

### **Mixed production problem**

A firm is planning the production of 3 products A1, A2, A3.

In a month production can be active for 22 days.

The following are given:

- maximum demands (units=100Kg)
- selling price (\$/100Kg)
- production costs (per 100Kg of product)
- production quotas (maximum amount of 100Kg units of product that would be produced in a day if all production lines were dedicated to the product).



# **Mixed production problem**

| Product          | A1      | A2      | A3      |
|------------------|---------|---------|---------|
| Maximum demand   | 5300    | 4500    | 5400    |
| Selling price    | \$124   | \$109   | \$115   |
| Production cost  | \$73.30 | \$52.90 | \$65.40 |
| Production quota | 500     | 450     | 550     |

Formulate an AMPL model to determine the production plan to maximize the total income



What is to be identified to write the mathematical formulation?

- Decision variables
- Objective function
- Constraints
- Parameters

What are the decision variables?

$$x_i$$
  $i \in \{1,2,3\}$ : quantity of product i to produce any bound?  $\forall i \in \{1,2,3\}$   $x_i \ge 0$ 



What is the objective function?

determine the production plan to maximize the total income



each x; has a selling price and a production cost



What are the constraints?

demand: 
$$\forall i \in \{1,2,3\}$$
  $x_i \leq d_i$ 

production: 
$$\sum_{i=1}^{3} \frac{x_i}{q_i} \le P$$

P = number of production days in a month



What are the parameters?

P = number of production days in a month

 $d_i$  = maximum market demand for product i

 $v_i$  = selling price for product i

 $c_i$  = production cost for product i

 $q_i$  = maximum production quota for product i



### Modelling and solving the problem using AMPL

Remember that it is necessary to write:

- 1. a model file (extension .mod)
  - contains the mathematical formulation of the problem
  - logical structure of the problem -
- 2. a data file (extension .dat)
  - contains the numerical values of the problem parameters
  - more data files may correspond to the same model -
- 3. (possibly) a run file (extension .run)
  - specifies the solution algorithm



### **AMPL** model/data

#### **Model file**

Logical structure:

1.Parameters \_\_\_\_\_\_ param name\_parameter;
2.Variables \_\_\_\_\_ var name\_variable;
3.Objective function \_ maximize (minimize) name\_objective:...
4.Constraint(s) \_\_\_\_ subject to name constraint: ...

#### **Data file**

```
param name_parameter1 := ...;
param name_parameter2 := ...;
```



### **AMPL** model – mixed production

Starting from the mathematical formulation, try to code the AMPL model

> You already know the parameters:

```
days
demand
price
cost
quota
```

All of them are non negative: >= 0

demand, price, cost, quota are indexed on a set containing the products:

```
set PRODUCTS;

param days >= 0;

param demand { PRODUCTS } >= 0;

param price { PRODUCTS } >= 0;

param cost { PRODUCTS } >= 0;

param quota { PRODUCTS } >= 0;
```



### **AMPL** model – mixed production

> Decision variables: x

All of them are non negative: >= 0

Are indexed on a set containing the products (previously declared).

> Objective function:

In order to code in ampl the objective function of the mathematical formulation, you just need to know how to write a sum in ampl:

```
sum {i in PRODUCTS} ...
```

- > Constraints:
- 1. Each  $x_i$  must be less than or equal to its demand: subject to requirement {i in PRODUCTS} .....
- 2. The <u>sum</u> of  $x_i/q_i$  must be less than or equal to the number of the days of production: subject to production: sum {i in PRODUCTS} .....



#### One step more:

- Change the mathematical program and the AMPL model to cater for a fixed activation cost on the production line, as follows:

Product A1 A2 A3
Activation cost \$170000 \$150000 \$100000

- Change the mathematical program and the AMPL model to cater for both the fixed activation cost and for a minimum production batch:

Product A1 A2 A3 Minimum batch 20 20 16



## **Mathematical model updated**

The basic model is unchanged. But something has to be added.

Parameters. We have 2 parameters more:

 $a_i$  = activation cost for the plant producing i

 $b_i$  = minimum batch of product i

Variables. For each product i, the production line can be activated or not

 $y_i$  = activation status of the product i

Binary variable:

$$\forall i \in \{1,2,3\} \quad y_i = \begin{cases} 1 & \text{if product } i \text{ is active} \\ 0 & \text{otherwise} \end{cases}$$



## **Mathematical model updated**

Objective function. Takes into account the possible activation for each

product:

$$\max \sum_{i=1}^{3} \left( \left( v_i - c_i \right) x_i - a_i y_i \right)$$

Constraints. Two constraints more:

original constraints +

activation:  $\forall i \in \{1,2,3\} \ x_i \leq Pq_i y_i$ 

minimum batch:  $\forall i \in \{1,2,3\}$   $x_i \ge b_i y_i$