simplex crossover: solution w/o opt. guarantee <u>cannot trust results</u> simplex method won't work due to ill-scaling and size

Subsection 5

Sparsity and ℓ_1 minimization

Coding problem 1

- ▶ Need to send sparse vector $y \in \mathbb{R}^n$ with $n \gg 1$
- 1. Sample full rank $k \times n$ matrix A with $k \ll n$ preliminary: both parties know A
- **2.** Encode $b = Ay \in \mathbb{R}^k$
- **3.** Send *b*
- Decode by finding sparsest x s.t. Ax = b

Coding problem 2

- Need to send a sequence $w \in \mathbb{R}^k$
- ▶ Encoding $n \times k$ matrix Q, with $n \gg k$, send $z = Qw \in \mathbb{R}^n$ preliminary: both parties know Q
- (Low) prob. e of error: e n comp. of z sent wrong they can be totally off
- Receive (wrong) vector $\overline{z} = z + x$ where x is sparse

• Can we recover z?

n-k

• Choose $k \times n$ matrix A s.t. AQ = 0

• Let
$$\mathbf{b} = A\bar{z} = A(z+x) = A(Qw+x) = AQw + Ax = \mathbf{A}\mathbf{x}$$

• Suppose we can find sparsest x' s.t. Ax' = b

AQ $\ge \infty$ \blacktriangleright we can recover $z' = \bar{z} - x'$

► Recover $w' = (Q^{\top}Q)^{-1}Q^{\top}z'$ Likelihood of getting small ||w - w'||?

Sparsest solution of a linear system

• Problem $\min\{||x||_0 \mid Ax = b\}$ is NP-hard

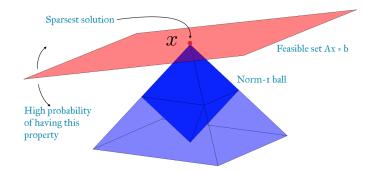
Reduction from Exact Cover by 3-Sets [Garey&Johnson 1979, A6[MP5]]

- **Relax to** $\min\{||x||_1 | Ax = b\}$
- ► **Reformulate to LP:**

$$\begin{array}{ccc} \min & \sum\limits_{j \le n} & s_j \\ \forall j \le n & -s_j \le & x_j & \le s_j \\ & Ax & = & b \end{array} \right\}$$
(†)

- ► Empirical observation: can often find optimum Too often for this to be a coincidence
- Theoretical justification by Candès, Tao, Donoho "Mathematics of sparsity", "Compressed sensing"

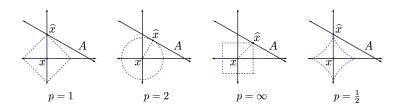
Graphical intuition 1



► Wouldn't work with ℓ_2 , ℓ_∞ norms Ax = b flat at poles — "zero probability of sparse solution"

Warning: this is not a proof, and there are cases not explained by this drawing [Candès 2014]

Graphical intuition 2



x̂ such that *Ax̂* = *b* approximates *x* in *ℓ*_p norms
 p = 1 only convex case zeroing some components

From [Davenport et al., 2012]; again, this is not a proof!

Not for the faint-hearted

1. Hand, Voroninski:

arxiv.org/pdf/1611.03935v1.pdf

2. Candès and Tao:

statweb.stanford.edu/~candes/papers/DecodingLP.pdf

3. Candès:

statweb.stanford.edu/~candes/papers/ICM2014.pdf

4. Davenport et al.:

statweb.stanford.edu/~markad/publications/

ddek-chapter1-2011.pdf

5. Lustig *et al*.:

people.eecs.berkeley.edu/~mlustig/CS/CSMRI.pdf

6. and many more (look for "compressed sensing")

Finding orthogonal A, Q

- ► [Matousek, Gärtner 2007]:
 - sample A componentwise from N(0,1)
 - ▶ approximately preserves Euclidean distances by JLL
 - then "find Q s.t. QA = 0"
 - in practice, Gaussian elim. on underdet. system AQ = 0

Instead:

- sample $n \times n$ matrix from uniform distribution
- full rank with probability 1
- find eigenvectors (orthonormal basis)
- random rotation of standard basis: used in JLL proof
- Q: first k eigenvectors, A: last n k eigenvectors
- AQ = 0 by construction!
- Empirically fast

From message to recovery

Procedure:

- **1**. message: character string s
- **2.** w = bin(char2asc(s))
- 3. send z = Qw, receive $\bar{z} = z + x$, let $b = A\bar{z}$

 $\delta = sparsity of x, Q is n \times k full rank with n \gg k$

- 4. use (†) to find sparsest x' satisfying Ax = b
- 5. $z' = \bar{z} x'$
- **6.** $w' = cap(round((Q^{\top}Q)^{-1}Q^{\top}z'), [0, 1])$

7.
$$s' = \operatorname{asc2char}(\operatorname{bytechunk}(w'))$$

8. evaluate $s_{err} = ||s - s'||$

Parameter choice [Matousek]:

- $\blacktriangleright \ \delta = 0.08$
- n = 4k

- ► Reduce CPU time spent on LP
- n = 4k redundancy for $\delta = 0.08$ error seems excessive

LP size reduction

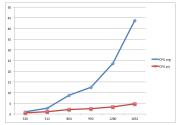
- Ax = b is an $(n k) \times n$ system
- n k "relatively close" to n
- Exploit JLL to project columns!

Computational results

k	n	δ	ϵ	α	org Serr	s_{err}^{prj}	CPU^{org}	\mathbf{CPU}^{prj}
80	320	0.08	0.20	0.02	0	0	1.05	0.56
128	512			0.02	0	0	2.72	1.10
216	864			0.02	0	0	8.83	2.12
248	992			0.02	0	0	12.53	2.53
320	1280			0.02	0	0	23.70	3.35
408	1632			0.02	0	0	43.80	4.75

•
$$k = |s|, n = 4k, \delta = 0.08, \epsilon = 0.2$$

- $\alpha = \text{Achlioptas density}$ $P(T_{ij} = -1) = P(T_{ij} = 1) = \frac{\alpha}{2}$ $P(T_{ij} = 0) = 1 - \alpha$
- s_{err} = number of different characters
- ► CPU: seconds of elapsed time
- I sampling of A, Q, T Sentence: Conticuere omnes intentique ora tenebant, inde toro [...]



Reducing redundancy in n

- How about taking $n = (1 + \delta)k$?
- $n-k \approx \delta k$ is very small
- Makes Ax = b very short and fat
- Prevents compressed sensing from working correctly
- Need $n k \approx k$, $n \approx k$ and AQ = 0: impossible
- Relax to $AQ \approx 0$?

Motivational test?

k	n	s_{err}^{org}	s_{err}^{prj}	CPU^{org}	CPU^{prj}
80	86	0	_	0.06	_
128	138	0	_	0.08	_
216	233	0	—	0.10	—
320	346	1	_	0.17	—
408	441	1	_	0.24	—
1880	2030	14	_	5.42	_

- $\bullet \ \delta' = \delta = 0.08$
- ► -: $|\mathbf{rows}| \mathbf{are} n k = 0.074 \times \mathbf{cols}$ JLL cannot project further
- accuracy not great and getting worse
- Retrieval capacity also depends on k, not just δ

The JLL again

Aim A^{\top}, Q of size $n \times k$ with $AQ \approx 0$

► JLL Corollary: $\exists O(e^d)$ approximately orthogonal vectors in \mathbb{R}^d

Algorithm:

- **1.** $d = O(\ln n)$
- 2. T sampled componentwise from $N(0, \frac{1}{\sqrt{d}})$ (as in JLL)
- **3.** cols of $T I_n$ are $n = O(e^d)$ almost orthog. vect. in \mathbb{R}^d
- 4. Pf.: JLL approximately preserves distances and scalar products

 $\underline{\textbf{Concentration of measure:}}\ accuracy\ increases\ with\ d$

Strategy

- ► Aim at $k \times n A$ and $n \times k Q$ s.t. $AQ \approx 0$ with $n = (1 + \delta')k$ and δ' "small" (say $\delta' < 1$)
- ► $\Rightarrow 2k$ approximately orthogonal vectors in \mathbb{R}^n with n < 2k
- ► JLL: errors too large for such "small" sizes
- ► Note we only need AQ = 0: accept non-orthogonality in rows of A & cols of Q

LP for almost orthogonality

Sample Q and compute A using an LP WLOG: we could sample A and compute Q

• max
$$\sum_{\substack{i \le k \\ j \le n}} \mathsf{Uniform}(-1,1)A_{ij}$$

- subject to AQ = 0 and $A \in [-1, 1]$
- for k = 328 and n = 590 (i.e. $\delta' = 0.8$):

• error:
$$\sum A_i Q^j = O(10^{-10})$$

- rank: full
- ▶ **CPU**: 688s (*meh*)
- for k = 328 and n = 492 (i.e. $\delta' = 0.5$): the same
- ▶ for k = 328 and n = 426 (i.e. $\delta' = 0.3$): *CPU* 470s
- ▶ Reduce CPU time by solving k LPs deciding A_i (for $i \leq k$)

Computational results

k	n	δ'	s_{err}^{org}	s_{err}^{prj}	CPU^{org}	CPU^{prj}
328	426	0.3	182	15	2.45	1.87
			154	0	2.20	1.49
	459	0.4	0	1	4.47	2.45
			5	17	2.86	1.46
	492	0.5	60	0	4.53	1.18
			34	0	5.38	1.18
	590	0.8	14	0	8.30	1.41
			107	4	6.76	1.43

- CPU for computing A, Q not counted: precomputation is possible
- Approximate beats precise!

Conclusion

- If s is short, set $\delta' = \delta$ and use compressed sensing (CS)
- If s is longer, try increasing δ' and use CS
- ► If s is very long, use JLL-projected CS
- \blacktriangleright Can use approximately orthogonal A,Q too

Conticuere omnes, intentique ora tenebant. Inde toro pater Aeneas sic orsus ab alto: Infandum, regina, iubes renovare dolorem. Troianas ut opes et lamentabile regnum eruerint Danai Quaequae ipse miserrima vidi et quorum pars magna fui.

[Virgil, Aeneid, Cantus II]

k = 1896, n = 2465

 $\delta' = 0.3$: min s.t. CS is accurate

method	error	CPU
CS	0	29.67s
JLL-CS	2	17.13s

These results are consistent over 3 samplings

Technique applies to all sparse retrieval problems

Outline

Some combinatorial **NP-hardness** Distance geometry problem Distance geometry in MP Barvinok's Naive Algorithm Isomap for the DGP **Concluding remarks**

Clustering on graphs Clustering in Euclidean Clustering in high Solution retrieval **Quantile regression** Sparsity and ℓ_1 minimization **Kissing Number Problem** Lower bounds Upper bounds from SDP Gregory's upper bound

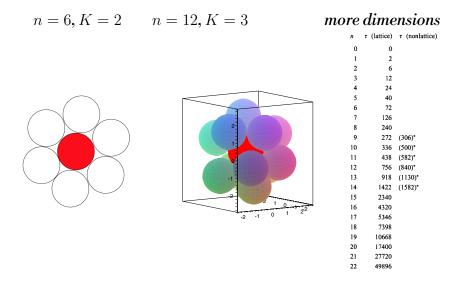
> Delsarte's upper bound Pfender's upper bound

Definition

- ▶ Optimization version. Given $K \in \mathbb{N}$, determine the minimum number kn(K) of unit spheres that can be placed adjacent to a central unit sphere so their interiors do not overlap
- ► Decision version. Given n, K ∈ N, is kn(K) ≤ n? in other words, determine whether n unit spheres can be placed adjacent to a central unit sphere so that their interiors do not overlap

Funny story: Newton and Gregory went down the pub...

Some examples

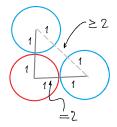


Radius formulation

Given $n, K \in \mathbb{N}$, determine whether there exist n vectors $x_1, \ldots, x_n \in \mathbb{R}^K$ such that:

$$\forall i \le n \qquad \|x_i\|_2^2 = 4$$

$$\forall i < j \le n \qquad \|x_i - x_j\|_2^2 \ge 4$$

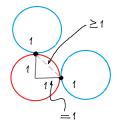


Contact point formulation

Given $n, K \in \mathbb{N}$, determine whether there exist n vectors $x_1, \ldots, x_n \in \mathbb{R}^K$ such that:

$$\forall i \le n \qquad \|x_i\|_2^2 = 1$$

$$\forall i < j \le n \qquad \|x_i - x_j\|_2^2 \ge 1$$



Spherical codes

- ▶ $S^{K-1} \subset \mathbb{R}^K$ unit sphere centered at origin
- ► *K*-dimensional spherical *z*-code:
 - (finite) subset $\mathcal{C} \subset S^{K-1}$
 - $\blacktriangleright \ \forall x \neq y \in \mathcal{C} \qquad x \cdot y \leq z$
- non-overlapping interiors:

$$\begin{aligned} \forall i < j \quad \|x_i - x_j\|_2^2 &\geq 1 \\ \Leftrightarrow \quad \|x_i\|_2^2 + \|x_j\|_2^2 - 2x_i \cdot x_j &\geq 1 \\ \Leftrightarrow \quad 1 + 1 - 2x_i \cdot x_j &\geq 1 \\ \Leftrightarrow \quad 2x_i \cdot x_j &\leq 1 \\ \Leftrightarrow \quad x_i \cdot x_j &\leq \frac{1}{2} = \cos\left(\frac{\pi}{3}\right) = z \end{aligned}$$

${\bf Subsection}\, 1$

Lower bounds

Lower bounds

- Construct spherical $\frac{1}{2}$ -code C with |C| large
- Nonconvex NLP formulations
- SDP relaxations
- Combination of the two techniques

MINLP formulation

Maculan, Michelon, Smith 1995 **Parameters**: ► K: space dimension \blacktriangleright n: upper bound to kn(K) Variables: • $x_i \in \mathbb{R}^K$: center of *i*-th vector • $\alpha_i = 1$ iff vector *i* in configuration $\max_{\substack{i=1\\ \forall i \le n}} \sum_{i=1}^{n} \alpha_i$ $||x_i||^2 = \alpha_i$

Reformulating the binary products

- Additional variables: $\beta_{ij} = 1$ iff vectors i, j in configuration
- Linearize $\alpha_i \alpha_j$ by β_{ij}
- Add constraints:

$$\begin{aligned} &\forall i < j \leq n \qquad \beta_{ij} \leq \alpha_i \\ &\forall i < j \leq n \qquad \beta_{ij} \leq \alpha_j \\ &\forall i < j \leq n \qquad \beta_{ij} \geq \alpha_i + \alpha_j - 1 \end{aligned}$$

AMPL and Baron

Certifying YES

- ▶ *n* = 6, *K* = 2: **OK**, **0.60s**
- ▶ *n* = 12, *K* = 3: **OK**, 0.07s
- n = 24, K = 4: FAIL, CPU time limit (100s)
- Certifying NO
 - n = 7, K = 2: FAIL, CPU time limit (100s)
 - n = 13, K = 3: FAIL, CPU time limit (100s)
 - n = 25, K = 4: FAIL, CPU time limit (100s)

Almost useless

Modelling the decision problem

$$\begin{array}{cccc}
\max_{x,\alpha} & \alpha \\ \forall i \leq n & ||x_i||^2 &= 1 \\ \forall i < j \leq n & ||x_i - x_j||^2 \geq \alpha \\ \forall i \leq n & x_i \in [-1,1]^K \\ \alpha \geq 0 \end{array}\right\}$$

- Feasible solution (x^*, α^*)
- KNP instance is YES iff $\alpha^* \geq 1$

[Kucherenko, Belotti, Liberti, Maculan, Discr. Appl. Math. 2007]

AMPL and Baron

- Certifying YES
 - n = 6, K = 2: FAIL, CPU time limit (100s)
 - n = 12, K = 3: FAIL, CPU time limit (100s)
 - n = 24, K = 4: FAIL, CPU time limit (100s)
- ► Certifying NO
 - n = 7, K = 2: FAIL, CPU time limit (100s)
 - n = 13, K = 3: FAIL, CPU time limit (100s)
 - n = 25, K = 4: FAIL, CPU time limit (100s)

Apparently even more useless But more informative (arccos $\alpha = \min$. angular sep)

- Certifying YES by $\alpha \geq 1$
 - ▶ *n* = 6, *K* = 2: **OK**, 0.06s
 - ▶ *n* = 12, *K* = 3: **OK**, 0.05s
 - ▶ *n* = 24, *K* = 4: **OK**, 1.48s
 - n = 40, K = 5: FAIL, CPU time limit (100s)

What about polar coordinates?

$$\forall i \leq n \quad x_i = (x_{i1}, \dots, x_{iK}) \mapsto (\vartheta_{i1}, \dots, \vartheta_{i,K-1})$$

Formulation

- Only need to decide $s_{ik} = \sin \vartheta_{ik}$ and $c_{ik} = \cos \vartheta_{ik}$
- ▶ Replace x in (‡) using (†): get polyprog in s, c
- ▶ Numerically more challenging to solve (polydeg 2K)
- OPEN QUESTION: useful for bounds?

SDP relaxation of Euclidean distances

Linearization of scalar products

$$\forall i, j \le n \qquad x_i \cdot x_j \longrightarrow X_{ij}$$

where X is an $n \times n$ symmetric matrix

- ||x_i||²₂ = x_i ⋅ x_i = X_{ii}
 ||x_i x_j||²₂ = ||x_i||²₂ + ||x_j||²₂ 2x_i ⋅ x_j = X_{ii} + X_{jj} 2X_{ij}
 X = xx^T ⇒ X xx^T = 0 makes linearization exact
- Relaxation:

$$X - xx^{\top} \succeq 0 \Rightarrow \mathsf{Schur}(X, x) = \begin{pmatrix} I_K & x^{\top} \\ x & X \end{pmatrix} \succeq 0$$

SDP relaxation of binary constraints

- $\blacktriangleright \quad \forall i \leq n \qquad \alpha_i \in \{0,1\} \Leftrightarrow \alpha_i^2 = \alpha_i$
- Let A be an $n \times n$ symmetric matrix
- Linearize $\alpha_i \alpha_j$ by A_{ij} (hence α_i^2 by A_{ii})
- $A = \alpha \alpha^{\top}$ makes linearization exact
- **Relaxation:** Schur $(A, \alpha) \succeq 0$

Subsection 2

Upper bounds from SDP

SDP relaxation of [MMS95]

Python, PICOS and Mosek

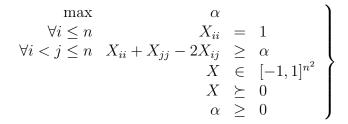
- **bound always equal to** *n*
- prominent failure :-(
- ► Why?
 - ▶ can combine inequalities to remove A from SDP

$$\forall i < j \; X_{ii} + X_{jj} - 2X_{ij} \geq A_{ij} \geq \alpha_i + \alpha_i - 1 \Rightarrow X_{ii} + X_{jj} - 2X_{ij} \geq \alpha_i + \alpha_i - 1$$

(then eliminate all constraints in A)

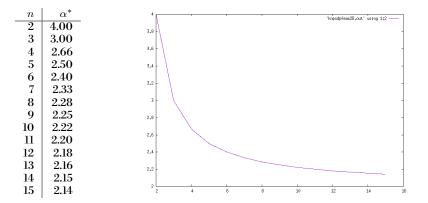
• integrality of α completely lost

SDP relaxation of [KBLM07]



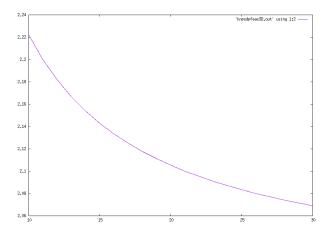
Python, PICOS and Mosek

With K = 2



Python, PICOS and Mosek

With K = 3



Enforces some separation between "relaxed vectors"

An SDP-based heuristic?

- 1. $X^* \in \mathbb{R}^{n^2}$: SDP relaxation solution of [KBLM07]
- 2. Perform PCA, get $\bar{x} \in \mathbb{R}^{nK}$
- 3. Local NLP solver on [KBLM07] with starting point \bar{x}

However...

The Uselessness Theorem

<u>Thm.</u>

- 1. The SDP relaxation of [KBLM07] is useless
- 2. In fact, it is *extremely* useless
- 1. Part 1: Uselessness
 - Independent of K: no useful bounds in function of K
- 2. Part 2: Extreme uselessness
 - (a) For all n, the bound is $\frac{2n}{n-1}$
 - (b) $\exists opt. X^* with eigenvalues <math>0, \frac{n}{n-1}, \dots, \frac{n}{n-1}$

By 2(b), applying MDS/PCA makes no sense

Proof of extreme uselessness

Strategy:

- Pull a simple matrix solution out of a hat
- ► Write primal and dual SDP of [KBLM07]
- Show it is feasible in both
- Hence it is optimal
- Analyse solution:
 - all n 1 positive eigenvalues are equal
 - its objective function value is 2n/(n-1)

Primal SDP

$\forall 1 \leq i \leq j \leq n \text{ let } B_{ij} = (1_{ij}) \text{ and } 0 \text{ elsewhere}$

quantifier	natural form	standard form	dual var
	$\max \alpha$	$\max \alpha$	
$\forall i \leq n$	$X_{ii} = 1$	$E_{ii} \bullet X = 1$	u_i
$\forall i < j \le n$	$X_{ii} + X_{jj} - 2X_{ij} \ge \alpha$		w_{ij}
		$A_{ij} = -E_{ii} - E_{jj} + E_{ij} + E_{ji}$	
$\forall i < j \leq n$		$ \begin{array}{c} (E_{ij}+E_{ji})\bullet X\leq 2\\ (-E_{ij}-E_{ji})\bullet X\leq 2 \end{array} $	y_{ij}
$\forall i < j \le n$	$X_{ij} \ge -1$	$(-E_{ij} - E_{ji}) \bullet X \le 2$	z_{ij}
	$\begin{array}{c} X \succeq 0\\ \alpha > 0 \end{array}$	$X \succeq 0$	
	$lpha \ge 0$	$\alpha \ge 0$	

Dual SDP

$$\min \sum_{i} u_i + 2 \sum_{i < j} (y_{ij} + z_{ij})$$
$$\sum_{i} u_i E_{ii} + \sum_{i < j} ((y_{ij} - z_{ij})(E_{ij} - E_{ji}) + w_{ij}A_{ij}) \succeq 0$$
$$\sum_{i < j} w_{ij} \geq 1$$
$$w, y, z \ge 0$$

Simplify |v| = y + z, v = y - z:

$$\min \sum_{i} u_i + 2 \sum_{i < j} |v_{ij}|$$
$$\sum_{i} u_i E_{ii} + \sum_{i < j} \left(v_{ij} (E_{ij} - E_{ji}) + w_{ij} A_{ij} \right) \succeq 0$$
$$\sum_{i < j} w_{ij} \ge 1$$
$$w, v \ge 0$$

Pulling a solution out of a hat

$$\alpha^* = \frac{2n}{n-1}$$

$$X^* = \frac{n}{n-1}I_n - \frac{1}{n-1}\mathbf{1}_n$$

$$u^* = \frac{2}{n-1}$$

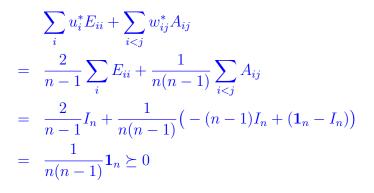
$$w^* = \frac{1}{n(n-1)}$$

$$v^* = 0$$

where $\mathbf{1}_n = all$ -one $n \times n$ matrix

Solution verification

- Inear constraints: by inspection
- $X \succeq 0$: eigenvalues of X^* are $0, \frac{n}{n-1}, \dots, \frac{n}{n-1}$
- $\blacktriangleright \sum_{i} u_i E_{ii} + \sum_{i < j} (v_{ij}(E_{ij} E_{ji}) + w_{ij}A_{ij}) \succeq 0$



Corollary

$$\lim_{n \to \infty} \mathsf{v}(n, [\mathbf{KBLM07}]) = \lim_{n \to \infty} \frac{2n}{n-1} = 2$$

as observed in computational experiments

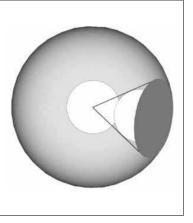
Subsection 3

Gregory's upper bound

Surface upper bound

Gregory 1694, Szpiro 2003

Consider a kn(3) configuration inscribed into a super-sphere of radius 3. Imagine a lamp at the centre of the central sphere that casts shadows of the surrounding balls onto the inside surface of the super-sphere. Each shadow has a surface area of 7.6: the total surface of the superball is 113.1. So $\frac{113.1}{7.6} = 14.9$ is an upper bound to kn(3).



At end of XVII century, yielded Newton/Gregory dispute

Subsection 4

Delsarte's upper bound

Pair distribution on sphere surface

• Spherical *z*-code C has $x_i \cdot x_j \leq z$ ($i < j \leq n = |C|$)

$$\forall t \in [-1,1] \quad \sigma_t = \frac{1}{n} \big| \{(i,j) \mid i,j \le n \land x_i \cdot x_j = t\} \big|$$

• t-code: let $\sigma_t = 0$ for $t \in (1/2, 1)$

• $|\mathcal{C}| = n < \infty$: only finitely many $\sigma_t \neq 0$

$$\int_{[-1,1]} \sigma_t dt = \sum_{t \in [-1,1]} \sigma_t = \frac{1}{n} |\text{all pairs}| = \frac{n^2}{n} = n$$
$$\sigma_1 = \frac{1}{n}n = 1$$
$$\forall t \in (1/2,1) \quad \sigma_t = 0$$
$$\forall t \in [-1,1] \quad \sigma_t \ge 0$$
$$|\{\sigma_t > 0 \mid t \in [-1,1]\}| < \infty$$

Growing Delsarte's LP

- Decision variables: σ_t , for $t \in [-1, 1]$
- Objective function:

$$\max |\mathcal{C}| = \max n = \max_{\sigma} \sum_{t \in [-1,1]} \sigma_t$$
$$= \sigma_1 + \max_{\sigma} \sum_{t \in [-1,1/2]} \sigma_t = 1 + \max_{\sigma} \sum_{t \in [-1,1/2]} \sigma_t$$

Note n not a parameter in this formulation

One constraint:

 $\forall t \in [-1, 1/2] \quad \sigma_t \ge 0$

► LP unbounded! — need more constraints

Gegenbauer cuts

• Look for function family $\mathscr{F} : [-1,1] \to \mathbb{R}$ s.t.

$$\forall \phi \in \mathscr{F} \quad \sum_{t \in [-1, 1/2]} \phi(t) \sigma_t \ge 0$$

- Most popular \mathscr{F} : Gegenbauer polynomials G_h^K
- Special case $G_h^K = P_h^{\gamma,\gamma}$ of Jacobi polynomials (where $\gamma = (K-2)/2$)

$$P_{h}^{\alpha,\beta} = \frac{1}{2^{h}} \sum_{i=0}^{h} {\binom{h+\alpha}{i}} {\binom{h+\beta}{h-1}} (t+1)^{i} (t-1)^{h-i}$$

- ▶ Matlab knows them: $G_h^K(t) = \text{gegenbauerC}(h, (K-2)/2, t)$
- ▶ Octave knows them: $G_h^K(t) = gsl_sf_gegenpoly_n(h, \frac{K-2}{2}, t)$ need command pkg load gsl before function call
- They encode dependence on K

Delsarte's LP

Primal:

$$\begin{array}{cccc}
1 + \max & \sum_{\substack{t \in [-1, \frac{1}{2}] \\ \forall h \in H \\ t \in [-1, \frac{1}{2}] \\ \forall t \in [-1, \frac{1}{2}] \end{array}} \sigma_t & \geq & -G_h^K(1) \\ \sigma_t & \geq & 0. \end{array} \right\} [DelP]$$

► Dual:

$$\begin{array}{rcl}
1 + \min & \sum_{h \in H} (-G_h^K(1))d_h \\
\forall t \in [-1, \frac{1}{2}] & \sum_{h \in H} G_h^K(t)d_h \geq 1 \\
\forall h \in H & d_h \leq 0.
\end{array}$$
[DelD]

Delsarte's theorem

▶ [Delsarte et al., 1977]

```
Theorem

Let d_0 > 0 and F : [-1, 1] \to \mathbb{R} such that:

(i) \exists H \subseteq \mathbb{N} \cup \{0\} and d \in \mathbb{R}^{|H|}_+ \ge 0 s.t. F(t) = \sum_{h \in H} c_h G_h^K(t)

(ii) \forall t \in [-1, z] \ F(t) \le 0

Then kn(K) \le \frac{F(1)}{d_0}
```

- Proof based on properties of Gegenbauer polynomials
- ▶ **Best upper bound:** $\min F(1)/d_0 \Rightarrow \min_{d_0=1} F(1) \Rightarrow [\text{DelD}]$
- ▶ [DelD] "models" Delsarte's theorem

Delsarte's normalized LP ($G_h^K(1) = 1$ **)**

Primal:

$$\begin{array}{ccc} 1 + \max & \sum\limits_{\substack{t \in [-1, \frac{1}{2}] \\ \forall h \in H \\ t \in [-1, \frac{1}{2}] \end{array}} \sigma_t} \sigma_t} \\ \forall t \in [-1, \frac{1}{2}] \\ \end{array} \right\} \textbf{[DelP]}$$

► Dual:

$$\begin{array}{ccc} 1 + \min & \sum_{h \in H} (-1)d_h \\ \forall t \in [-1, \frac{1}{2}] & \sum_{h \in H} G_h^K(t)d_h \geq 1 \\ \forall h \in H & d_h \leq 0 \end{array} \right\}$$
[DelD]

• $d_0 = 1 \Rightarrow remove \ 0 from H$

Focus on normalized [DelD]

Rewrite $-d_h$ *as* d_h :

$$\begin{array}{ccc} 1 + \min & \sum_{h \in H} d_h \\ \forall t \in [-1, \frac{1}{2}] & \sum_{h \in H} G_h^K(t) d_h & \leq & -1 \\ \forall h \in H & d_h & \geq & 0 \end{array} \right\} [DelD]$$

Issue: *semi-infinite LP* (SILP) (how do we solve it?)

Approximate SILP solution

- ► Only keep finitely many constraints
- **Discretize** [-1, 1] with a finite $T \subset [-1, 1]$
- Obtain <u>relaxation</u> $[DelD]_T$:

$\mathsf{val}(\textbf{[DelD]}_T) \le \mathsf{val}(\textbf{[DelD]})$

- ► Risk: val([DelD]_T) < min F(1)/d₀ not a valid bound to kn(K)
- ► Happens if soln. of [DelD]_T infeasible in [DelD] i.e. infeasible w.r.t. some of the ∞ly many removed constraints

SILP feasibility

- Given SILP $\bar{S} \equiv \min\{c^{\top}x \mid \forall i \in \bar{I} \ a_i^{\top}x \le b_i\}$
- Relax to LP $S \equiv \min\{c^{\top}x \mid \forall i \in I \ a_i^{\top}x \le b_i\}$, where $I \subsetneq \overline{I}$
- Solve S, get solution x^*
- ► Let $\epsilon = \max\{a_i^\top x^* b_i \mid i \in \overline{I}\}$ [continuous optimization w.r.t. single var. i]
- ► If $\epsilon \leq 0$ then x^* feasible in \bar{S} $\Rightarrow \operatorname{val}(\bar{S}) \leq c^{\top} x^*$
- If $\epsilon > 0$ refine S and repeat
- ► Apply to [DelD]_T, get solution d* feasible in [DelD]

[DelD] feasibility

Choose discretization T of [-1, 1/2]
 Solve

$$\begin{array}{lll} 1 + \min & \sum\limits_{h \in H} d_h \\ \forall t \in T & \sum\limits_{h \in H} G_h^K(t) d_h &\leq -1 \\ \forall h \in H & d_h &\geq 0 \end{array} \right\} [\text{DelD}]_T$$

get solution d^*

- **3.** Solve $\epsilon = \max\{1 + \sum_{h \in H} G_h^K(t)d_h \mid t \in [-1, 1/2]\}$
- 4. If $\epsilon \leq 0$ then d^* feasible in [DelD] $\Rightarrow \operatorname{kn}(K) \leq 1 + \sum_{h \in H} d_h^*$

5. Else refine T and repeat from Step 2

Subsection 5

Pfender's upper bound

Pfender's upper bound theorem

<u>Thm.</u>

Let $\mathcal{C}_z = \{x_i \in \mathbb{S}^{K-1} \mid i \leq n \land \forall j \neq i \ (x_i \cdot x_j \leq z)\}; c_0 > 0; f : [-1, 1] \rightarrow \mathbb{R}$ s.t.: (i) $\sum f(x_i \cdot x_j) \ge 0$ (ii) $f(t) + c_0 \le 0$ for $t \in [-1, z]$ (iii) $f(1) + c_0 \le 1$ $i.\overline{j} \leq n$ Then $n \leq \frac{1}{n}$ ([Pfender 2006]) Let $q(t) = f(t) + c_0$ $n^2 c_0 \leq n^2 c_0 + \sum f(x_i \cdot x_j)$ by (i) $i, j \leq n$ $= \sum \left(f(x_i \cdot x_j) + c_0\right) = \sum g(x_i \cdot x_j)$ $i, j \leq n$ $i,j \le n$ $\leq \sum g(x_i \cdot x_i)$ since $g(t) \leq 0$ for $t \leq z$ and $x_i \in \mathcal{C}_z$ for $i \leq n$ $i \le n$ = ng(1) since $||x_i||_2 = 1$ for $i \le n$ $< n \quad \text{since } g(1) \leq 1.$

Pfender's LP

 Condition (i) of Theorem valid for conic combinations of suitable functions F:

$$f(t) = \sum_{h \in H} c_h f_h(t) \quad \text{for some } c_h \ge 0,$$

e.g. $\mathcal{F} = Gegenbauer$ polynomials (again)

► Get SILP

$$\begin{array}{cccc} \max_{c \in \mathbb{R}^{|H|}} & c_0 & (\text{minimize } 1/c_0 \ge n) \\ \forall \ t \in [-1, z] & \sum_{h \in H} c_h G_h^K(t) + c_0 & \le & 0 & (\text{ii}) \\ & \sum_{h \in H} c_h G_h^K(1) + c_0 & \le & 1 & (\text{iii}) \\ & \forall \ h \in H & c_h & \ge & 0 & (\text{conic comb.}) \end{array}$$

▶ Discretize [-1, z] by finite T, solve LP, check validity (again)

Delsarte's and Pfender's theorem compared

Delsarte & Pfender's theorem look similar:

Delsarte	Pfender
(i) $F(t)$ G. poly comb	(i) $f(t)$ G. poly comb
(ii) $\forall t \in [-1, z] \ F(t) \le 0$	(ii) $\forall t \in [-1, z] f(t) + c_0 \leq 0$
	(iii) $f(1) + c_0 \le 1$
$\Rightarrow \operatorname{kn}(K) \leq \frac{F(1)}{d_0}$	(ii) $\forall t \in [-1, z] f(t) + c_0 \leq 0$ (iii) $f(1) + c_0 \leq 1$ $\Rightarrow \operatorname{kn}(K) \leq \frac{1}{c_0}$

- Try setting $F(t) = f(t) + c_0$: condition (ii) is the same
- By condition (iii) in Pfender's theorem

$$\operatorname{kn}(K) \le \frac{F(1)}{d_0} = \frac{f(1) + c_0}{c_0} \le \frac{1}{c_0}$$

⇒ Delsarte bound at least as tight as Pfender's

- ▶ Delsarte (i) $\Rightarrow \int_{[-1,1]} F(t) dt \ge 0 \Rightarrow \int_{[-1,1]} (f(t) + c_0) dt \ge 0$ Pfender (i) $\Rightarrow \int_{[-1,1]} f(t) dt \ge 0$ more stringent
- ► Delsarte requires weaker condition and yields tighter bound Conditioned on F(t) = f(t) + c₀, not a proof! Verify computationally

The final, easy improvement

- ► However you compute your upper bound *B*:
- > The number of surrounding balls is *integer*
- ▶ If $kn(K) \le B$, then in fact $kn(K) \le \lfloor B \rfloor$

THE END