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What isMathematical Programming?

I Formal declarative language for describing
optimization problems

I As expressive as any imperative language
I Interpreter= solver
I Shifts focus from algorithmics tomodelling

3 / 306



Syntax

I A valid sentence:

min x1 + 2x2 − log(x1x2)
x1x

2
2 ≥ 1

0 ≤ x1 ≤ 1
x2 ∈ N.

 [P ]

I An invalid one:

min ·
x2

+ x1 + + sin cos

xx2 ≥ xx1∑
i≤x1

xi = 0

x1 6= x2

x1 < x2.
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MINLP Formulation
Given functions f, g1, . . . , gm : Qn → Q and Z ⊆ {1, . . . , n}

min f(x)
∀i ≤ m gi(x) ≤ 0
∀j ∈ Z xj ∈ Z

 [P ]

I φ(x) = 0 ⇔ (φ(x) ≤ 0 ∧ −φ(x) ≤ 0)

I L ≤ x ≤ U ⇔ (L− x ≤ 0 ∧ x− U ≤ 0)

I f, gi represented by expression DAGs

Class of all formulations P :MP
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Semantics

I Given P ∈MP, there are three possibilities:
JP K exists, P is unbounded, P is infeasible

I P is feasible i� JP K exists or is unbounded
otherwise it is infeasible

I P has an optimum i� JP K exists
otherwise it is infeasible or unbounded

Are feasibility and optimality really di�erent?
I Feasibility prob. g(x) ≤ 0:

can be written as MPmin{0 | g(x) ≤ 0}
I BoundedMPmin{f(x) | g(x) ≤ 0}:

bisection on f0 in f(x) ≤ f0 ∧ g(x) ≤ 0

I UnboundedMP: not equivalent to feasibility
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Example

P ≡ min{x1 + 2x2 − log(x1x2) | x1x
2
2 ≥ 1∧ 0 ≤ x1 ≤ 1∧ x2 ∈ N}

JP K = (opt(P ), val(P )) opt(P ) = (1, 1) val(P ) = 3
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Solvers (or “interpreters”)
I Take formulation P as input
I Output JP K and possibly other information
I Trade-o� between generality and e�ciency

(i) Linear Programming (LP)
f, gi linear, Z = ∅

(ii) Mixed-Integer LP (MILP)
f, gi linear, Z 6= ∅

(iii) Nonlinear Programming (NLP)
some nonlinearity in f, gi, Z = ∅
f, gi convex: convex NLP (cNLP)

(iv) Mixed-Integer NLP (MINLP)
some nonlinearity in f, gi, Z 6= ∅
f, gi convex: convexMINLP (cMINLP)

I Each solver targets a given class
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Some application �elds

I Production industry
planning, scheduling, allocation, . . .

I Transportation & logistics
facility location, routing, rostering, . . .

I Service industry
pricing, strategy, product placement, . . .

I Energy industry (all of the above)
I Machine Learning & Arti�cial Intelligence
clustering, approximation error minimization

I Biochemistry &medicine
protein structure, blending, tomography, . . .

I Mathematics
Kissing number, packing of geometrical objects,. . .
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Can we solve MPs?

I “Solve MPs”: is there an algorithmD s.t.:

∀P ∈MP D(P ) =


infeasible P is infeasible
unbounded P is unbounded
JP K otherwise

I I.e. does there exist a single, all-powerful solver?
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Formal systems (FS)

I A formal system consists of:
I an alphabet
I a formal grammar
allowing the determination of formulæ and sentences

I a setA of axioms (given sentences)
I a setR of inference rules
allowing the derivation of new sentences from old
ones

I A theory T is the smallest set of sentences that is
obtained by recursively applyingR toA
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Example: PA1
I Theory: 1st order sentences aboutN
I Alphabet: +,×,∧,∨,∀,∃,¬,=, S(·) and variable names
I Peano’s Axioms:

1. ∀x (0 6= S(x))

2. ∀x, y (S(x) = S(y)→ x = y)

3. ∀x (x+ 0 = x)

4. ∀x (x× 0 = 0)

5. ∀x, y (x+ S(y) = S(x+ y))

6. ∀x, y (x× S(y) = x× y + x)

7. axiom schema over all (k + 1)-ary φ: ∀y = (y1, . . . , yk)
(φ(0, y) ∧ ∀xφ(x, y)→ φ(S(x), y))→ ∀xφ(x, y)

I Inference: see
https://en.wikipedia.org/wiki/List_of_rules_of_inference

e.g.modus ponens ((P → Q) ∧ P )→ Q)
I Generates ring (Z,+,×) and arithmetical proofs
e.g. ∃x ∈ Nn ∀i (pi(x) ≤ 0) (polynomial MINLP feasibility)
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Example: Reals

I Theory: polynomial systems overR
I Alphabet: +,×,∧,∨,∀,∃,=, <,≤, 0, 1,variable names
I Axioms: �eld and order
I Inference: see

https://en.wikipedia.org/wiki/List_of_rules_of_inference

e.g.modus ponens ((P → Q) ∧ P )→ Q)

I Generates polynomial ringsR[X1, . . . , Xk] (for all k)
e.g. ∃x ∈ Rn ∀i (pi(x) ≤ 0) (polynomial NLP feasibility)
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The use of formal systems

Given a FSF :
I A decision problem is a set P of sentences
Decide if a given sentence f belongs to P

I Decidability in formal systems:
P ≡ provable sentences

I Proof of f : �nite sequence of sentences ending with f ; sentences
either axioms or derived from predecessors by inference rules

I PA1: decide if sentence f aboutN has a proof
PA1 contains ∃x ∈ Zn ∀i pi(x) ≤ 0 (poly p)

I Reals: decide if sentence f aboutR has a proof
Reals contains ∃x ∈ Zn ∀i pi(x) ≤ 0 (poly p)

I Formal study of MINLP/NLP feasibility
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Decidability, computability, solvability

I Decidability: applies to decision problems
I Computability: applies to function evaluation

I Is the function f , mapping i to the i-th prime integer,
computable?

I Is the function g, mapping Cantor’s CH to 1 if provable in
ZFC axiom system and to 0 otherwise, computable?

I Solvability: applies to other problems
E.g. to optimization problems!
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Completeness and decidability

I Complete FSF :
for f ∈ F , either f or ¬f is provable

otherwiseF is incomplete
I Decidable FSF :
∃ algorithmD s.t.

∀f ∈ F
{
D(f) = 1 i� f is provable
D(f) = 0 i� f is not provable

otherwiseF is undecidable
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Example: PA1

I Gödel’s 1st incompleteness theorem:
PA1 is incomplete

I Turing’s theorem: PA1 is undecidable
I PA1 is undecidable and incomplete
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Gödel’s 1st incompleteness theorem

I F : any FS extending PA1
I Thm. F is either incomplete or inconsistent
I φ: sentence “φ not provable inF”
denotedF 6` φ; it can be constructed inF ; hard part of thm.

I AssumeF is complete: eitherF ` φ orF ` ¬φ
I IfF`φ thenF ` (F 6` φ) i.e.F6`φ, contradiction
I IfF ` ¬φ thenF ` ¬(F 6` φ) i.e.F ` (F ` φ)
this impliesF ` φ, i.e.F ` φ ∧ ¬φ,F inconsistent

I AssumeF is inconsistent: any sentence is provable,
i.e.F complete
details: 0 = 1, hence 0 ∨ ψ and 1 ∨ ψ, hence (0 ∧ 1) ∨ ψ, i.e.ψ, and
symmetrically for¬ψ, for anyψ

I WARNING:F6`φ 6≡ F ` ¬φ
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Turing’s theorem
I TuringMachine (TM): computation model

I in�nite tape with cells storing �nite alphabet letters
I head reads/writes/skips i-th cell, moves left/right
I states=program (e.g. if s write 0&move left)
I initial tape content: input, �nal tape content: output
I �nal state⊥: termination;∅ nonterm.

I TM dynamics can be written in PA1 statements
I Any PA1 sentence p(x) can be represented by TM:

while(1) i=0; if p(x) return YES; else i=i+1

only terminates if true; loops forever if false
I ∃ universal TM (UTM) representing all PA1 sentences
I TM termination⇔ decidability in PA1
I Halting Problem (HP):

TMM & input x, isM(x) = ⊥?
I HP is undecidable
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Turing’s theorem
I enumerate all TMs: (Mi | i ∈ N)

I halting functionH(i, x) =

{
1 Mi(x) = ⊥
0 Mi(x) = ∅

I showH 6= F for any computable F (i, x):

I letG(i) =

{
0 F (i, i) = 0
1 othw

G is partial computable because F is computable
I letMy be the TM computingG
I considerH(y, y):

I if F (y, y) = 0 thenG(y) = 0
soMy(y) = ⊥ andH(y, y) = 1

I if F (y, y) 6= 0 thenG(y) is unde�ned
soMy(y) = ∅ andH(y, y) = 0

I soH(y, y) 6= F (y, y) for all y
I H is uncomputable⇒ PA1 is undecidable
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Example: Reals

I Tarski’s theorem: Reals is decidable
I Algorithm:
constructs solution sets (YES) or derives contradictions(NO)
⇒ provides proofs or contradictions for all sentences!

I ⇒ Reals is complete
I Reals is decidable and complete
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Tarski’s theorem

I Algorithm based on quanti�er elimination
I Feasible sets of polynomial systems p(x) ≤ 0
have �nitely many connected components

I Each connected component recursively built of
cylinders over points or intervals
extremities: pts.,±∞, algebraic curves at previous recursion levels

I In some sense, generalization of Reals inR1
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Dense linear orders
Given a sentence φ inDLO
I Reduce to DNF ∃xi qi(x) with qi =

∧
qij

I Each qij has form s = t or s < t (s, t vars or consts)
I s, t both constants:
s < t, s = t veri�ed and replaced by 1 or 0

I s, t the same variable xi:
s < t replaced by 0, s = t replaced by 1

I if s is xi and t is not:
s = tmeans “replace xi by t” (eliminate xi)

I remaining case:
qi conj. of s < xi and xi < t:
replace by s < t (eliminate xi)

I qi no longer depends on xi, rewrite ∃xi qi as qi
I Repeat over vars. xi, obtain real intervals or contradictions

Quanti�er elimination!
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Decidability and completeness

I PA1 is incomplete and undecidable
I Reals is complete and decidable
I Are there FSF that are:

I incomplete and decidable?
I complete and undecidable?
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Incomplete and decidable (trivial)

I NoInference:
Any FS with<∞ axiom schemata and no inference rules

I Only possible proofs: sequences of axioms
I Only provable sentences: axioms
I For any other sentence f : no proof of f or ¬f
I Trivial decision algorithm:
given f , output YES if f is a �nite axiom sequence,
NO otherwise

I NoInference is decidable and incomplete
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Incomplete and decidable (nontrivial)
I ACF: Algebraically Closed Fields (e.g.C)
�eld axioms+ “every polynomial splits” schema

I ACF decidable by quanti�er elimination
I ACFp: ACF ∪ AXIOM(Cp ≡ [

∑
j≤p

1 = 0]) (p prime)

I ∀p (prime) Cp independent of ACF⇒
⇒ decidability as in ACF

I ∃ �elds of every prime characteristic p
⇒ each ACFp satis�es Cp and negates Cq for q 6= p

I In ACF, no proof of Cp nor ¬Cp possible
I Decision alg.D(ψ) for ACF:

I if ψ ≡ Cp or ¬Cp for some prime p, return NO
I else run quanti�er elimination on ψ

I ACF is decidable and incomplete
ifACF axioms include¬Cp for all p, thenACF complete
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Complete and undecidable (impossible)

I FSF complete:
∀ψ ∈ F ∃ proof of ψ or ¬ψ

I Proofs are �nite sequences of sentences
I AlgorithmD:

1. iteratively generate all (countably many) proofs
combine axioms w/inference rules and repeat

2. for each new sentence τ , is τ ≡ ψ or τ ≡ ¬ψ?
Return 1 or 0 and break; else continue

I D terminates becauseF is complete
I If FS is complete, then it is decidable
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The twomeanings of completeness

I WARNING!!!
“complete” is used in two di�erent ways in logic
1. Gödel’s 1st incompleteness theorem
FSF complete if φ or ¬φ provable ∀φ

2. A: sentences;R: inference rules
A complete wrtR ifA � ψ ⇒ A ` ψ

I A � ψ: ψ is logically valid
never false for any FS w/axiomsA and infer. rulesR

I Gödel’s completeness theorem: FOL is complete

I Pay attention when reading literature/websites
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Undecidability & Incompleteness

I [Nonexistence of a proof for f ] 6≡ [Proof of ¬f ]
If FS decidable & incomplete, decision alg. answers NO to f and
¬f for f independent

I Information complexity:
decision= 1 bit, proof=many bits

I Undecidability and incompleteness aredi�erent!
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Is MP solvable?

I Hilbert’s 10th problem: is there an algorithm for
solving polynomial Diophantine equations?

I Modern formulation:
are polynomial systems over Z solvable?

I [Matiyasevich 1970]: NO
can use them to model UTM dynamics

I Let p(α, x) = 0 be a Univ. Dioph. Eq. (UDE)
I min{0 | p(α, x) = 0} is an undecidable (feasibility) MP
I min(p(α, x))2 is an unsolvable (optimization) MP
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Worst-case algorithmic complexity

I Computational complexity theory:
worst-case time/space taken by an algorithm to complete

I AlgorithmA
I e.g. to determine whether a graphG = (V,E) is
connected or not

I input: G; size of input: ν = |V |+ |E|
I How does the CPU time τ(A) used byA vary with ν?

I τ(A) = O(νk) for �xed k: polytime
I τ(A) = O(2ν): exponential

I polytime↔ e�cient
I exponential↔ ine�cient
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Polytime algorithms are “e�cient”

I Why are polynomials special?
I Many di�erent variants of TuringMachines (TM)
I Polytime is invariant to all de�nitions of TM
I In practice,O(ν)-O(ν3) is an acceptable range
coveringmost practically useful e�cient algorithms

I Many exponential algorithms are also usable in
practice for limited sizes
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Instances and problems

I An input to an algorithmA: instance
I Collection of all inputs forA: problem
consistent with “set of sentences” from decidability

I BUT:
I A problem can be solved by di�erent algorithms
I There are problems which no algorithm can solve

I Given a problem P , what is the complexity of the best
algorithm that solves P ?
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Complexity classes

I Focus on decision problems
I If ∃ polytime algorithm for P , then P ∈ P

I If there is a polytime checkable certi�cate for all YES
instances of P , then P ∈ NP

I No-one knows whetherP = NP (we think not)

I NP includes problems for which we don’t think a
polytime algorithms exist
e.g. k-clique, subset-sum, knapsack, hamiltonian
cycle, sat, . . .
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Subsection 1

Some combinatorial problems
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k-clique
I Instance: (G = (V,E), k)
I Problem: determine whetherG has a clique of size k

I 1-clique? YES (every graph is YES)
I 2-clique? YES (every non-empty graph is YES)
I 3-clique? YES (triangle {1, 2, 4} is a certi�cate)
certi�cate can be checked inO(k) < O(n)

I 4-clique? NO
no polytime certi�cate unlessP = NP
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MP formulations for clique
Variables? Objective? Constraints?

I Pure feasibility problem:

∀{i, j} 6∈ E xi + xj ≤ 1∑
i∈V

xi = k

x ∈ {0, 1}n


I Max Clique:

max
∑
i∈V

xi

∀{i, j} 6∈ E xi + xj ≤ 1
x ∈ {0, 1}n
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subset-sum

I Instance: list a = (a1, . . . , an) ∈ Nn and b ∈ N
I Problem: is there J ⊆ {1, . . . , n} such that

∑
j∈J

aj = b?

I a = (1, 1, 1, 4, 5), b = 3: YES J = {1, 2, 3}
all b ∈ {0, . . . , 12} yield YES instances

I a = (3, 6, 9, 12), b = 20: NO
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MP formulations for subset-sum

Variables? Objective? Constraints?

I Pure feasibility problem:∑
j≤n

ajxj = b

x ∈ {0, 1}n

}
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MP formulations for subset-sum

Variables? Objective? Constraints?
I Pure feasibility problem:∑

j≤n
ajxj = b

x ∈ {0, 1}n

}
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knapsack
I Instance: c, w ∈ Nn,K ∈ N
I Problem: �nd J ⊆ {1, . . . , n} s.t. c(J) ≤ K andw(J) is
maximum

I c = (1, 2, 3),w = (3, 4, 5),K = 3

I c(J) ≤ K feasible for J in∅, {j}, {1, 2}
I w(∅) = 0, w({1, 2}) = 3 + 4 = 7, w({j}) ≤ 5 for j ≤ n
⇒ Jmax = {1, 2}

I K = 0: infeasible

I natively expressed as an optimization problem
I notation: c(J) =

∑
j∈J

cj (similarly forw(J))
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MP formulation for knapsack

Variables? Objective? Constraints?

max
∑
j≤n

wjxj∑
j≤n

cjxj ≤ K

x ∈ {0, 1}n
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MP formulation for knapsack

Variables? Objective? Constraints?

max
∑
j≤n

wjxj∑
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Hamiltonian Cycle

I Instance: G = (V,E)

I Problem: doesG have aHamiltonian cycle?
cycle covering every v ∈ V exactly once

NO YES (cert. 1→ 2→ 5→ 3→ 4→ 1)
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MP formulation forHamiltonian Cycle

Variables? Objective? Constraints?

∀i ∈ V
∑
j∈V
{i,j}∈E

xij = 1 (1)

∀j ∈ V
∑
i∈V
{i,j}∈E

xij = 1 (2)

∀∅ ( S ( V
∑

i∈S,j 6∈S
{i,j}∈E

xij ≥ 1 (3)

WARNING: second order statement!
quanti�ed over sets

other warning: need arcs not edges in (1)-(3)
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Satisfiability (sat)
I Instance: boolean logic sentence f in CNF∧

i≤m

∨
j∈Ci

`j

where `j ∈ {xj, x̄j} for j ≤ n

I Problem: is there φ : x→ {0, 1}n s.t. φ(f) = 1?

I f ≡ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2)
x1 = x2 = 1, x3 = 0 is a YES certi�cate

I f ≡ (x1 ∨ x2) ∧ (x̄1 ∨ x̄2) ∧ (x̄1 ∨ x2) ∧ (x1 ∨ x̄2)

φ x = (1, 1) x = (0, 0) x = (1, 0) x = (0, 1)
false C2 C1 C3 C4

46 / 306



MP formulation for sat

Exercise
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Subsection 2

NP-hardness

48 / 306



NP-Hardness

I Do hard problems exist? Depends onP 6= NP

I Next best thing: de�ne hardest problem inNP

I A problem P isNP-hard if
Every problemQ inNP can be solved in this way:
1. given an instance q ofQ transform it in polytime to
an instance ρ(q) of P s.t. q is YES i� ρ(q) is YES

2. run the best algorithm for P on ρ(q), get answer
α ∈ {YES,NO}

3. return α
ρ is called a polynomial reduction fromQ to P

I If P is inNP and isNP-hard, it is calledNP-complete

I Every problem inNP reduces to sat [Cook 1971]
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Cook’s theorem

Boolean decision variables store TM dynamics
De�nition of TM dynamics in CNF

Description of a dynamical system using a declarative program-
ming language (sat) — what MP is all about!
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Cook’s theorem: sets and params

I Reduce nondeterministic polytime TMM to MILP
I Tuple (Q,Σ, s, F, δ):
states, alphabet, initial, �nal, transition

I Transition relation δ: (QrF ×Σ)× (Q×Σ×{−1, 1})
I M polytime: terminates in p(n)
n size of input, p(·) polynomial

I Index sets:
statesQ, charactersΣ, tape cells I , stepsK
|K| = O(p(n)), |I| = 2|K|

I Parameters:
initial tape string τi = symbol j ∈ Σ in cell i
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Cook’s theorem: decision vars

I ∀i ∈ I, j ∈ Σ, k ∈ K
tijk = 1 i� tape cell i contains symbol j at step k

I ∀i ∈ I, k ∈ K
hik = 1 i� head is at tape cell i at step k

I ∀` ∈ Q, k ∈ K
q`k = 1 i�M is in state ` at step k
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Cook’s theorem: constraints (informal)

1. Initialization:

1.1 initial string τ on tape at step k = 0
1.2 M in initial state s at step k = 0
1.3 head initial position on cell i = 0 at k = 0

2. Execution:

2.1 ∀i, k: cell i has exactly one symbol j at step k
2.2 ∀i, k: if cell i changes symbol between step k and

k + 1, headmust be on cell i at step k
2.3 ∀k:M is in exactly one state
2.4 ∀k, i, j ∈ Σ: cell i and symbol j in state k lead to

possible cells, symbol and states as given by δ

3. Termination:

3.1 M reaches termination at some step k ≤ p(n)

53 / 306



Cook’s theorem: constraints (informal)

1. Initialization:

1.1 ∀i (ti,τi,0 = 1)
1.2 qs,0 = 1
1.3 h0,0 = 1

2. Execution:

2.1 ∀i, k (
∑

j tijk = 1)
2.2 ∀i, j 6= j′, k < p(n) (tijk ti,j′,k+1 = hik)
2.3 ∀k

∑
i hik = 1

2.4 ∀i, `, j, k
(hik q`k tijk =

∑
((`,j),(`′,j′,d))∈δ

hi+d,k+1 q`′,k+1 ti+d,j′,k+1)

3. Termination:

3.1
∑

k,f∈F
qfk = 1
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Cook’s theorem: conclusion

I Nonlinear constraints can be linearized:
z = xy ∧ x, y ∈ {0, 1} ∧ z ∈ [0, 1] ≡
z ≤ x ∧ z ≤ y ∧ z ≥ x+ y − 1 ∧ x ∈ {0, 1} ∧ z ∈ [0, 1]

I MILP is feasibility only
I MILP has polynomial size
I ⇒MILP isNP-hard
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Reduction graph
After Cook’s theorem
To proveNP-hardness of a new problem P , pick a knownNP-hard
problemQ that “looks similar enough” to P and �nd a polynomial
reduction ρ fromQ to P [Karp 1972]

Why itworks: supposeP easier thanQ, solveQ by calling ρ ◦ AlgP , concludeQ as easy asP , contradiction
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Example of polynomial reduction
I stable: givenG = (V,E) and k ∈ N, does it contain a stable
set of size k?

I We know k-clique isNP-complete, reduce from it
I Given instance (G, k) of clique consider the complement
graph (computable in polytime)

Ḡ = (V, Ē = {{i, j} | i, j ∈ V ∧ {i, j} 6∈ E})

I Thm.: G has a clique of size k i� Ḡ has a stable set of size k
I ρ(G) = Ḡ is a polynomial reduction from clique to

stable
I ⇒ stable isNP-hard
I stable is also inNP
U ⊆ V is a stable set i�E(G[U ]) = ∅ (polytime veri�cation)

I ⇒ stable isNP-complete
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MILP isNP-hard (from sat)
I sat isNP-hard by Cook’s theorem, Reduce from sat in
CNF ∧

i≤m

∨
j∈Ci

`j

where `j is either xj or x̄j ≡ ¬xj
I Polynomial reduction ρ

sat xj x̄j ∨ ∧
MILP xj 1− xj + ≥ 1

I E.g. ρmaps (x1 ∨ x2) ∧ (x̄2 ∨ x3) to

min{0 | x1 + x2 ≥ 1 ∧ x3 − x2 ≥ 0 ∧ x ∈ {0, 1}3}

I sat is YES i�MILP is feasible
(same solution, actually)
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Complexity of Quadratic Programming

min x>Qx + c>x
Ax ≥ b

}
I Quadratic Programming =QP
I Quadratic objective, linear constraints, continuous
variables

I Many applications (e.g. portfolio selection)
I IfQ PSD then objective is convex, problem is inP
I IfQ has at least one negative eigenvalue,NP-hard
I Decision problem: “is the min. obj. fun. value≤ 0?”

59 / 306



QP isNP-hard
I By reduction from SAT, let σ be an instance
I ρ̂(σ, x) ≥ 1: linear constraints of sat→ MILP reduction

I Consider QP

min f(x) =
∑
j≤n

xj(1− xj)

ρ̂(σ, x) ≥ 1
0 ≤ x ≤ 1

 (†)

I Claim: σ is YES i� val(†) = 0

I Proof:
I assume σ YES with soln. x∗, then x∗ ∈ {0, 1}n, hence
f(x∗) = 0, since f(x) ≥ 0 for all x, val(†) = 0

I assume σ NO, suppose val(†) = 0, then (†) feasible
with soln. x′, since f(x′) = 0 then x′ ∈ {0, 1}, feasible
in sat hence σ is YES, contradiction
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Box-constrained QP isNP-hard

I Add surplus vars v to sat→MILP constraints:
ρ̂(σ, x)− 1− v = 0

(denote by ∀i ≤ m (a>i x− bi − vi = 0))
I Now sum them on the objective

min
∑
j≤n

xj(1− xj) +
∑
i≤m

(a>i x− bi − vi)2

0 ≤ x ≤ 1, v ≥ 0

}

I Issue: v not bounded above
I Reduce from 3sat, get≤ 3 literals per clause
⇒ can consider 0 ≤ v ≤ 2
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cQKP isNP-hard
I continuous Quadratic Knapsack Problem (cQKP)

min f(x) = x>Qx + c>x∑
j≤n

ajxj = γ

x ∈ [0, 1]n,


I Reduction from subset-sum

given list a ∈ Qn and γ, is there J ⊆ {1, . . . , n} s.t.
∑
j∈J

aj = γ?

reduce to f(x) =
∑
j xj(1− xj)

I σ is a YES instance of subset-sum
I let x∗j = 1 i� j ∈ J , x∗j = 0 otherwise
I feasible by construction
I f is non-negative on [0, 1]n and f(x∗) = 0: optimum

I σ is a NO instance of subset-sum
I suppose opt(cQKP) = x∗ s.t. f(x∗) = 0

I then x∗ ∈ {0, 1}n because f(x∗) = 0

I feasibility of x∗→ supp(x∗) solves σ, contradiction, hence f(x∗) > 0
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QP on a simplex isNP-hard

min f(x) = x>Qx + c>x∑
j≤n

xj = 1

∀j ≤ n xj ≥ 0


I Reducemax clique to subclass f(x) = −

∑
{i,j}∈E

xixj

Motzkin-Straus formulation (MSF)

I Theorem [Motzkin& Straus 1964]
LetC be themaximum clique of the instanceG = (V,E) ofmax clique

∃x∗ ∈ opt (MSF) f∗ = f(x∗) = 1
2

(
1− 1

ω(G)

)
∀j ∈ V x∗j =

{ 1
ω(G) if j ∈ C
0 otherwise
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Proof of theMotzkin-Straus theorem
x∗ = opt( max

x∈[0,1]n∑
j xj=1

∑
ij∈E

xixj) s.t. |C = {j ∈ V |;x∗j > 0}| smallest (‡)

1. C is a clique
I Suppose 1, 2 ∈ C but {1, 2} 6∈ E[C], then x∗1, x

∗
2 > 0, can perturb by small

ε ∈ [−x∗1, x∗2], get xε = (x∗1 + ε, x∗2 − ε, . . .), feasible w.r.t. simplex and bounds

I {1, 2} 6∈ E ⇒ x1x2 does not appear in f(x)⇒ f(xε) depends linearly on ε; by

optimality of x∗, f achieves max for ε = 0, in interior of its range⇒ f(ε)

constant

I set ε = −x∗1 or= x∗2 yields global optima withmore zero components than x
∗,

against assumption (‡), hence {1, 2} ∈ E[C], by relabelingC is a clique
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Proof of theMotzkin-Straus theorem
x∗ = opt( max

x∈[0,1]n∑
j xj=1

∑
ij∈E

xixj) s.t. |C = {j ∈ V |;x∗j > 0}| smallest (‡)

2. |C| = ω(G)
I square simplex constraint

∑
j xj = 1, get∑

j∈V
x2j + 2

∑
i<j∈V

xixj = 1

I by construction x∗j = 0 for j 6∈ C⇒

ψ(x∗) =
∑
j∈C

(x∗j )2 + 2
∑

i<j∈C
x∗jx
∗
j =

∑
j∈C

(x∗j )2 + 2f(x∗) = 1

I ψ(x) = 1 for all feasible x, so f(x) achieves maximumwhen
∑
j∈C(x∗j )2 is

minimum, i.e. x∗j = 1
|C| for all j ∈ C

I again by simplex constraint

f(x∗) = 1−
∑
j∈C

(x∗j )2 = 1− |C|
1

|C|2
≤ 1−

1

ω(G)

so f(x∗) attains maximum 1− 1/ω(G) when |C| = ω(G)
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Copositive programming
I StQP:minx>Qx :

∑
j xj = 1 ∧ x ≥ 0

NP-hard byMotzkin-Straus

I Linearize:X = xx>

I A •B = tr(A>B)
write StQP objective asminQ •X

I LetC = {X | X = xx> ∧ x ≥ 0}, C = conv(C)

I
∑

j xj = 1⇔ (
∑

j xj)
2 = 12 ⇔ 1 •X = 1

I StQP≡minQ •X : 1 •X = 1 ∧X ∈ C

I Dual≡max y : Q− y1 ∈ C∗
C∗ = {A | ∀x ≥ 0 (x>Ax ≥ 0)} (copositive cone)

I ⇒ cNLP which isNP-hard!
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Two exercises

I Prove that quartic polynomial optimization is
NP-hard; reduce from one of the combinatorial
problems given during the course, andmake sure
that at least onemonomial of degree four appears
with non-zero coe�cient in theMP formulation.

I As above, but for cubic polynomial optimization.
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Portfolio optimization

You, a private investment banker, are seeing a customer.
She tells you “I have 3,450,000$ I don’t need in the next three
years. Invest them in low-risk assets so I get at least 2.5% re-
turn per year.”

Model the problem of determining the required portfolio.
Missing data are part of the fun (and of real life).

[Hint: what are the decision variables, objective, constraints? What data are missing?]
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Types of MP

Continuous variables:

I LP (linear functions)

I QP (quadratic obj. over a�ne sets)

I QCP (linear obj. over quadratically def’d sets)

I QCQP (quadr. obj. over quadr. sets)

I cNLP (convex sets, convex obj. fun.)

I SOCP (LP over 2nd ord. cone)

I SDP (LP over PSD cone)

I COP (LP over copositive cone)

I NLP (nonlinear functions)
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Types of MP

Mixed-integer variables:

I IP (integer programming), MIP (mixed-integer programming)

I extensions:MILP, MIQ, MIQCP, MIQCQP, cMINLP, MINLP

I BLP (LP over {0, 1}n)
I BQP (QP over {0, 1}n)

More “exotic” classes:

I MOP (multiple objective functions)

I BLevP (optimization constraints)

I SIP (semi-in�nite programming)
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A gem in Distance Geometry

I Heron’s theorem

I Heron lived
around year 0

I Hang out at
Alexandria’s library

a

c

b

A =
√
s(s− a)(s− b)(s− c)

I A = area of triangle
I s = 1

2
(a+ b+ c)

Useful to measure areas of agricultural land
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Heron’s theorem: Proof [M. Edwards, high school student, 2007]
A. 2α+ 2β + 2γ = 2π ⇒ α+ β + γ = π

r + ix = ueiα

r + iy = veiβ

r + iz = weiγ

⇒ (r+ ix)(r+ iy)(r+ iz) = (uvw)ei(α+β+γ) =

uvw eiπ = −uvw ∈ R

⇒ Im((r + ix)(r + iy)(r + iz)) = 0

⇒ r2(x+ y+ z) = xyz ⇒ r =
√

xyz
x+y+z

B. s = 1
2 (a+ b+ c) = x+ y + z

s− a = x+ y + z − y − z = x

s− b = x+ y + z − x− z = y

s− c = x+ y + z − x− y = z

A =
1

2
(ra+ rb+ rc) = r

a+ b+ c

2
= rs =

√
s(s− a)(s− b)(s− c)
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Subsection 1

The universal isometric embedding
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Representingmetric spaces inRn

I Givenmetric space (X, d) with dist. matrixD = (dij),
embedX in a Euclidean space with same dist. matrix

I Consider i-th row δi = (di1, . . . , din) ofD

I Embed i ∈ X by vector δi ∈ Rn

I De�ne f(X) = {δ1, . . . , δn}, f(d(i, j)) = ‖f(i)− f(j)‖∞

I Thm.: (f(X), `∞) is a metric space with distance
matrixD

I Practical issue: embedding is high-dimensional (Rn)

[Kuratowski 1935]
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Proof

I Consider i, j ∈ X with distance d(i, j) = dij
I Then

f(d(i, j)) = ‖δi−δj‖∞ = max
k≤n
|dik−djk| ≤ max

k≤n
|dij| = dij

ineq.≤ above from triangular inequalities in metric space:

dik ≤ dij + djk∧djk ≤ dij + dik⇒|dik − djk| ≤ dij

I max |dik − djk| over k ≤ n is achieved when

k ∈ {i, j} ⇒ f(d(i, j)) = dij
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Subsection 2

Dimension reduction
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Schoenberg’s theorem
I [I. Schoenberg,Remarks to Maurice Fréchet’s article “Sur
la dé�nition axiomatique d’une classe d’espaces distanciés
vectoriellement applicable sur l’espace de Hilbert”,
Ann. Math., 1935]

I Question: Given n× n symmetric matrixD, what are
necessary and su�cient conditions s.t.D is a EDM1

corresponding to n points x1, . . . , xn ∈ RK withK
minimum?

I Main theorem:
Thm.
D = (dij) is an EDM i� 1

2(d2
1i + d2

1j − d2
ij | 2 ≤ i, j ≤ n) is

PSD of rankK

I Gave rise to one of themost important results in data
science: ClassicMultidimensional Scaling

1Euclidean Distance Matrix
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Gram in function of EDM

I x = (x1, . . . , xn) ⊆ RK , written as n×K matrix
I matrixG = xx> = (xi · xj) is theGrammatrix of x
Lemma:G � 0 and eachM � 0 is a Grammatrix of some x

I A variant of Schoenberg’s theorem
Relation between EDMs and Grammatrices:

G = −1

2
JD2J (§)

I whereD2 = (d2
ij) and

J = In − 1
n
11> =


1− 1

n
− 1
n
· · · − 1

n

− 1
n

1− 1
n
· · · − 1

n
...

... . . . ...
− 1
n

− 1
n
· · · 1− 1

n
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Multidimensional scaling (MDS)

I Often get approximate EDMs D̃ from raw data
(dissimilarities, discrepancies, di�erences)

I G̃ = −1
2
JD̃2J is an approximate Grammatrix

I Approximate Gram⇒ spectral decomposition P Λ̃P> has Λ̃ 6≥ 0

I Let Λ closest PSD diagonal matrix to Λ̃:
zero the negative components of Λ̃

I x = P
√

Λ is an “approximate realization” of D̃
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Classic MDS: Main result

1. Prove lemma: matrix is Gram i� it is PSD
2. Prove Schoenberg’s theorem: G = −1

2
JD2J
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Proof of lemma
I Gram⊆ PSD

I x is an n×K real matrix
I G = xx> its Grammatrix
I For each y ∈ Rn we have

yGy> = y(xx>)y> = (yx)(x>y>) = (yx)(yx)
>

= ‖yx‖22 ≥ 0

I ⇒ G � 0

I PSD⊆Gram
I LetG � 0 be n× n
I Spectral decomposition: G = PΛP>

(P orthogonal,Λ ≥ 0 diagonal)

I Λ ≥ 0⇒
√

Λ exists
I G = PΛP> = (P

√
Λ)(
√

Λ
>
P>) = (P

√
Λ)(P

√
Λ)
>

I Let x = P
√

Λ, thenG is the Grammatrix of x
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Schoenberg’s theorem proof (1/2)
I Assume zero centroidWLOG (can translate x as needed)
I Expand: d2ij = ‖xi − xj‖22 = (xi − xj)(xi − xj) = xixi + xjxj − 2xixj (∗)
I Aim at “inverting” (∗) to express xixj in function of d2ij

I Sum (∗) over i:
∑
i d

2
ij =

∑
i xixi + nxjxj − 2xj���:

0 by zero centroid∑
i xi

I Similarly for j and divide by n, get:

1

n

∑
i≤n

d2ij =
1

n

∑
i≤n

xixi + xjxj (†)

1

n

∑
j≤n

d2ij = xixi +
1

n

∑
j≤n

xjxj (‡)

I Sum (†) over j, get:

1

n

∑
i,j

d2ij = n
1

n

∑
i

xixi +
∑
j

xjxj = 2
∑
i

xixi

I Divide by n, get:
1

n2

∑
i,j

d2ij =
2

n

∑
i

xixi (∗∗)
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Schoenberg’s theorem proof (2/2)
I Rearrange (∗), (†), (‡) as follows:

2xixj = xixi + xjxj − d2ij (4)

xixi =
1

n

∑
j

d2ij −
1

n

∑
j

xjxj (5)

xjxj =
1

n

∑
i

d2ij −
1

n

∑
i

xixi (6)

I Replace LHS of Eq. (5)-(6) in RHS of Eq. (4), get

2xixj =
1

n

∑
k

d2ik +
1

n

∑
k

d2kj − d
2
ij −

2

n

∑
k

xkxk

I By (∗∗) replace 2
n

∑
i
xixi with 1

n2

∑
i,j
d2ij , get

2xixj =
1

n

∑
k

(d2ik + d2kj)− d
2
ij −

1

n2

∑
h,k

d2hk (§)

which expresses xixj in function ofD
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Principal Component Analysis (PCA)

I Given an approximate distancematrixD
I �nd x = MDS(D)

I However, you want x = P
√

Λ inK dimensions
but rank(Λ) > K

I Only keepK largest components of Λ
zero the rest

I Get realization in desired space
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Example 1/3
Mathematical genealogy skeleton
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Example 2/3
A partial view

Euler Thibaut Pfa� Lagrange Laplace Möbius Gudermann Dirksen Gauss
Kästner 10 1 1 9 8 2 2 2 2
Euler 11 9 1 3 10 12 12 8
Thibaut 2 10 10 3 1 1 3
Pfa� 8 8 1 3 3 1

Lagrange 2 9 11 11 7
Laplace 9 11 11 7
Möbius 4 4 2

Gudermann 2 4
Dirksen 4

D =



0 10 1 1 9 8 2 2 2 2
10 0 11 9 1 3 10 12 12 8
1 11 0 2 10 10 3 1 1 3
1 9 2 0 8 8 1 3 3 1
9 1 10 8 0 2 9 11 11 7
8 3 10 8 2 0 9 11 11 7
2 10 3 1 9 9 0 4 4 2
2 12 1 3 11 11 4 0 2 4
2 12 1 3 11 11 4 2 0 4
2 8 3 1 7 7 2 4 4 0
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Example 3/3

In 2D In 3D
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Subsection 3

Distance geometry problem
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The Distance Geometry Problem (DGP)

GivenK ∈ N andG = (V,E, d)with d : E → R+,
�nd x : V → RK s.t.

∀{i, j} ∈ E ‖xi − xj‖2
2 = d2

ij

Given a weighted graph , draw it so edges are drawn as

segments with lengths= weights
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Some applications

I clock synchronization (K = 1)
I sensor network localization (K = 2)
I molecular structure from distance data (K = 3)
I autonomous underwater vehicles (K = 3)
I distancematrix completion (whateverK)
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Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from partial
measurements of their time di�erences

I K = 1

I V : timestamps
I {u, v} ∈ E if known time di�erence between u, v
I d: values of the time di�erences

Used in time synchronization of distributed networks
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Clock synchronization
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Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to
locate a set of geographically distributed objects using
measurements of the distances between some object pairs

I K = 2

I V : (mobile) sensors
I {u, v} ∈ E i� distance between u, v is measured
I d: distance values

Used whenever GPS not viable (e.g. underwater)
duv ∝∼ battery consumption in P2P communication betw. u, v
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Sensor network localization
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Molecular structure from distance data
From [Liberti et al., SIAMRev., 2014]

I K = 3

I V : atoms
I {u, v} ∈ E i� distance between u, v is known
I d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely
Distances/ 5.5measured approximately by NMR
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Complexity

I DGP1 with d : E → Q+ is inNP
I if instance YES ∃ realization x ∈ Rn×1
I if some component xi 6∈ Q translate x so xi ∈ Q
I consider some other xj
I let ` = |sh. path p : i→ j| =

∑
{u,v}∈p

duv ∈ Q

I then xj = xi ± `→ xj ∈ Q
I ⇒ veri�cation of

∀{i, j} ∈ E |xi − xj | = dij

in polytime
I DGPK may not be inNP forK > 1
don’t know how to verify ‖xi − xj‖2 = dij for x 6∈ QnK
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Hardness
Partition isNP-hard
Given a = (a1, . . . , an) ∈ Nn, ∃ I ⊆ {1, . . . , n} s.t.

∑
i∈I

ai =
∑
i 6∈I

ai ?

I Reduce Partition to DGP1

I a −→ cycleC
V (C) = {1, . . . , n},E(C) = {{1, 2}, . . . , {n, 1}}

I For i < n let di,i+1 = ai
dn,n+1 = dn1 = an

I E.g. for a = (1, 4, 1, 3, 3), get cycle graph:
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Partition is YES⇒DGP1 is YES

I Given: I ⊂ {1, . . . , n} s.t.
∑
i∈I
ai =

∑
i 6∈I
ai

I Construct: realization x ofC inR
1. x1 = 0 // start

2. induction step: suppose xi known
if i ∈ I
let xi+1 = xi + di,i+1 // go right

else
let xi+1 = xi − di,i+1 // go left

I Correctnessproof: by the same induction
but careful when i = n: have to show xn+1 = x1
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Partition is YES⇒DGP1 is YES

(1) =
∑
i∈I

(xi+1 − xi) =
∑
i∈I

di,i+1 =

=
∑
i∈I

ai =
∑
i 6∈I

ai =

=
∑
i 6∈I

di,i+1 =
∑
i 6∈I

(xi − xi+1) = (2)

(1) = (2)⇒
∑
i∈I

(xi+1 − xi) =
∑
i 6∈I

(xi − xi+1)⇒
∑
i≤n

(xi+1 − xi) = 0

⇒ (xn+1 − xn) + (xn − xn−1) + · · ·+ (x3 − x2) + (x2 − x1) = 0

⇒ xn+1 = x1
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Partition is NO⇒DGP1 is NO
I By contradiction: suppose DGP1 is YES, x realization ofC
I F = {{u, v} ∈ E(C) | xu ≤ xv},
E(C) r F = {{u, v} ∈ E(C) | xu > xv}

I Trace x1, . . . , xn: follow edges in F (→) and inE(C) r F (←)

∑
{u,v}∈F

(xv − xu) =
∑

{u,v}6∈F

(xu − xv)

∑
{u,v}∈F

|xu − xv| =
∑

{u,v}6∈F

|xu − xv|

∑
{u,v}∈F

duv =
∑

{u,v}6∈F

duv

I Let J = {i < n | {i, i+ 1} ∈ F} ∪ {n | {n, 1} ∈ F}

⇒
∑
i∈J

ai =
∑
i 6∈J

ai

I So J solves Partition instance, contradiction
I ⇒DGP isNP-hard, DGP1 isNP-complete
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Number of solutions

I (G,K): DGP instance

I X̃ ⊆ RKn: set of solutions

I Congruence: composition of translations, rotations, re�ections

I C = set of congruences inRK

I x ∼ ymeans ∃ρ ∈ C (y = ρx):
distances inxarepreserved in y through ρ

I ⇒ if |X̃| > 0, |X̃| = 2ℵ0
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Number of solutions modulo congruences

I Congruence is an equivalence relation∼ on X̃
(re�exive, symmetric, transitive)

I Partitions X̃ into equivalence classes

I X = X̃/∼: sets of representatives of equivalence classes

I Focuson |X| rather than |X̃|
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Rigidity, �exibility and |X|

I infeasible⇔ |X| = 0

I rigid graph⇔ |X| < ℵ0

I globally rigid graph⇔ |X| = 1

I �exible graph⇔ |X| = 2ℵ0

I |X| = ℵ0: impossible byMilnor’s theorem
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Milnor’s theorem implies |X| 6= ℵ0

I System S of polynomial equations of degree 2

∀i ≤ m pi(x1, . . . , xnK) = 0

I LetX be the set of x ∈ RnK satisfying S

I Numberof connectedcomponents ofX isO(3nK)
[Milnor 1964]

I Assume |X| is countable; thenG cannot be �exible
⇒ each incongruent rlz is in a separate component
⇒ byMilnor’s theorem, there’s �nitely many of them
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Examples
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Subsection 4

Distance geometry inMP
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DGP formulations andmethods

I System of equations
I Unconstrained global optimization (GO)
I Constrained global optimization
I SDP relaxations and their properties
I Diagonal dominance
I Concentration of measure in SDP
I Isomap for DGP
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System of quadratic equations

∀{u, v} ∈ E ‖xu − xv‖2 = d2
uv (7)

Computationally: useless
reformulate using slacks:

min
x,s

{ ∑
{u,v}∈E

s2
uv

∣∣ ∀{u, v} ∈ E ‖xu−xv‖2 = d2
uv+suv

}
(8)
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Unconstrained Global Optimization

min
x

∑
{u,v}∈E

(‖xu − xv‖2 − d2
uv)

2 (9)

Globally optimal obj. fun. value of (9) is 0 i� x solves (7)

Computational experiments in [Liberti et al., 2006]:
I GO solvers from 10 years ago

I randomly generated protein data: ≤ 50 atoms

I cubic crystallographic grids: ≤ 64 atoms
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Constrained global optimization

I minx
∑

{u,v}∈E
|‖xu − xv‖2 − d2uv| exactly reformulates (7)

I Relax objective f to concave part, remove constant term,
rewritemin−f asmax f

I Reformulate convex part of obj. fun. to convex constraints

I Exact reformulation

maxx
∑

{u,v}∈E
‖xu − xv‖2

∀{u, v} ∈ E ‖xu − xv‖2 ≤ d2uv

}
(10)

Theorem (Activity)
At a glob. opt. x∗ of a YES instance, all constraints of (10) are active
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Linearization

⇒ ∀{i, j} ∈ E ‖xi‖2
2 + ‖xj‖2

2 − 2xi · xj = d2
ij

⇒
{
∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

X = x x>
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Relaxation

X = x x>

⇒ X − x x> = 0

(relax) ⇒ X − x x> � 0

Schur(X, x) =

(
IK x>

x X

)
� 0

If x does not appear elsewhere⇒ get rid of it (e.g. choose x = 0):

replace Schur(X, x) � 0 byX � 0
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SDP relaxation

minF •X
∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

X � 0

How do we choose F ?

F •X = Tr(F>X)
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Some possible objective functions

I For protein conformation:

min
∑
{i,j}∈E

(Xii +Xjj − 2Xij)

with= changed to≥ in constraints (ormax and≤)

“push-and-pull” the realization

I [Ye, 2003], application to wireless sensors localization

minTr(X)

Tr(X) = Tr(P−1ΛP ) = Tr(P−1PΛ) = Tr(Λ) =
∑

i λi
⇒ hope to minimize rank

I How about “just random”?
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How do you choose?
for want of some better criterion. . .

TEST!

I Download protein �les from Protein Data Bank (PDB)
they contain atom realizations

I Mimick a Nuclear Magnetic Resonance experiment
Keep only pairwise distances< 5.5

I Try and reconstruct the protein shape from those
weighted graphs

I Quality evaluation of results:

I LDE(x) = max
{i,j}∈E

| ‖xi − xj‖ − dij |

I MDE(x) = 1
|E|

∑
{i,j}∈E

| ‖xi − xj‖ − dij |
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Objective function tests

SDP solved withMosek

SDP + PCA
Instance LDE MDE CPU

Name |V | |E| PP Ye Rnd PP Ye Rnd PP Ye Rnd
C0700odd.1 15 39 3.31 4.57 4.44 1.92 2.52 2.50 0.13 0.07 0.08
C0700odd.C 36 242 10.61 4.85 4.85 3.02 3.02 3.02 0.69 0.43 0.44
C0700.odd.G 36 308 4.57 4.77 4.77 2.41 2.84 2.84 0.86 0.54 0.54
C0150alter.1 37 335 4.66 4.88 4.86 2.52 3.00 3.00 0.97 0.59 0.58
C0080create.1 60 681 7.17 4.86 4.86 3.08 3.19 3.19 2.48 1.46 1.46
tiny 37 335 4.66 4.88 4.88 2.52 3.00 3.00 0.97 0.60 0.60
1guu-1 150 959 10.20 4.93 4.93 3.43 3.43 3.43 9.23 5.68 5.70

SDP + PCA + NLP
Instance LDE MDE CPU

Name |V | |E| PP Ye Rnd PP Ye Rnd PP Ye Rnd
1b03 89 456 0.00 0.00 0.00 0.00 0.00 0.00 8.69 6.28 9.91
1crn 138 846 0.81 0.81 0.81 0.07 0.07 0.07 33.33 31.32 44.48
1guu-1 150 959 0.97 4.93 0.92 0.10 3.43 0.08 56.45 7.89 65.33
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Choice

I Ye very fast but often imprecise

I Random good but nondeterministic

I Push-and-Pull: can relaxXii +Xjj − 2Xij = d2
ij to

Xii +Xjj − 2Xij ≥ d2
ij

easier to satisfy feasibility, useful later on

I Heuristic: add+ηTr(X) to objective, with η � 1
might help minimize solution rank

I min
∑

{i,j}∈E
(Xii +Xjj − 2Xij) + ηTr(X)
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When SDP solvers hit their size limit

I SDPsolver: technological bottleneck
I How can we best use an LP solver?
I Diagonally Dominant (DD) matrices are PSD
I Not vice versa: inner approximate PSD cone Y � 0

I Idea by A.A. Ahmadi [Ahmadi &Hall 2015]

You won’t see this in TD, Octave+YALMIP is very slow, interface bottleneck
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Diagonally dominant matrices

n× nmatrixX is DD if

∀i ≤ n Xii ≥
∑
j 6=i

|Xij|.

E.g.


1 0.1 −0.2 0 0.04 0

0.1 1 −0.05 0.1 0 0
−0.2 −0.05 1 0.1 0.01 0

0 0.1 0.1 1 0.2 0.3
0.04 0 0.01 0.2 1 −0.3

0 0 0 0.3 −0.3 1



121 / 306



DDLinearization

∀i ≤ n Xii ≥
∑
j 6=i

|Xij| (∗)

I introduce “sandwiching” variable T
I write |X| as T
I add constraints−T ≤ X ≤ T

I by≥ constraint sense, write (∗) as

Xii ≥
∑
j 6=i

Tij
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DDProgramming (DDP)

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij

X is DD

}

⇒


∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

∀i ≤ n
∑
j≤n
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T
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The issue with inner approximations

DDP could be infeasible!
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Exploit push-and-pull

I Enlarge the feasible region
I From

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij

I Use “push” objectivemin
∑
ij∈E

Xii +Xjj − 2Xij

I Relax to

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2
ij
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Hope to achieve LP feasibility
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DDP formulation for the DGP

min
∑

{i,j}∈E
(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2
ij

∀i ≤ n
∑
j≤n
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T
T ≥ 0
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SDP vs. DDP: tests

Using “push-and-pull” objective in SDP
SDP solved withMosek, DDP with CPLEX

SDP + PCA
SDP DDP

Instance LDE MDE CPUmodl/soln LDE MDE CPUmodl/soln
C0700odd.1 0.79 0.34 0.06/0.12 0.38 0.30 0.15/0.15
C0700.odd.G 2.38 0.89 0.57/1.16 1.86 0.58 1.11/0.95
C0150alter.1 1.48 0.45 0.73/1.33 1.54 0.55 1.23/1.04
C0080create.1 2.49 0.82 1.63/7.86 0.98 0.67 3.39/4.07
1guu-1 0.50 0.15 6.67/684.89 1.00 0.85 37.74/153.17
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Subsection 5

DGP cones
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Cones
I SetC is a cone if:

∀A,B ∈ C, α, β ≥ 0 αA+ βB ∈ C
I IfC is a cone, the dual cone is

C∗ = {y | ∀x ∈ C 〈x, y〉 ≥ 0}

I IfC ⊂ Sn (set n× n symmetric matrices)

C∗ = {Y | ∀X ∈ C (Y •X ≥ 0)}

I A n× nmatrix coneC is �nitely generated byX ⊂ Rn if

∀X ∈ C ∃δ ∈ R|X |+ X =
∑
x∈X

δxxx
>

I PSD,DD are cones (prove it)
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Representations ofDD
I ConsiderEii, E+

ij , E
−
ij in Sn

De�ne E0 = {Eii | i ≤ n}, E1 = {E±ij | i < j}, E = E0 ∪ E1
I Eii = diag(0, . . . , 0, 1i, 0, . . . , 0)

I E+
ij has minor

(
1ii 1ij
1ji 1jj

)
, 0 elsewhere

I E−ij has minor
(

1ii −1ij
−1ji 1jj

)
, 0 elsewhere

I Thm. DD = cone generated by E [Barker & Carlson 1975]

Pf. Rays in E are extreme, all DDmatrices generated by E
I Cor. DD �nitely gen. by
XDD = {ei | i ≤ n} ∪ {ei ± ej | j < ` ≤ n}
Pf.WriteEii = eie

>
i ,E

±
ij = (ei ± ej)(ei ± ej)>, where ei is

the i-th std basis element ofRn
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Finitely generated dual cone theorem
Thm. IfC �nitely gen. byX , then

C∗ = {Y | ∀x ∈ X (Y • xx> ≥ 0)}

I (⇒) Let Y s.t. ∀x ∈ X (Y • xx> ≥ 0)
I ∀X ∈ C ,X =

∑
x∈X

δxxx
> (by �n. gen.)

I hence Y •X =
∑

x δxY • xx> ≥ 0 (by hyp.)
I whence Y ∈ C∗

I (⇐) Suppose Z ∈ C∗ r {Y | ∀x ∈ X (Y • xx> ≥ 0)}
I then ∃X ′ ⊂ X s.t. ∀x ∈ X ′ (Z • xx> < 0) (by hyp.)
I consider any Y =

∑
x∈X ′

δxxx
> ∈ C with δ ≥ 0

I then Z • Y =
∑
x∈X ′

δxZ • xx> < 0 so Z 6∈ C∗

I contradiction⇒C∗ = {Y | ∀x ∈ X (Y • xx> ≥ 0)}
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Dual cone constraints

I Remark:X • vv> = v>Xv

I Use �nitely generated dual cone theorem
I Decision variable matrixX
I Constraints:

∀v ∈ X v>Xv ≥ 0

I If |X | polysized, get compact formulation
otherwise use column generation

I |XDD| = |E| = O(n2)
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Dual cone DDP formulation for DGP

min
∑

{i,j}∈E
(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij

∀v ∈ XDD v>Xv ≥ 0


I v>Xv ≥ 0 for v ∈ XDD equivalent to:

∀i ≤ n Xii ≥ 0

∀{i, j} 6∈ E Xii +Xjj − 2Xij ≥ 0

∀i < j Xii +Xjj + 2Xij ≥ 0
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Properties

I SDP relaxation of original problem

I Thm. Dual cone DDP is a relaxation of SDP
Pf. IfX � 0, then ∀v ∈ Rn v>Xv ≥ 0 by defn., andXDD ⊂ Rn

I Yields extremely tight obj fun bounds

I Solutions have large negative rank, unfortunately
retrieving feasible solutions is di�cult
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Subsection 6

Barvinok’s Naive Algorithm
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Concentration of measure

From [Barvinok, 1997]
The value of a “well behaved” function at a
random point of a “big” probability spaceX is
“very close” to the mean value of the function.

and
In a sense, measure concentration can be
considered as an extension of the law of large
numbers.
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Concentration of measure

Given Lipschitz function f : X → R s.t.

∀x, y ∈ X |f(x)− f(y)| ≤ L‖x− y‖2

for some L ≥ 0, there is concentration of measure if ∃
constants c, C s.t.

∀ε > 0 Px(|f(x)− E(f)| > ε) ≤ c e−Cε
2/L2

≡ “discrepancy frommean is unlikely”
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Barvinok’s theorem

Consider:

I for each k ≤ m, manifoldsXk = {x ∈ Rn | x>Qkx = ak}
I a feasibility problem x ∈

⋂
k≤m
Xk

I its SDP relaxation ∀x ≤ m (Qk •X = ak) with soln. X̄

Let T = factor(X̄) , y ∼ Nn(0, 1) and x′ = Ty

Then ∃c and n0 ∈ N s.t. if n ≥ n0,

Prob

(
∀k ≤ m dist(x′,Xk) ≤ c

√
‖X̄‖2 lnn

)
≥ 0.9.

IDEA: since x′ is “close” to eachXk, try local descent!
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Application to the DGP

I ∀{i, j} ∈ E Xij = {x | ‖xi − xj‖2
2 = d2

ij}

I DGP can be written as
⋂

{i,j}∈E
Xij

I SDP relaxationXii +Xjj − 2Xij = d2
ij ∧X � 0 with

soln. X̄

I Di�erence with Barvinok: x ∈ RKn, rk(X̄) ≤ K

I IDEA: sample y ∼ N nK(0, 1√
K

)

I Thm. Barvinok’s theorem works in rankK
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The heuristic

1. Solve SDP relaxation of DGP, get soln. X̄
use DDP+LP if SDP+IPM too slow

2. a. T = factor(X̄)
b. y ∼ N nK(0, 1√

K
)

c. x′ = Ty

3. Use x′ as starting point for a local NLP solver on
formulation

min
x

∑
{i,j}∈E

(
‖xi − xj‖2 − d2

ij

)2

and return improved solution x

141 / 306



SDP+Barvinok vs. DDP+Barvinok

SDP DDP
Instance LDE MDE CPU LDE MDE CPU
C0700odd.1 0.00 0.00 0.63 0.00 0.00 1.49
C0700.odd.G 0.00 0.00 21.67 0.42 0.01 30.51
C0150alter.1 0.00 0.00 29.30 0.00 0.00 34.13
C0080create.1 0.00 0.00 139.52 0.00 0.00 141.49
1b03 0.18 0.01 132.16 0.38 0.05 101.04
1crn 0.78 0.02 800.67 0.76 0.04 522.60
1guu-1 0.79 0.01 1900.48 0.90 0.04 667.03

Most of the CPU time taken by local NLP solver

142 / 306



Subsection 7

Isomap for the DGP
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Isomap for DG
1. LetD′ be the (square) weighted adjacencymatrix ofG

2. CompleteD′ to approximate sqEDM D̃

3. Perform PCA on D̃ givenK dimensions

(a) Let B̃ = −(1/2)JD̃J , where J = I − (1/n)11>

(b) Find eigenval/vectsΛ, P so B̃ = P>ΛP

(c) Keep≤ K largest nonneg. eigenv. ofΛ to get Λ̃

(d) Let x̃ = P>
√

Λ̃

Vary Step 2 to generate Isomap heuristics
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Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm onG
(classic Isomap)

B. Find a spanning tree (SPT) ofG and compute a random
realization in x̄ ∈ RK , use its sqEDM

C. Solve a push-and-pull SDP relaxation to �nd a realization x̄ ∈ Rn,
use its sqEDM

D. Solve an SDP relaxation with Barvinok objective to �nd x̄ ∈ Rr

(with r ≤ b(
√

8|E|+ 1− 1)/2c), use its sqEDM
haven’t really talked about this, sorry

Post-processing: Use x̃ as starting point for local NLP solver
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Results
Comparison with dgsol [Moré, Wu 1997]
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Large instances

Instance mde lde CPU
Name |V | |E| IsoNLP dgsol IsoNLP dgsol IsoNLP dgsol

water 648 11939 0.005 0.15 0.557 0.81 26.98 15.16
3al1 678 17417 0.036 0.007 0.884 0.810 170.91 210.25
1hpv 1629 18512 0.074 0.078 0.936 0.932 374.01 60.28
il2 2084 45251 0.012 0.035 0.910 0.932 465.10 139.77
1tii 5684 69800 0.078 0.077 0.950 0.897 7400.48 454.375
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Subsection 8

Concluding remarks
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Summary of di�culties

I Quadratic nonconvex too di�cult?
I Solve SDP relaxation
I SDP relaxation too large?
I Solve DDP approximation
I Get n× nmatrix solution, needK × n!
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Rank reductionmethods

I Multidimensional Scaling (MDS)
I Principal Component Analysis (PCA)
I Barvinok’s naive algorithm (BNA)
I Isomap

Can also use them for dimensionality reduction!
n vectors inRn −→RK
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Outline

Introduction
Decidability
E�ciency and Hardness
Some combinatorial
problems
NP-hardness

Systematics
Distance Geometry
The universal isometric
embedding
Dimension reduction
Distance geometry problem
Distance geometry inMP
DGP cones
Barvinok’s Naive Algorithm
Isomap for the DGP
Concluding remarks

Clustering in Natural Language

Clustering on graphs
Clustering in Euclidean
spaces
Distance resolution limit
MP formulations
Clustering in high
dimensions

Random projections in LP
Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression
Sparsity and `1minimization

Kissing Number Problem
Lower bounds
Upper bounds from SDP
Gregory’s upper bound
Delsarte’s upper bound
Pfender’s upper bound
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Job o�ers
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An example
Under the responsibility of the Commercial Director, the Optimisation / Operations Senior Manager
will have the responsibility to optimise and develop operational aspects for VINCI Airports current
and future portfolio of airports. They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering the objectives of the Technical
Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial
Director in the development and implementation of plans, strategies and reporting processes. As part
of the exercise of its function, the Optimisation Manager will undertake the following: Identification
and development of cross asset synergies with a specific focus on the operations and processing functions
of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives
of the various technical services agreements, the strategy of the individual airports and the Group.
This function will include: Participation in the definition of airport strategy. Definition of this
airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation
Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various
technical services agreements with our airports by developing specific technical competences from the
Head Office level. Oversee the management and definition of all optimisation projects. Identification,
overview and management of the project managers responsible for the delivery of the various optimization
projects at each asset. Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Development and implementation of the Group
optimisation plan. Definition of economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service
levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the
strategies, trends and best practices of the airport industry and other reference industries in terms of
the applicability to the optimization plan. Study of the needs and preferences of the passengers,
through a continuous process of marketing research at all of the airports within the VINCI Airports
portfolio. Development of benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Development and participation in the expansion or refurbishment projects
of the airports, to assure a correct configuration and positioning of the operational and commercial
area that can allow the optimization of the revenues and operational efficiency. Support the Director
Business Development through the analysis and opportunity assessment of areas of optimization for all
target assets in all bids and the preparation and implementation of the strategic plan once the
assets are acquired. Maintain up to date knowledge of market trends and key initiatives related
to the operational and commercial aspects of international airports [...]

. . .and blah blah blah: IS THIS APPROPRIATE FORMYCV?
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Try Natural Language Processing

I Automated summary
I Relation Extraction
I Named Entity Recognition (NER)
I Keywords
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Automated summary
./summarize.py job01.txt

They will also be responsible for driving forward and managing key

optimisation projects that assist the Commercial Director in delivering

the objectives of the Technical Services Agreements activities of VINCI

Airports. The Optimisation Manager will support the Commercial Director

in the development and implementation of plans, strategies and reporting

processes. Identification and development of cross asset synergies with

a specific focus on the operations and processing functions of the airport.

Construction of good relationships with the key stakeholders, in order to

contribute to the success of each optimization project. Definition of

economic and quality of service criteria, in order to define performance

goals. Evaluation of the performance of the Group operations in terms of

processing efficiency, service levels, passenger convenience and

harmonization of the non-aeronautical activities. Development of

benchmarking studies in order to evaluate the trends, in international

airports or in the local market. Maintain up to date knowledge of market

trends and key initiatives related to the operational and commercial

aspects of international airports. You have a diverse range of

experiences working at or with airports across various disciplines such

as operations, ground handling, commercial, etc. Demonstrated high

level conceptual thinking, creativity and analytical skills.

Does it help? hard to say
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Relation Extraction
./relextr-mitie.py job01.txt

======= RELATIONS =======

Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports

Self [ INCLUDES_EVENT ] Head Office

Head Office [ INFLUENCED_BY ] Self

Head Office [ INTERRED_HERE ] Self

VINCI Airports [ INTERRED_HERE ] Optimisation Strategy

Head Office [ INVENTIONS ] Self

Optimisation Strategy [ LOCATIONS ] VINCI Airports

Self [ LOCATIONS ] Head Office

Self [ ORGANIZATIONS_WITH_THIS_SCOPE ] Head Office

Self [ PEOPLE_INVOLVED ] Head Office

Self [ PLACE_OF_DEATH ] Head Office

Head Office [ RELIGION ] Self

VINCI Airports [ RELIGION ] Optimisation Strategy

Does it help? hardly
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Named Entity Recognition

./ner-mitie.py job01.txt

==== NAMED ENTITIES =====

English MISC

French MISC

Head Office ORGANIZATION

Optimisation / Operations ORGANIZATION

Optimisation Strategy ORGANIZATION

Self PERSON

Technical Services Agreements MISC

VINCI Airports ORGANIZATION

Does it help? . . .maybe

For a documentD, let NER(D) = named entity words
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Subsection 1

Clustering on graphs
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Exploit NER to infer relations

1. Recognize named entities from all documents
2. Use them to compute distances among documents
3. Usemodularity clustering
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The named entities
1. Operations Head Airports O�ce VINCI Technical Self French / Strategy Agreements English Services Optimisation
2. Europe and P&CWork Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate

International English
3. Scientist Product Analyze Java Features & Statistics Science PHP Pig/Hive/Spark Optimization Crunch/analyze Team Press

Performance Deezer Data Computer
4. Lean6Sigma Lean-type O�ce Banking Paris CDI France RPAMiddle Accenture English Front Benelux
5. Partners Management Monitor BC Provide Support Sites Regions Mtiers Program Performance market develop Finance & IS&T

Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector and Alstom Tax Directors Strategic Committee
6. Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia English Fares with Company

Inc
7. Paris Integration France Automation Automotive French . Linux/Genivi HMI UI Software EB Architecture Elektrobit technologies

GUIDE Engineers German Technology SWwell-structured Experts Tools
8. Product Google Managers Python JavaScript AWS JSONBigQuery Java Platform Engineering HTMLMySQL Services Professional

Googles Ruby Cloud OAuth
9. EHR Aledades Provide Wellness Perform ACO Visits EHR-system-speci�c Coordinator AledadeMedicare Greenway Allscripts
10. Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata & Python Company GDIA Ford Visa SPARKData

Applied Science Work C++ RUnix/Linux Physics Microsoft Operations Monte JAVAMobility Insight Analytics Engineering Computer
Motor SQLOperation Carlo PowerPoint

11. Management Java CANDIDATE Application Statistics Gurobi Provides Provider Mathematics Service Maintains Deliver SM&G
SAS/HPF SAS Data Science Economics Marriott PROFILE Providers OR Engineering Computer SQL Education

12. Alto Statistics Java Sunnyvale ResearchML Learning Science Operational Machine Amazon Computer C++ Palo Internet R Seattle
13. LLamasoft Work Fortune Chain Supply C# Top GuruWhat Impactful Team LLamasofts Makes Gartner Gain
14. Worldwide Customer JavaMosel Service Python Energy Familiarity CPLEX Research Partnering Amazon R SQL CSOperations
15. Operations Science Research Engineering Computer Systems or Build
16. Statistics Italy Broad Coins France Australia Python Amazon Germany SAS Appstore Spain Economics Experience R Research US

Scientist UK SQL Japan Economist
17. Competency Statistics Knowledge Employer communication ResearchMachine EEOUnited ORMAWay OFCCP CorporationMining

&C# Python Visual Studio Opportunity Excellent Modeling Data Jacksonville Arena Talent Skills Science Florida Life Equal
AnyLogic Facebook CSX Oracle The Strategy Vision Operations Industrial Stream of States Analytics Engineering Computer
Framework Technology

18. Java Asia Research Safety in Europe Activities North CompanyWestRocks Sustainability AmericaMasters WRKC++Norcross
Optimization GA ILOG South NYSEOperations AMPL CPLEX Identify Participate OPLWestRock

19. Management Federal Administration SystemNAS Development JMP Tra�c Aviation FAA AdvancedMcLean Center CAASD Flow Air
Tableau Oracle MITRE TFM Airspace National SQL Campus

20. Abilities & Skills 9001-Quality SManagement ISOGED
21. Statistics Group RDBMSResearchMathematics Teradata ORSA Greenplum Java SAS U.S. Solution Time Oracle Military Strategy

Physics Linear/Non-Linear Operations both Industrial Series Econometrics Engineering Clarity Regression 160 / 306



Word similarity: WordNet
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WordNet: hyponyms of “boat”
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Wu-Palmer word similarity
Semantic WordNet distance between wordsw1, w2

wup(w1, w2) =
2 depth(lcs(w1, w2))

len(shortest_path(w1, w2)) + 2 depth(lcs(w1, w2))

I lcs: lowest common subsumer
earliest common word in paths from both words toWordNet root

I depth: length of path from root to word

Example: wup(dog,boat)?
depth( whole ) = 4

18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate

-> chordate -> animal -> organism -> living_thing -> whole -> artifact

-> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat

13 -> dog -> domestic_animal -> animal -> organism -> living_thing

-> whole -> artifact -> instrumentality -> conveyance -> vehicle

-> craft -> vessel -> boat

wup(dog,boat) = 8/21 = 0.380952380952
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Extensions of Wu-Palmer similarity

I to lists of wordsH,L:

wup(H,L) =
1

|H| |L|
∑
v∈H

∑
w∈L

wup(v, w)

I to pairs of documentsD1, D2:

wup(D1, D2) = wup(NER(D1),NER(D2))

I wup and its extensions are always in [0, 1]
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The similarity matrix

Too uniform! Try zeroing values belowmedian

1.00 0.63 0.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.38 0.49 0.47 0.47 0.44 0.54 0.31 0.44
0.63 1.00 0.45 0.45 0.54 0.40 0.42 0.42 0.57 0.49 0.46 0.45 0.59 0.35 0.43 0.42 0.42 0.41 0.47 0.32 0.40
0.51 0.45 1.00 0.40 0.53 0.35 0.37 0.37 0.58 0.47 0.43 0.40 0.59 0.28 0.39 0.37 0.38 0.35 0.43 0.24 0.35
0.51 0.45 0.40 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.38 0.48 0.47 0.47 0.45 0.53 0.33 0.44
0.66 0.54 0.53 0.63 1.00 0.34 0.35 0.35 0.49 0.42 0.39 0.37 0.50 0.29 0.36 0.35 0.35 0.34 0.40 0.26 0.34
0.45 0.40 0.35 0.45 0.34 1.00 0.42 0.43 0.66 0.54 0.49 0.45 0.67 0.34 0.44 0.43 0.43 0.40 0.49 0.28 0.40
0.46 0.42 0.37 0.46 0.35 0.42 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.34 0.45 0.45 0.44 0.42 0.50 0.28 0.40
0.47 0.42 0.37 0.46 0.35 0.43 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.36 0.47 0.45 0.45 0.43 0.51 0.30 0.42
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.33 0.31 0.29 0.40 0.23 0.28 0.27 0.28 0.26 0.31 0.21 0.26
0.58 0.49 0.47 0.56 0.42 0.54 0.54 0.55 0.33 1.00 0.46 0.43 0.59 0.34 0.42 0.41 0.41 0.39 0.46 0.31 0.39
0.54 0.46 0.43 0.52 0.39 0.49 0.49 0.51 0.31 0.46 1.00 0.39 0.56 0.29 0.38 0.36 0.36 0.34 0.41 0.24 0.35
0.50 0.45 0.40 0.49 0.37 0.45 0.47 0.48 0.29 0.43 0.39 1.00 0.70 0.40 0.50 0.49 0.48 0.46 0.54 0.35 0.46
0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.40 0.59 0.56 0.70 1.00 0.23 0.29 0.29 0.29 0.28 0.33 0.20 0.27
0.38 0.35 0.28 0.38 0.29 0.34 0.34 0.36 0.23 0.34 0.29 0.40 0.23 1.00 0.48 0.45 0.46 0.42 0.52 0.30 0.43
0.49 0.43 0.39 0.48 0.36 0.44 0.45 0.47 0.28 0.42 0.38 0.50 0.29 0.48 1.00 0.39 0.39 0.36 0.45 0.26 0.37
0.47 0.42 0.37 0.47 0.35 0.43 0.45 0.45 0.27 0.41 0.36 0.49 0.29 0.45 0.39 1.00 0.48 0.46 0.54 0.33 0.44
0.47 0.42 0.38 0.47 0.35 0.43 0.44 0.45 0.28 0.41 0.36 0.48 0.29 0.46 0.39 0.48 1.00 0.43 0.51 0.32 0.43
0.44 0.41 0.35 0.45 0.34 0.40 0.42 0.43 0.26 0.39 0.34 0.46 0.28 0.42 0.36 0.46 0.43 1.00 0.53 0.31 0.43
0.54 0.47 0.43 0.53 0.40 0.49 0.50 0.51 0.31 0.46 0.41 0.54 0.33 0.52 0.45 0.54 0.51 0.53 1.00 0.36 0.46
0.31 0.32 0.24 0.33 0.26 0.28 0.28 0.30 0.21 0.31 0.24 0.35 0.20 0.30 0.26 0.33 0.32 0.31 0.36 1.00 0.47
0.44 0.40 0.35 0.44 0.34 0.40 0.40 0.42 0.26 0.39 0.35 0.46 0.27 0.43 0.37 0.44 0.43 0.43 0.46 0.47 1.00
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The similarity matrix

Too uniform! Try zeroing values belowmedian

1.00 0.63 0.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.00 0.49 0.47 0.47 0.44 0.54 0.00 0.44
0.63 1.00 0.45 0.45 0.54 0.00 0.00 0.00 0.57 0.49 0.46 0.45 0.59 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00
0.51 0.45 1.00 0.00 0.53 0.00 0.00 0.00 0.58 0.47 0.00 0.00 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.51 0.45 0.00 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.00 0.48 0.47 0.47 0.45 0.53 0.00 0.44
0.66 0.54 0.53 0.63 1.00 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.45 0.00 0.00 0.45 0.00 1.00 0.00 0.00 0.66 0.54 0.49 0.45 0.67 0.00 0.44 0.00 0.00 0.00 0.49 0.00 0.00
0.46 0.00 0.00 0.46 0.00 0.00 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.00 0.45 0.45 0.44 0.00 0.50 0.00 0.00
0.47 0.00 0.00 0.46 0.00 0.00 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.00 0.47 0.45 0.45 0.00 0.51 0.00 0.00
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.58 0.49 0.47 0.56 0.00 0.54 0.54 0.55 0.00 1.00 0.46 0.43 0.59 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00
0.54 0.46 0.00 0.52 0.00 0.49 0.49 0.51 0.00 0.46 1.00 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.45 0.00 0.49 0.00 0.45 0.47 0.48 0.00 0.43 0.00 1.00 0.70 0.00 0.50 0.49 0.48 0.46 0.54 0.00 0.46
0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.00 0.59 0.56 0.70 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.48 0.45 0.46 0.00 0.52 0.00 0.43
0.49 0.00 0.00 0.48 0.00 0.44 0.45 0.47 0.00 0.00 0.00 0.50 0.00 0.48 1.00 0.00 0.00 0.00 0.45 0.00 0.00
0.47 0.00 0.00 0.47 0.00 0.00 0.45 0.45 0.00 0.00 0.00 0.49 0.00 0.45 0.00 1.00 0.48 0.46 0.54 0.00 0.44
0.47 0.00 0.00 0.47 0.00 0.00 0.44 0.45 0.00 0.00 0.00 0.48 0.00 0.46 0.00 0.48 1.00 0.00 0.51 0.00 0.00
0.44 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.46 0.00 1.00 0.53 0.00 0.00
0.54 0.47 0.00 0.53 0.00 0.49 0.50 0.51 0.00 0.46 0.00 0.54 0.00 0.52 0.45 0.54 0.51 0.53 1.00 0.00 0.46
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.47
0.44 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.43 0.00 0.44 0.00 0.00 0.46 0.47 1.00
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The graph

G = (V,E), weighted adjacencymatrixA
A is likeB with zeroed low components
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Modularity clustering
“Modularity is the fraction of the edges that fall within a cluster minus
the expected fraction if edges were distributed at random.”

I “at random”= random graphs over same degree sequence

I degree sequence= (k1, . . . , kn) where ki = |N(i)|
I “expected”= all possible “half-edge” recombinations

I expected edges between u, v: kukv/(2m) wherem = |E|
I mod(u, v) = (Auv − kukv/(2m))

I mod(G) =
∑

{u,v}∈E
mod(u, v)xuv

xuv = 1 if u, v in the same cluster and 0 otherwise

I “Natural extension” to weighted graphs: ku =
∑
v Auv ,m =

∑
uv Auv
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Usemodularity to de�ne clustering
I What is the “best clustering”?

I Maximize discrepancy between actual and expected
“as far away as possible from average”

max
∑

{u,v}∈E
mod(u, v)xuv

∀u ∈ V, v ∈ V xuv ∈ {0, 1}


I Issue: trivial solution x = 1 “one big cluster”

I Idea: treat clusters as cliques (even if zero weight)
then clique partitioning constraints for transitivity

∀i < j < k xij + xjk − xik ≤ 1

∀i < j < k xij − xjk + xik ≤ 1

∀i < j < k − xij + xjk + xik ≤ 1

if i, j ∈ C and j, k ∈ C then i, k ∈ C
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The resulting clustering

cluster 1: job01, job02, job03, job05, job10

cluster 2: job04, job06, job22

cluster 3: job07, job08, job11, job12, job20

cluster 4: job13, job21, job23, job24, job25, job26, job27, job28
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Is it good?

Vinci Accenture Elektrobit Amazon 1-3
Axa Expedia Google CSX
Deezer fragment1 Ford Westrock
Alstom Marriott Mitre
Aledade Llamasoft Clarity

fragment2

I ?— named entities rarely appear in WordNet
I Desirable property: chooses number of clusters
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Subsection 2

Clustering in Euclidean spaces
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Clustering vectors
Most frequent words w over collection C of documents d
./keywords.py

global environment customers strategic processes teams sql job industry use

java developing project process engineering field models opportunity drive

results statistical based operational performance using mathematical computer

new technical highly market company science role dynamic background products

level methods design looking modeling manage learning service customer

effectively technology requirements build mathematics problems plan services

time scientist implementation large analytical techniques lead available plus

technologies sas provide machine product functions organization algorithms

position model order identify activities innovation key appropriate different

complex best decision simulation strategy meet client assist quantitative

finance commercial language mining travel chain amazon pricing practices

cloud supply

t�dfC(w, d) =
|(t ∈ d | t = w)| |C|
|{d ∈ C | w ∈ d}|

keywordC(i, d) = wordw having ith best t�dfC(w, d)value
vecmC (d) = (t�dfC(keywordC(i, d), d) | i ≤ m)

Transforms documents to vectors
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Minimum sum-of-squares clustering

I MSSC, a.k.a. the k-means problem
I Given points p1, . . . , pn ∈ Rm, �nd clustersC1, . . . , Ck

min
∑
j≤k

∑
i∈Cj

‖pi − centroid(Cj)‖2
2

where centroid(Cj) = 1
|Cj |

∑
i∈Cj

pi

I k-means alg.: given initial clusteringC1, . . . , Ck

1: ∀j ≤ k compute yj = centroid(Cj)
2: ∀i ≤ n, j ≤ k if yj is the closest centr. to pi let xij = 1 else 0
3: ∀j ≤ k updateCj ← {pi | xij = 1 ∧ i ≤ n}
4: repeat until stability
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k-means with k = 2

Vinci AXA
Deezer Alstom
Accenture Elektrobit
Expedia Ford
Google Marriott
Aledade Amazon 1-3
Llamasoft CSX

WestRock
MITRE
Clarity

fragments 1-2
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k-means with k = 2: another run

Deezer Vinci
Elektrobit AXA
Google Accenture
Aledade Alstom

Expedia
Ford

Marriott
Llamasoft
Amazon 1-3

CSX
WestRock
MITRE
Clarity

fragments 1-2
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k-means with k = 2: third run!

AXA Vinci
Deezer Accenture
Expedia Alstom
Ford Elektrobit
Marriott Google
Llamasoft Aledade
Amazon 1-3
CSX
WestRock
MITRE
Clarity
fragments 1-2

A �ckle algorithm
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We can’t trust k-means: why?
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Subsection 3

Distance resolution limit
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Nearest Neighbours
k-Nearest Neighbours (k-NN).
Given:
I k ∈ N
I a distance function d : Rn × Rn → R+

I a setX ⊂ Rn
I a point z ∈ Rn r X ,

�nd the subset Y ⊂ X such that:

(a) |Y| = k

(b) ∀y ∈ Y, x ∈ X (d(z, y) ≤ d(z, x))

I basic problem in data science
I pattern recognition, computational geometry, machine learning, data
compression, robotics, recommender systems, information retrieval, natural
language processing andmore

I Example: Used in Step 2 of k-means:
assign points to closest centroid

[Cover &Hart 1967]
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With random variables

I Consider 1-NN
I Let ` = |X |
I Distance function family
{dm : Rn × Rn → R+}m

I For eachm:
I random variable Zm with some distribution overRn
I for i ≤ `, random variableXm

i with some distrib. over
Rn

I Xm
i iid w.r.t. i, Z

m independent of allXm
i

I Dm
min = min

i≤`
dm(Zm, Xm

i )

I Dm
max = max

i≤`
dm(Zm, Xm

i )
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Distance Instability Theorem

I Let p > 0 be a constant
I If

∃i ≤ ` (dm(Zm, Xm
i ))p converges asm→∞

then, for any ε > 0,

closest and furthest point are at about the same distance

Note “∃i” su�ces since ∀m we haveXm
i iid w.r.t. i

[Beyer et al. 1999]
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Distance Instability Theorem

I Let p > 0 be a constant
I If

∃i ≤ ` lim
m→∞

Var((dm(Zm, Xm
i ))p) = 0

then, for any ε > 0,

lim
m→∞

P(Dm
max ≤ (1 + ε)Dm

min) = 1

Note “∃i” su�ces since ∀m we haveXm
i iid w.r.t. i

[Beyer et al. 1999]
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Preliminary results
I Lemma. {Bm}m seq. of rnd. vars with �nite variance
and lim

m→∞
E(Bm) = b ∧ lim

m→∞
Var(Bm) = 0; then

∀ε > 0 lim
m→∞

P(‖Bm − b‖ ≤ ε) = 1

denotedBm →P b

I Slutsky’s theorem. {Bm}m seq. of rnd. vars and g a
continuous function; ifBm →P b and g(b) exists, then
g(Bm)→P g(b)

I Corollary. If {Am}m, {Bm}m seq. of
rnd. vars. s.t.Am →P a andBm →P b 6= 0 then
{Am
Bm
}m →P

a
b
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Proof
1. µm = E((dm(Zm, Xm

i ))p) independent of i (since allXm
i

iid)

2. Vm =
(dm(Zm,Xm

i ))p

µm
→P 1:

I E(Vm) = 1 (rnd. var. over mean)⇒ limm E(Vm) = 1
I Hypothesis of thm.⇒ limm Var(Vm) = 0
I Lemma⇒ Vm →P 1

3. Dm = ((dm(Zm, Xm
i ))p | i ≤ `)→P 1 (Xm

i iid)

4. Slutsky’s thm.⇒ min(Dm)→P min(1) = 1, simy for
max

5. Corollary⇒ max(Dm)
min(Dm)

→P 1

6. Dmmax
Dmmin

= µm max(Dm)
µm min(Dm)

→P 1

7. Result follows (defn. of→P andDm
max ≥ Dm

min)
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When it applies

I iid random variables from any distribution
I Particular forms of correlation
e.g. Ui ∼ Uniform(0,

√
i),X1 = U1,Xi = Ui + (Xi−1/2) for i > 1

I Variance tending to zero
e.g.Xi ∼ N(0, 1/i)

I Discrete uniform distribution onm-dimensional
hypercube
for both data and query

I Computational experiments with k-means:
instability already with n > 15
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. . .and when it doesn’t

I Complete linear dependence on all distributions
can be reduced to NN in 1D

I Exact and approximate matching
query point= (or≈) data point

I Query point in a well-separated cluster in data
I Implicitly low dimensionality
project; but NNmust be stable in lower dim.
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Subsection 4

MP formulations
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MP formulation

min
x,y,s

∑
i≤n

∑
j≤k
‖pi − yj‖2

2 xij

∀j ≤ k 1
sj

∑
i≤n

pixij = yj

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k
∑
i≤n

xij = sj

∀j ≤ k yj ∈ Rm

x ∈ {0, 1}nk
s ∈ Nk


(MSSC)

MINLP: nonconvex terms; continuous, binary and integer
variables
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Reformulation
The (MSSC) formulation has the same optima as:

min
x,y,P

∑
i≤n

∑
j≤k

Pij xij

∀i ≤ n, j ≤ k ‖pi − yj‖2
2 ≤ Pij

∀j ≤ k
∑
i≤n

pixij =
∑
i≤n

yjxij

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ ([min
i≤n

pih,max
i≤n

pih] | h ≤ k)

x ∈ {0, 1}nk
P ∈ [0, PU ]nk


I The only nonconvexities are
products of binary by continuous bounded variables
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Products of binary and continuous vars.
I Suppose term xy appears in a formulation

I Assume x ∈ {0, 1} and y ∈ [0, 1] is bounded
I means “either z = 0 or z = y”
I Replace xy by a new variable z
I Adjoin the following constraints:

z ∈ [0, 1]

y − (1− x) ≤ z ≤ y + (1− x)

−x ≤ z ≤ x

I ⇒Everything’s linear now!

[Fortet 1959]
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Products of binary and continuous vars.
I Suppose term xy appears in a formulation

I Assume x ∈ {0, 1} and y ∈ [yL, yU ] is bounded
I means “either z = 0 or z = y”
I Replace xy by a new variable z
I Adjoin the following constraints:

z ∈ [min(yL, 0),max(yU , 0)]

y − (1− x) max(|yL|, |yU |) ≤ z ≤ y + (1− x) max(|yL|, |yU |)
−xmax(|yL|, |yU |) ≤ z ≤ xmax(|yL|, |yU |)

I ⇒Everything’s linear now!

[L. et al. 2009]
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MSSC is a convexMINLP
min

x,y,P,χ,ξ

∑
i≤n

∑
j≤k

χij

∀i ≤ n, j ≤ k 0 ≤ χij ≤ Pij
∀i ≤ n, j ≤ k Pij − (1− xij)PU ≤ χij ≤ xijPU

∀i ≤ n, j ≤ k ‖pi − yj‖22 ≤ Pij ⇐ convex

∀j ≤ k
∑
i≤n

pixij =
∑
i≤n

ξij

∀i ≤ n, j ≤ k yj − (1− xij) max(|yL|, |yU |) ≤ ξij ≤ yj + (1− xij) max(|yL|, |yU |)

∀i ≤ n, j ≤ k − xij max(|yL|, |yU |) ≤ ξij ≤ xij max(|yL|, |yU |)

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ [yL, yU ]

x ∈ {0, 1}nk

P ∈ [0, PU ]nk

χ ∈ [0, PU ]nk

∀i ≤ n, j ≤ k ξij ∈ [min(yL, 0),max(yU , 0)]

yj , ξij , yL, yU are vectors inRm 193 / 306



How to solve it

I cMINLP isNP-hard
I Algorithms: Outer Approximation (OA),
Branch-and-Bound (BB)

I Best (open source) solver: Bonmin
I With k = 2, unfortunately. . .

Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution,

best possible 6.1855969 (32142.17 seconds)

I Interesting feature: the bound
guarantees we can’t to better than bound
all BB algorithms provide it
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Bonmin’s �rst solution

Alstom Vinci
Elektrobit AXA
Ford Deezer
Llamasoft Accenture
Amazon 2 Expedia
CSX Google
MITRE Aledade
Clarity Marriott
fragment 2 Amazon 1 & 3

WestRock
fragment 1
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Couple of things left to try

I Approximate `2 by `1 norm
`1 is a linearizable norm

I Randomly project the data
lose dimensions but keep approximate shape

196 / 306



Linearizing convexity
I Replace ‖pi − yj‖22 by ‖pi − yj‖1
I Warning: optima will change

but still within “clustering by distance” principle

∀i ≤ n, j ≤ k ‖pi − yj‖1 =
∑
a≤d
|pia − yja|

I Replace each | · | term by new vars.Qija ∈ [0, PU ]
Adjust PU in terms of ‖ · ‖1

I Adjoin constraints

∀i ≤ n, j ≤ k
∑
a≤d

Qija ≤ Pij

∀i ≤ n, j ≤ k, a ≤ d −Qija ≤ pia − yja ≤ Qija

I Obtain aMILP
Most advancedMILP solver: CPLEX
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CPLEX’s �rst solution

objective 112.24, bound 39.92, in 44.74s

AXA Vinci
Deezer Accenture
Ford Alstom
Marriott Expedia
Amazon 1-3 Elektrobit
Llamasoft Google
CSX Aledade
WestRok
MITRE
Clarity
fragments 1-2

Interrupted after 281s with bound 59.68
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Subsection 5

Clustering in high dimensions
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Themagic of random projections

I “Mathematics of big data”
I In a nutshell

I Clustering on A′ rather thanA
I Approximate results with arbitrarily high probability (wahp)

[Johnson & Lindenstrauss, 1984]
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Themagic of random projections

I “Mathematics of big data”
I In a nutshell

1. Given pts.Ai, . . . , An ∈ Rm withm large and ε ∈ (0, 1)

2. Pick “appropriate” k ≈ O( 1
ε2

lnn)

3. Sample k × dmatrix T (each comp. i.i.d.N (0, 1√
k
))

4. Consider projected pointsA′i = TAi ∈ Rk for i ≤ n

5. With prob→ 1 exponentially fast as k →∞

∀i, j ≤ n (1−ε)‖Ai−Aj‖2 ≤ ‖A′i−A′j‖2 ≤ (1+ε)‖Ai−Aj‖2

[Johnson & Lindenstrauss, 1984]
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Clustering Google images

[L. & Lavor, in press]
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k-means without random projections

VHimg = Map[Flatten[ImageData[#]] &, Himg];

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]

Out[29]= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

Too slow!
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k-means with random projections

Get["Projection.m"];

VKimg = JohnsonLindenstrauss[VHimg, 0.1];

VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]

Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

From 0.405s CPU time to 0.00232s
Same clustering
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Works on theMSSCMP formulation too!

min
x,y,s

∑
i≤n

∑
j≤d
‖Tpi − Tyj‖2

2 xij

∀j ≤ d 1
sj

∑
i≤n

Tpixij = Tyj

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d
∑
i≤n

xij = sj

∀j ≤ d yj ∈ Rm

x ∈ {0, 1}nd
s ∈ Nd


where T is a k ×m random projector
replace Ty by y′
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Works on theMSSCMP formulation too!

min
x,y′,s

∑
i≤n

∑
j≤d
‖Tpi − y′j‖2

2 xij

∀j ≤ d 1
sj

∑
i≤n

Tpixij = y′j

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d
∑
i≤n

xij = sj

∀j ≤ d y′j ∈ Rk

x ∈ {0, 1}nd
s ∈ Nd


(MSSC′)

I where k = O( 1
ε2

lnn)

I less data, |y′| < |y| ⇒ get solutions faster
I Yields smaller cMINLP
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Bonmin on randomly proj. data
objective 5.07, bound 0.48, stopped at 180s

Deezer Vinci
Ford AXA
Amazon 1-3 Accenture
CSX Alstom
MITRE Expedia
fragment 1 Elektrobit

Google
Aledade
Marriott
Llamasoft
WestRock
Clarity

fragment 2
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CPLEX on randomly proj. data

. . .although it doesn’t makemuch sense for ‖ · ‖1 norm. . .

objective 53.19, bound 20.68, stopped at 180s

Vinci AXA
Deezer Accenture
Expedia Alstom
Google Elektrobit
Aledade Marriott
Ford Llamasoft
Amazon 1-3 WestRock
CSX MITRE
Clarity fragment 1-2
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Many clusterings

This ain’t �nished. . .
I We obtainedmany di�erent clusterings
I Is there any common sense?
I How do we compare them?
I Can we extract useful information from the
comparison?

I Howmany clusters should we look for? Is k = 2OK?
I Did we just turn the issue of “I have too many data” into
“I have too many solutions”?
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Outline

Introduction
Decidability
E�ciency and Hardness
Some combinatorial
problems
NP-hardness

Systematics
Distance Geometry
The universal isometric
embedding
Dimension reduction
Distance geometry problem
Distance geometry inMP
DGP cones
Barvinok’s Naive Algorithm
Isomap for the DGP
Concluding remarks

Clustering in Natural Language

Clustering on graphs
Clustering in Euclidean
spaces
Distance resolution limit
MP formulations
Clustering in high
dimensions

Random projections in LP
Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression
Sparsity and `1minimization

Kissing Number Problem
Lower bounds
Upper bounds from SDP
Gregory’s upper bound
Delsarte’s upper bound
Pfender’s upper bound
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The gist

I LetA, b be very large, consider LP

min{c>x | Ax = b ∧ x ≥ 0}

I T short & fat normally sampled
I Then

Ax = b ∧ x ≥ 0 ⇔ TAx = Tb ∧ x ≥ 0

with high probability
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Linear feasibility

RestrictedLinearMembership (RLMX )
GivenA1, . . . , An, b ∈ Rm andX ⊆ Rn, ∃ ? x ∈ X s.t.

b =
∑
i≤n

xiAi

I LinearFeasibilityProblem (LFP) withX = Rn+

I IntegerFeasibilityProblem (IFP) withX = Zn+
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The shape of a set of points
I Losedimensionsbutnot toomuchaccuracy
GivenA1, . . . , An ∈ Rm �nd k � m and points
A′1, . . . , A

′
n ∈ Rk s.t. A andA′ “have almost the same

shape”
I What is the shape of a set of points?

A’

A

congruent sets have the same shape
I Approximate congruence⇔ distortion:
A,A′ have almost the same shape if
∀i < j ≤ n (1− ε)‖Ai −Aj‖ ≤ ‖A′i −A′j‖ ≤ (1 + ε)‖Ai −Aj‖

for some small ε > 0

Assume norms are all Euclidean
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Losing dimensions in the RLM

Given X ⊆ Rn and b, A1, . . . , An ∈ Rm, �nd k � m,
b′, A′1, . . . , A

′
n ∈ Rk such that:

∃x ∈ X b =
∑
i≤n

xiAi︸ ︷︷ ︸
high dimensional

i� ∃x ∈ X b′ =
∑
i≤n

xiA
′
i︸ ︷︷ ︸

low dimensional

with high probability
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Losing dimensions= “projection”

In the plane, hopeless

In 3D: no better
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Johnson-Lindenstrauss Lemma

Thm.
GivenA ⊆ Rm with |A| = n and ε > 0 there is k ∼ O( 1

ε2
lnn)

and a k ×mmatrix T s.t.

∀x, y ∈ A (1− ε)‖x− y‖ ≤ ‖Tx− Ty‖ ≤ (1 + ε)‖x− y‖

If k×mmatrixT is sampled componentwise fromN(0, 1√
k
),

thenA and TA have almost the same shape
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Sketch of a JLL proof by pictures
Thm.
Let T be a k × m rectangular ma-

trix with each component sampled from

N(0, 1√
k

), and u ∈ Rm s.t. ‖u‖ = 1.

Then E(‖Tu‖2) = 1
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Sampling to desired accuracy
I Distortion has low probability:

∀x, y ∈ A P(‖Tx− Ty‖ ≤ (1− ε)‖x− y‖) ≤ 1

n2

∀x, y ∈ A P(‖Tx− Ty‖ ≥ (1 + ε)‖x− y‖) ≤ 1

n2

I Probability ∃ pair x, y ∈ A distorting Euclidean
distance: union bound over

(
n
2

)
pairs

P(¬(A and TA have almost the same shape)) ≤
(n

2

) 2

n2
= 1−

1

n

P(A and TA have almost the same shape) ≥
1

n

⇒ re-sampling T gives JLL with arbitrarily high
probability
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In practice

I Empirically, sample T very few times (e.g. once will
do!)
on average ‖Tx− Ty‖ ≈ ‖x− y‖, and distortion decreases
exponentially with n

We only need a logarithmic number of dimensions in
function of the number of points

Surprising fact:
k is independent of the original number of dimensionsm
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Subsection 1

Projecting feasibility
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Projecting infeasibility (easy cases)
Thm.
T : Rm → Rk a JLL random projection, b, A1, . . . , An ∈ Rm a RLMX

instance. For any given vector x ∈ X , we have:

(i) If b =
n∑
i=1

xiAi then Tb =
n∑
i=1

xiTAi

(ii) If b 6=
n∑
i=1

xiAi thenP
(
Tb 6=

n∑
i=1

xiTAi

)
≥ 1− 2e−Ck

(iii) If b 6=
n∑
i=1

yiAi for all y ∈ X ⊆ Rn, where |X| is �nite, then

P
(
∀y ∈ X Tb 6=

n∑
i=1

yiTAi

)
≥ 1− 2|X|e−Ck

for some constant C > 0 (independent of n, k).
[arXiv:1507.00990v1/math.OC]
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Separating hyperplanes

When |X| is large, project separating hyperplanes instead

I ConvexC ⊆ Rm,x 6∈ C: then∃hyperplane c
separatingx,C

I In particular, true ifC = cone(A1, . . . , An) forA ⊆ Rm

I Wecan showx ∈ C ⇔ Tx ∈ TC withhigh
probability

I As above, if x ∈ C then Tx ∈ TC by linearity of T
Di�cult part is proving the converse

We can also project point-to-cone distances
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Projecting the separation
Thm.
Given c, b, A1, . . . , An ∈ Rm of unit norm s.t. b /∈ cone{A1, . . . , An} pointed, ε > 0,
c ∈ Rm s.t. c>b < −ε, c>Ai ≥ ε (i ≤ n), and T a random projector:

P
[
Tb /∈ cone{TA1, . . . , TAn}

]
≥ 1− 4(n+ 1)e−C(ε

2−ε3)k

for some constant C.
Proof
Let A be the event that T approximately preserves ‖c − χ‖2 and ‖c + χ‖2 for all χ ∈
{b, A1, . . . , An}. SinceA consists of 2(n+ 1) events, by the JLL Corollary (squared ver-
sion) and the union bound, we get

P(A ) ≥ 1− 4(n+ 1)e−C(ε
2−ε3)k

Now consider χ = b

〈Tc, T b〉 =
1

4
(‖T (c+ b)‖2 − ‖T (c− b)‖2)

by JLL ≤
1

4
(‖c+ b‖2 − ‖c− b‖2) +

ε

4
(‖c+ b‖2 + ‖c− b‖2)

= c>b+ ε < 0

and similarly 〈Tc, TAi〉 ≥ 0

[arXiv:1507.00990v1/math.OC]
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The feasibility projection theorem

Thm.
Given δ > 0, ∃ su�ciently largem ≤ n such that:

for any LFP inputA, bwhereA ism× n
we can sample a random k×mmatrixT with k � m and

P(orig. LFP feasible⇐⇒ proj. LFP feasible) ≥ 1− δ
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Subsection 2

Projecting optimality
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Notation

I P ≡ min{cx | Ax = b ∧ x ≥ 0} (original problem)

I TP ≡ min{cx | TAx = Tb ∧ x ≥ 0} (projected problem)

I v(P ) = optimal objective function value of P

I v(TP ) = optimal objective function value of TP
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The optimality projection theorem

I Assume feas(P ) is bounded
I Assume all optima of P satisfy

∑
j xj ≤ θ for some

given θ > 0
(prevents cones from being “too �at”)

Thm.
Given δ > 0,

v(P )− δ ≤ v(TP ) ≤ v(P ) (∗)

holds with arbitrarily high probability (w.a.h.p.)

in fact (∗) holds with prob. 1− 4ne−C(ε
2−ε3)k where

ε = δ/(2(θ + 1)η) and η = O(‖y‖2) where y is a dual optimal
solution of P havingminimum norm
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The easy part

Show v(TP ) ≤ v(P ):
I Constraints of P : Ax = b ∧ x ≥ 0

I Constraints of TP : TAx = Tb ∧ x ≥ 0

I ⇒ constraints of TP are lin. comb. of constraints ofP

I ⇒ any solution of P is feasible in TP
(btw, the converse holds almost never)

I P and TP have the same objective function

I ⇒ TP is a relaxation of P ⇒ v(TP ) ≤ v(P )
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The hard part (sketch)
I Eq. (11) equivalent to P for δ = 0

cx = v(P )− δ
Ax = b
x ≥ 0

 (11)

Note: for δ > 0, Eq. (11) is infeasible

I By feasibility projection theorem,

cx = v(P )− δ
TAx = Tb

x ≥ 0


is infeasible w.a.h.p. for δ > 0

I Hence cx < v(P )− δ ∧ TAx = Tb ∧ x ≥ 0 infeasible w.a.h.p.
I ⇒ cx ≥ v(P )− δ holds w.a.h.p. for x ∈ feas(TP )

I ⇒ v(P )− δ ≤ v(TP )
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Subsection 3

Solution retrieval
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Projected solutions are infeasible in P

I Ax = b ⇒ TAx = Tb by linearity

I However,
Thm.
For x ≥ 0 s.t. TAx = Tb,Ax = bwith probability zero

I Can’t get solution for original LFP using projected
LFP!
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Solution retrieval from optimal basis

I Primal min{c>x | Ax = b ∧ x ≥ 0} ⇒
dual max{b>y | A>y ≤ c}

I Let x′ = sol(TP ) and y′ = sol(dual(TP ))

I ⇒ (TA)>y′ = (A>T>)y′ = A>(T>y′) ≤ c

I ⇒ T>y′ is a solution of dual(P )

I ⇒ we can compute an optimal basis J for P

I SolveAJxJ = b, get xJ , obtain a solution x∗ of P
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Subsection 4

Quantile regression
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Regression
I multivariate random var.X
function y = f(X)
sample {(ai, bi) ∈ Rp × R | i ≤ m}

I sample mean:

µ̂ = argmin
µ∈R

∑
i≤m

(bi − µ)2

I sample mean conditional toX = A = (aij):

ν̂ = argmin
ν∈Rp

∑
i≤m

(bi − νai)2
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Quantile regression

I sample median:

ξ̂ = argmin
ξ∈R

∑
i≤m
|bi − ξ|

= argmin
ξ∈R

∑
i≤m

(
1

2
max(bi − ξ, 0)− 1

2
min(bi − ξ, 0)

)

I sample τ-quantile:

ξ̂ = argmin
ξ∈R

∑
i≤m

(τ max(bi − ξ, 0)− (1− τ)min(bi − ξ, 0))

I sample τ-quantile conditional toX = A = (aij):

β̂ = argmin
β∈Rp

∑
i≤m

(τ max(bi − βai, 0)− (1− τ)min(bi − βai, 0))
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Linear Programming formulation

min τu+ + (1− τ)u−

A(β+ − β−) + u+ − u− = b
β, u ≥ 0



I Parameters: A ism× p, b ∈ Rm, τ ∈ R
I Decision variables: β+, β− ∈ Rp, u+, u− ∈ Rm

I LP constraint matrix ism× (2p+ 2m)
density: p/(p+m)— can be high
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Large datasets
I Russia Longitudinal Monitoring Survey
household data (hh1995f)

I m = 3783, p = 855
I A = hf1995f, b = log avg(A)
I 18.5% dense
I poorly scaled data, CPLEX yields infeasible (!!!) after
around 70s CPU

I quantreg in R fails

I 14596 RGB photos onmyHD, scaled to 90× 90

I m = 14596, p = 24300
I each row ofA is an image vector, b =

∑
A

I 62.4% dense
I CPLEX killed by OS after≈30min (presumably for
lack of RAM) on 16GB
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Results on large datasets
Instance Projection Original

τ m p k opt CPU feas opt CPU qnt err
hh1995f

0.25 3783 856 411 0.00 8.53 0.038% 71.34 17.05 0.16
0.50 0.00 8.44 0.035% 89.17 15.25 0.05
0.75 0.00 8.46 0.041% 65.37 31.67 3.91

jpegs
0.25 14596 24300 506 0.00 231.83 0.51% 0.00 3.69E+5 0.04
0.50 0.00 227.54 0.51% 0.00 3.67E+5 0.05
0.75 0.00 228.57 0.51% 0.00 3.68E+5 0.05

random
0.25 1500 100 363 0.25 2.38 0.01% 1.06 6.00 0.00
0.50 0.40 2.51 0.01% 1.34 6.01 0.00
0.75 0.25 2.57 0.01% 1.05 5.64 0.00
0.25 2000 200 377 0.35 4.29 0.01% 2.37 21.40 0.00
0.50 0.55 4.37 0.01% 3.10 23.02 0.00
0.75 0.35 4.24 0.01% 2.42 21.99 0.00

feas = 100
‖Ax− b‖2
‖b‖1/m

qnt err =
‖qnt− proj. qnt‖2

# cols

IPMwith no simplex crossover:
solution w/o opt. guarantee
cannot trust results
simplex method won’t work
due to ill-scaling and size
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Subsection 5

Sparsity and `1minimization
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Coding problem 1

I Need to send sparse vector y ∈ Rn with n� 1

1. Sample full rank k × nmatrixA with k � n
preliminary: both parties knowA

2. Encode b = Ay ∈ Rk

3. Send b
I Decode by �nding sparsest x s.t.Ax = b
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Coding problem 2
I Need to send a sequencew ∈ Rk

I Encoding n× kmatrixQ, with n� k, send z = Qw ∈ Rn
preliminary: both parties knowQ

I (Low) prob. e of error: e n comp. of z sent wrong
they can be totally o�

I Receive (wrong) vector z̄ = z + xwhere x is sparse

I Can we recover z?
I Choose k × nmatrixA s.t.AQ = 0

I Let b = Az̄ = A(z + x) = A(Qw + x) = AQw +Ax = Ax

I Suppose we can �nd sparsest x′ s.t.Ax′ = b

I ⇒ we can recover z′ = z̄ − x′

I Recoverw′ = (Q>Q)−1Q>z′

Likelihood of getting small ‖w − w′‖?
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Sparsest solution of a linear system

I Problemmin{‖x‖0 | Ax = b} isNP-hard
Reduction fromExact Cover by 3-Sets [Garey&Johnson 1979, A6[MP5]]

I Relax tomin{‖x‖1 | Ax = b}
I Reformulate to LP:

min
∑
j≤n

sj

∀j ≤ n −sj ≤ xj ≤ sj
Ax = b

 (†)

I Empirical observation: can often �nd optimum
Too often for this to be a coincidence

I Theoretical justi�cation by Candès, Tao, Donoho
“Mathematics of sparsity”, “Compressed sensing”
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Graphical intuition 1

I Wouldn’t work with `2, `∞ norms
Ax = b �at at poles— “zero probability of sparse solution”

Warning: this is not a proof, and there are cases not explained by this drawing [Candès 2014]
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Graphical intuition 2

I x̂ such thatAx̂ = b approximates x in `p norms
I p = 1 only convex case zeroing some components

From [Davenport et al., 2012]; again, this is not a proof!
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Not for the faint-hearted

1. Hand, Voroninski:
arxiv.org/pdf/1611.03935v1.pdf

2. Candès and Tao:
statweb.stanford.edu/~candes/papers/DecodingLP.pdf

3. Candès:
statweb.stanford.edu/~candes/papers/ICM2014.pdf

4. Davenport et al.:
statweb.stanford.edu/~markad/publications/

ddek-chapter1-2011.pdf

5. Lustig et al.:
people.eecs.berkeley.edu/~mlustig/CS/CSMRI.pdf

6. and many more (look for “compressed sensing”)
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Finding orthogonalA,Q

I [Matousek, Gärtner 2007]:
I sampleA componentwise fromN(0, 1)
I approximately preserves Euclidean distances by JLL
I then “�ndQ s.t.QA = 0”
I in practice, Gaussian elim. on underdet. systemAQ = 0

I Instead:
I sample n× nmatrix from uniform distribution
I full rank with probability 1
I �nd eigenvectors (orthonormal basis)
I random rotation of standard basis: used in JLL proof
I Q: �rst k eigenvectors,A: last n− k eigenvectors
I AQ = 0 by construction!
I Empirically fast
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Frommessage to recovery
Procedure:
1. message: character string s
2. w = bin(char2asc(s))

3. send z = Qw, receive z̄ = z + x, let b = Az̄
δ = sparsity of x,Q is n× k full rank with n� k

4. use (†) to �nd sparsest x′ satisfyingAx = b

5. z′ = z̄ − x′

6. w′ = cap(round((Q>Q)−1Q>z′), [0, 1])

7. s′ = asc2char(bytechunk(w′))

8. evaluate serr = ‖s− s′‖

Parameter choice [Matousek]:
I δ = 0.08

I n = 4k
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Improvements?

I Reduce CPU time spent on LP
I n = 4k redundancy for δ = 0.08 error seems excessive
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LP size reduction

I Ax = b is an (n− k)× n system
I n− k “relatively close” to n
I Exploit JLL to project columns!
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Computational results
k n δ ε α sorgerr sprjerr CPUorg CPUprj

80 320 0.08 0.20 0.02 0 0 1.05 0.56
128 512 0.08 0.20 0.02 0 0 2.72 1.10
216 864 0.08 0.20 0.02 0 0 8.83 2.12
248 992 0.08 0.20 0.02 0 0 12.53 2.53
320 1280 0.08 0.20 0.02 0 0 23.70 3.35
408 1632 0.08 0.20 0.02 0 0 43.80 4.75

I k = |s|, n = 4k, δ = 0.08, ε = 0.2

I α = Achlioptas density
P(Tij = −1) = P(Tij = 1) = α

2
P(Tij = 0) = 1− α

I serr = number of di�erent
characters

I CPU: seconds of elapsed time

I 1 sampling ofA,Q, T
Sentence: Conticuere omnes intentique ora tenebant, inde toro [...]
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Reducing redundancy in n

I How about taking n = (1 + δ)k?
I n− k ≈ δk is very small
I MakesAx = b very short and fat
I Prevents compressed sensing fromworking correctly
I Need n− k ≈ k, n ≈ k andAQ = 0: impossible
I Relax toAQ ≈ 0?
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Motivational test?

k n sorgerr sprjerr CPUorg CPUprj

80 86 0 − 0.06 −
128 138 0 − 0.08 −
216 233 0 − 0.10 −
320 346 1 − 0.17 −
408 441 1 − 0.24 −
1880 2030 14 − 5.42 −

I δ′ = δ = 0.08

I −: |rows| are n− k = 0.074× cols
JLL cannot project further

I accuracy not great and getting worse
I Retrieval capacity also depends on k, not just δ
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The JLL again

AimA>, Q of size n× k withAQ ≈ 0

I JLLCorollary:
∃O(ed) approximately orthogonal vectors inRd

I Algorithm:
1. d = O(lnn)
2. T sampled componentwise fromN(0, 1√

d
) (as in JLL)

3. cols of T In are n = O(ed) almost orthog. vect. inRd

4. Pf.: JLL approximately preserves distances and scalar
products

Concentration of measure: accuracy increases with d
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Strategy

I Aim at k × n A and n× k Q s.t.AQ ≈ 0
with n = (1 + δ′)k and δ′ “small” (say δ′ < 1)

I ⇒ 2k approximately orthogonal vectors inRn with
n < 2k

I JLL: errors too large for such “small” sizes
I Note we only needAQ = 0:
accept non-orthogonality in rows ofA& cols ofQ
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LP for almost orthogonality

I SampleQ and computeA using an LP
WLOG: we could sampleA and computeQ

I max
∑
i≤k
j≤n

Uniform(−1, 1)Aij

I subject toAQ = 0 andA ∈ [−1, 1]

I for k = 328 and n = 590 (i.e. δ′ = 0.8):
I error:

∑
AiQ

j = O(10−10)
I rank: full
I CPU: 688s (meh)

I for k = 328 and n = 492 (i.e. δ′ = 0.5): the same
I for k = 328 and n = 426 (i.e. δ′ = 0.3): CPU 470s
I Reduce CPU time by solving k LPs decidingAi (for
i ≤ k)
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Computational results

k n δ′ sorgerr sprjerr CPUorg CPUprj

328 426 0.3 182 15 2.45 1.87
328 426 0.3 154 0 2.20 1.49
328 459 0.4 0 1 4.47 2.45
328 459 0.4 5 17 2.86 1.46
328 492 0.5 60 0 4.53 1.18
328 492 0.5 34 0 5.38 1.18
328 590 0.8 14 0 8.30 1.41
328 590 0.8 107 4 6.76 1.43

I CPU for computingA,Q not counted:
precomputation is possible

I Approximate beats precise!
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Conclusion

I If s is short, set δ′ = δ and use compressed sensing (CS)
I If s is longer, try increasing δ′ and use CS
I If s is very long, use JLL-projected CS
I Can use approximately orthogonalA,Q too

Conticuere omnes, intentique ora tenebant.
Inde toro pater Aeneas sic orsus ab alto:
Infandum, regina, iubes renovare dolorem.
Troianas ut opes et lamentabile regnum eruerint Danai
Quaequae ipse miserrima vidi et quorum pars magna fui.

[Virgil, Aeneid, Cantus II]

k = 1896, n = 2465

δ′ = 0.3: min s.t. CS is accurate

method error CPU
CS 0 29.67s
JLL-CS 2 17.13s

These results are consistentover3 samplings

Technique applies to all sparse retrieval problems
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De�nition

I Optimization version. GivenK ∈ N, determine the
minimum number kn(K) of unit spheres that can be
placed adjacent to a central unit sphere so their
interiors do not overlap

I Decision version. Given n,K ∈ N, is kn(K) ≤ n?
in other words, determine whether n unit spheres can be placed
adjacent to a central unit sphere so that their interiors do not
overlap

Funny story: Newton and Gregory went down the pub. . .
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Some examples

n = 6,K = 2 n = 12,K = 3 more dimensions

2 1 0 -1 -2210-1-2

-2

-1

0

1

2
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Radius formulation

Given n,K ∈ N, determine whether there exist n vectors
x1, . . . , xn ∈ RK such that:

∀i ≤ n ‖xi‖2
2 = 4

∀i < j ≤ n ‖xi − xj‖2
2 ≥ 4
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Contact point formulation

Given n,K ∈ N, determine whether there exist n vectors
x1, . . . , xn ∈ RK such that:

∀i ≤ n ‖xi‖2
2 = 1

∀i < j ≤ n ‖xi − xj‖2
2 ≥ 1
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Spherical codes

I SK−1 ⊂ RK unit sphere centered at origin
I K-dimensional spherical z-code:

I (�nite) subset C ⊂ SK−1

I ∀x 6= y ∈ C x · y ≤ z
I non-overlapping interiors:

∀i < j ‖xi − xj‖2
2 ≥ 1

⇔ ‖xi‖2
2 + ‖xj‖2

2 − 2xi · xj ≥ 1

⇔ 1 + 1− 2xi · xj ≥ 1

⇔ 2xi · xj ≤ 1

⇔ xi · xj ≤
1

2
= cos

(π
3

)
= z
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Subsection 1

Lower bounds
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Lower bounds

I Construct spherical 1
2
-code C with |C| large

I Nonconvex NLP formulations
I SDP relaxations
I Combination of the two techniques
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MINLP formulation

Maculan, Michelon, Smith 1995

Parameters:
I K : space dimension
I n: upper bound to kn(K)

Variables:
I xi ∈ RK : center of i-th vector
I αi = 1 i� vector i in con�guration

max
n∑
i=1

αi

∀i ≤ n ||xi||2 = αi
∀i < j ≤ n ||xi − xj ||2 ≥ αiαj
∀i ≤ n xi ∈ [−1, 1]K

∀i ≤ n αi ∈ {0, 1}
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Reformulating the binary products

I Additional variables: βij = 1 i� vectors i, j in
con�guration

I Linearize αiαj by βij
I Add constraints:

∀i < j ≤ n βij ≤ αi

∀i < j ≤ n βij ≤ αj

∀i < j ≤ n βij ≥ αi + αj − 1
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AMPL and Baron

I CertifyingYES
I n = 6,K = 2: OK, 0.60s
I n = 12,K = 3: OK, 0.07s
I n = 24,K = 4: FAIL, CPU time limit (100s)

I CertifyingNO
I n = 7,K = 2: FAIL, CPU time limit (100s)
I n = 13,K = 3: FAIL, CPU time limit (100s)
I n = 25,K = 4: FAIL, CPU time limit (100s)

Almost useless
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Modelling the decision problem

max
x,α

α

∀i ≤ n ||xi||2 = 1
∀i < j ≤ n ||xi − xj||2 ≥ α
∀i ≤ n xi ∈ [−1, 1]K

α ≥ 0


I Feasible solution (x∗, α∗)

I KNP instance is YES i� α∗ ≥ 1

[Kucherenko, Belotti, Liberti, Maculan,Discr. Appl. Math. 2007]

269 / 306



AMPL and Baron
I CertifyingYES

I n = 6,K = 2: FAIL, CPU time limit (100s)
I n = 12,K = 3: FAIL, CPU time limit (100s)
I n = 24,K = 4: FAIL, CPU time limit (100s)

I CertifyingNO

I n = 7,K = 2: FAIL, CPU time limit (100s)
I n = 13,K = 3: FAIL, CPU time limit (100s)
I n = 25,K = 4: FAIL, CPU time limit (100s)

Apparently even more useless
But more informative (arccosα =min. angular sep)

CertifyingYESbyα ≥ 1

I n = 6,K = 2: OK, 0.06s
I n = 12,K = 3: OK, 0.05s
I n = 24,K = 4: OK, 1.48s
I n = 40,K = 5: FAIL, CPU time limit (100s)
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What about polar coordinates?
I ∀i ≤ n xi = (xi1, . . . , xiK) 7→ (ϑi1, . . . , ϑi,K−1)

I Formulation

(†) ∀k ≤ K ρ sinϑi,k−1

K−1∏
h=k

cosϑih = xik

(‡) ∀i < j ≤ n ‖xi − xj‖2
2 ≥ ρ2

∀i ≤ n, k ≤ K (sin(ϑik))
2 + (cos(ϑik))

2 = 1

(optional) ρ = 1

I Only need to decide sik = sinϑik and cik = cosϑik
I Replace x in (‡) using (†): get polyprog in s, c
I Numerically more challenging to solve (polydeg 2K)

I OPENQUESTION: useful for bounds?
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SDP relaxation of Euclidean distances

I Linearization of scalar products

∀i, j ≤ n xi · xj −→ Xij

whereX is an n× n symmetric matrix
I ‖xi‖2

2 = xi · xi = Xii

I ‖xi−xj‖2
2 = ‖xi‖2

2 + ‖xj‖2
2− 2xi ·xj = Xii +Xjj − 2Xij

I X = xx> ⇒ X − xx> = 0makes linearization exact
I Relaxation:

X − xx> � 0⇒ Schur(X, x) =

(
IK x>

x X

)
� 0
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SDP relaxation of binary constraints

I ∀i ≤ n αi ∈ {0, 1} ⇔ α2
i = αi

I LetA be an n× n symmetric matrix

I Linearize αiαj byAij (hence α2
i byAii)

I A = αα>makes linearization exact

I Relaxation: Schur(A,α) � 0
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Subsection 2

Upper bounds from SDP
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SDP relaxation of [MMS95]

max
n∑
i=1

αi

∀i ≤ n Xii = αi
∀i < j ≤ n Xii +Xjj − 2Xij ≥ Aij
∀i ≤ n Aii = αi

∀i < j ≤ n Aij ≤ αj
∀i < j ≤ n Aij ≤ αi
∀i < j ≤ n Aij ≥ αi + αj − 1

Schur(X, x) � 0
Schur(A,α) � 0

∀i ≤ n xi ∈ [−1, 1]K

α ∈ [0, 1]n

X ∈ [−1, 1]n
2

A ∈ [0, 1]n
2
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Python, PICOS andMosek

I bound always equal to n
I prominent failure :-(
I Why?

I can combine inequalities to removeA from SDP

∀i < j Xii +Xjj − 2Xij ≥ Aij ≥ αi + αi − 1

⇒ Xii +Xjj − 2Xij ≥ αi + αi − 1

(then eliminate all constraints inA)
I integrality of α completely lost
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SDP relaxation of [KBLM07]

max α
∀i ≤ n Xii = 1

∀i < j ≤ n Xii +Xjj − 2Xij ≥ α

X ∈ [−1, 1]n
2

X � 0
α ≥ 0
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Python, PICOS andMosek

WithK = 2

n α∗

2 4.00
3 3.00
4 2.66
5 2.50
6 2.40
7 2.33
8 2.28
9 2.25
10 2.22
11 2.20
12 2.18
13 2.16
14 2.15
15 2.14
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Python, PICOS andMosek
WithK = 3

Enforces some separation between “relaxed vectors”
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An SDP-based heuristic?

1. X∗ ∈ Rn2 : SDP relaxation solution of [KBLM07]
2. Perform PCA, get x̄ ∈ RnK

3. Local NLP solver on [KBLM07] with starting point x̄

However. . .
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TheUselessness Theorem

Thm.
1. The SDP relaxation of [KBLM07] is useless
2. In fact, it is extremely useless

1. Part 1: Uselessness
I Independent ofK:
no useful bounds in function ofK

2. Part 2: Extreme uselessness
(a) For all n, the bound is 2n

n−1
(b) ∃ opt.X∗ with eigenvalues 0, n

n−1 , . . . ,
n
n−1

By 2(b), applyingMDS/PCAmakes no sense
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Proof of extreme uselessness

Strategy:
I Pull a simple matrix solution out of a hat
I Write primal and dual SDP of [KBLM07]
I Show it is feasible in both
I Hence it is optimal
I Analyse solution:

I all n− 1 positive eigenvalues are equal
I its objective function value is 2n/(n− 1)
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Primal SDP

∀1 ≤ i ≤ j ≤ n letBij = (1ij) and 0 elsewhere

quanti�er natural form standard form dual var
maxα maxα

∀i ≤ n Xii = 1 Eii •X = 1 ui
∀i < j ≤ n Xii +Xjj − 2Xij ≥ α Aij •X + α ≤ 0 wij

Aij = −Eii − Ejj + Eij + Eji

∀i < j ≤ n Xij ≤ 1 (Eij + Eji) •X ≤ 2 yij
∀i < j ≤ n Xij ≥ −1 (−Eij − Eji) •X ≤ 2 zij

X � 0 X � 0
α ≥ 0 α ≥ 0
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Dual SDP

min
∑
i

ui + 2
∑
i<j

(yij + zij)∑
i

uiEii +
∑
i<j

(
(yij − zij)(Eij − Eji) + wijAij

)
� 0

∑
i<j

wij ≥ 1

w, y, z ≥ 0

Simplify |v| = y + z, v = y − z:

min
∑
i

ui + 2
∑
i<j

|vij |∑
i

uiEii +
∑
i<j

(
vij(Eij − Eji) + wijAij

)
� 0

∑
i<j

wij ≥ 1

w, v ≥ 0
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Pulling a solution out of a hat

α∗ =
2n

n− 1

X∗ =
n

n− 1
In −

1

n− 1
1n

u∗ =
2

n− 1

w∗ =
1

n(n− 1)

v∗ = 0

where 1n = all-one n× nmatrix
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Solution veri�cation
I linear constraints: by inspection
I X � 0: eigenvalues ofX∗ are 0, n

n−1
, . . . , n

n−1

I
∑

i uiEii +
∑

i<j(vij(Eij − Eji) + wijAij) � 0:∑
i

u∗iEii +
∑
i<j

w∗ijAij

=
2

n− 1

∑
i

Eii +
1

n(n− 1)

∑
i<j

Aij

=
2

n− 1
In +

1

n(n− 1)

(
− (n− 1)In + (1n − In)

)
=

1

n(n− 1)
1n � 0
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Corollary

lim
n→∞

v(n, [KBLM07]) = lim
n→∞

2n

n− 1
= 2

as observed in computational experiments

287 / 306



Subsection 3

Gregory’s upper bound
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Surface upper bound
Gregory 1694, Szpiro 2003
Consider a kn(3) con�guration
inscribed into a super-sphere of
radius 3. Imagine a lamp at the
centre of the central sphere that
casts shadows of the surround-
ing balls onto the inside sur-
face of the super-sphere. Each
shadowhas a surface area of 7.6;
the total surface of the super-
ball is 113.1. So 113.1

7.6 = 14.9 is an
upper bound to kn(3).

At end of XVII century, yielded Newton/Gregory dispute
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Subsection 4

Delsarte’s upper bound
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Pair distribution on sphere surface
I Spherical z-code C has xi · xj ≤ z (i < j ≤ n = |C|)

∀t ∈ [−1, 1] σt =
1

n

∣∣{(i, j) | i, j ≤ n ∧ xi · xj = t}
∣∣

I t-code: let σt = 0 for t ∈ (1/2, 1)

I |C| = n <∞: only �nitely many σt 6= 0∫
[−1,1]

σtdt =
∑

t∈[−1,1]

σt =
1

n
|all pairs| = n2

n
= n

σ1 =
1

n
n = 1

∀t ∈ (1/2, 1) σt = 0

∀t ∈ [−1, 1] σt ≥ 0

|{σt > 0 | t ∈ [−1, 1]}| < ∞
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Growing Delsarte’s LP
I Decision variables: σt, for t ∈ [−1, 1]

I Objective function:

max |C| = maxn = max
σ

∑
t∈[−1,1]

σt

= σ1 + max
σ

∑
t∈[−1,1/2]

σt = 1 + max
σ

∑
t∈[−1,1/2]

σt

Note n not a parameter in this formulation

I One constraint:

∀t ∈ [−1, 1/2] σt ≥ 0

I LP unbounded! — needmore constraints
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Gegenbauer cuts
I Look for function familyF : [−1, 1]→ R s.t.

∀φ ∈ F
∑

t∈[−1,1/2]

φ(t)σt ≥ 0

I Most popularF : Gegenbauer polynomialsGK
h

I Special caseGKh = P γ,γh of Jacobi polynomials (where γ = (K − 2)/2)

Pα,βh =
1

2h

h∑
i=0

(
h+ α

i

)(
h+ β

h− 1

)
(t+ 1)i(t− 1)h−i

I Matlab knows them: GKh (t) = gegenbauerC(h, (K − 2)/2, t)

I Octave knows them: GKh (t) = gsl_sf_gegenpoly_n(h, K−22 , t)

need command pkg load gsl before function call

I TheyencodedependenceonK
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Delsarte’s LP

I Primal:

1 + max
∑

t∈[−1, 1
2

]

σt

∀h ∈ H
∑

t∈[−1, 1
2

]

GK
h (t)σt ≥ −GK

h (1)

∀t ∈ [−1, 1
2
] σt ≥ 0.

 [DelP]
I Dual:

1 + min
∑
h∈H

(−GK
h (1))dh

∀t ∈ [−1, 1
2
]

∑
h∈H

GK
h (t)dh ≥ 1

∀h ∈ H dh ≤ 0.

 [DelD]
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Delsarte’s theorem

I [Delsarte et al., 1977]

Theorem
Let d0 > 0 and F : [−1, 1]→ R such that:

(i) ∃H ⊆ N ∪ {0} and d ∈ R|H|+ ≥ 0 s.t. F (t) =
∑
h∈H

chG
K
h (t)

(ii) ∀t ∈ [−1, z] F (t) ≤ 0

Then kn(K) ≤ F (1)
d0

I Proof based on properties of Gegenbauer polynomials

I Best upper bound:minF (1)/d0⇒min
d0=1

F (1)⇒ [DelD]

I [DelD] “models” Delsarte’s theorem
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Delsarte’s normalized LP (GK
h (1) = 1)

I Primal:

1 + max
∑

t∈[−1, 1
2

]

σt

∀h ∈ H
∑

t∈[−1, 1
2

]

GK
h (t)σt ≥ −1

∀t ∈ [−1, 1
2
] σt ≥ 0

 [DelP]
I Dual:

1 + min
∑
h∈H

(−1)dh

∀t ∈ [−1, 1
2
]
∑
h∈H

GK
h (t)dh ≥ 1

∀h ∈ H dh ≤ 0

 [DelD]
I d0 = 1⇒ remove 0 fromH
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Focus on normalized [DelD]

Rewrite−dh as dh:

1 + min
∑
h∈H

dh

∀t ∈ [−1, 1
2
]
∑
h∈H

GK
h (t)dh ≤ −1

∀h ∈ H dh ≥ 0

 [DelD]

Issue: semi-in�nite LP (SILP) (how do we solve it?)
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Approximate SILP solution

I Only keep �nitely many constraints
I Discretize [−1, 1] with a �nite T ⊂ [−1, 1]

I Obtain relaxation [DelD]T :

val([DelD]T ) ≤ val([DelD])

I Risk: val([DelD]T ) < minF (1)/d0

not a valid bound to kn(K)

I Happens if soln. of [DelD]T infeasible in [DelD]
i.e. infeasible w.r.t. some of the∞ly many removed constraints
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SILP feasibility

I Given SILP S̄ ≡ min{c>x | ∀i ∈ Ī a>i x ≤ bi}
I Relax to LP S ≡ min{c>x | ∀i ∈ I a>i x ≤ bi}, where I ( Ī

I Solve S, get solution x∗

I Let ε = max{a>i x∗ − bi | i ∈ Ī}
continuous optimization w.r.t. single var. i

I If ε ≤ 0 then x∗ feasible in S̄
⇒ val(S̄) ≤ c>x∗

I If ε > 0 re�ne S and repeat
I Apply to [DelD]T , get solution d∗ feasible in [DelD]
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[DelD] feasibility

1. Choose discretization T of [−1, 1/2]

2. Solve

1 + min
∑
h∈H

dh

∀t ∈ T
∑
h∈H

GKh (t)dh ≤ −1

∀h ∈ H dh ≥ 0

 [DelD]T
get solution d∗

3. Solve ε = max{1 +
∑
h∈H

GK
h (t)dh | t ∈ [−1, 1/2]}

4. If ε ≤ 0 then d∗ feasible in [DelD]
⇒ kn(K) ≤ 1 +

∑
h∈H d

∗
h

5. Else re�ne T and repeat from Step 2
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Subsection 5

Pfender’s upper bound
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Pfender’s upper bound theorem
Thm.
Let Cz = {xi ∈ SK−1 | i ≤ n ∧ ∀j 6= i (xi · xj ≤ z)}; c0 > 0; f : [−1, 1]→ R s.t.:
(i)

∑
i,j≤n

f(xi · xj) ≥ 0 (ii) f(t) + c0 ≤ 0 for t ∈ [−1, z] (iii) f(1) + c0 ≤ 1

Then n ≤ 1
c0

([Pfender 2006])
Let g(t) = f(t) + c0

n2c0 ≤ n2c0 +
∑
i,j≤n

f(xi · xj) by (i)

=
∑
i,j≤n

(f(xi · xj) + c0) =
∑
i,j≤n

g(xi · xj)

≤
∑
i≤n

g(xi · xi) since g(t) ≤ 0 for t ≤ z and xi ∈ Cz for i ≤ n

= ng(1) since ‖xi‖2 = 1 for i ≤ n
≤ n since g(1) ≤ 1.
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Pfender’s LP

I Condition (i) of Theorem valid for conic combinations of
suitable functionsF :

f(t) =
∑
h∈H

chfh(t) for some ch ≥ 0,

e.g.F =Gegenbauer polynomials (again)

I Get SILP

max
c∈R|H|

c0 (minimize 1/c0 ≥ n)

∀ t ∈ [−1, z]
∑
h∈H

chG
K
h (t) + c0 ≤ 0 (ii)∑

h∈H
chG

K
h (1) + c0 ≤ 1 (iii)

∀ h ∈ H ch ≥ 0 (conic comb.)


I Discretize [−1, z] by �nite T , solve LP, check validity (again)
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Delsarte’s and Pfender’s theorem compared
I Delsarte & Pfender’s theorem look similar:

Delsarte Pfender
(i) F (t)G. poly comb (i) f(t)G. poly comb
(ii) ∀t ∈ [−1, z] F (t) ≤ 0 (ii) ∀t ∈ [−1, z] f(t) + c0 ≤ 0

(iii) f(1) + c0 ≤ 1

⇒ kn(K) ≤ F (1)
d0

⇒ kn(K) ≤ 1
c0

I Try settingF (t) = f(t) + c0: condition (ii) is the same

I By condition (iii) in Pfender’s theorem

kn(K) ≤ F (1)

d0

=
f(1) + c0

c0

≤ 1

c0

⇒Delsarte bound at least as tight as Pfender’s
I Delsarte (i)⇒

∫
[−1,1] F (t)dt ≥ 0⇒

∫
[−1,1](f(t) + c0)dt ≥ 0

Pfender (i)⇒
∫
[−1,1] f(t)dt ≥ 0more stringent

I Delsarte requires weaker condition and yields tighter bound
Conditioned on F (t) = f(t) + c0, not a proof! Verify computationally
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The �nal, easy improvement

I However you compute your upper boundB:
I The number of surrounding balls is integer
I If kn(K) ≤ B, then in fact kn(K) ≤ bBc
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THEEND
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