
Mathematical Programming:
Modelling and Applications

Leo Liberti

LIX, École Polytechnique

liberti@lix.polytechnique.fr

January 2018

L. Liberti (LIX) distance geometry problem jan 2018 1 / 21

Outline

1 Distance geometry problem: introduction and first model

2 Drawing graphs in 2D

3 Protein graphs

L. Liberti (LIX) distance geometry problem jan 2018 2 / 21

Distance geometry problem

DISTANCE GEOMETRY PROBLEM (DGP):

Given a simple, connected, weighted graph G = (V,E, d) and an integer K > 0,

is there a realization x : V → RK such that:

∀(u, v) ∈ E ||x(u)− x(v)|| = duv ?

Note: a realization of a graph is a function, mapping each vertex to a vector of a

Euclidean space.

L. Liberti (LIX) distance geometry problem jan 2018 3 / 21

Distance geometry problem: example

Sensor network localization: for set of mobile devices in a wireless network

(unknown positions) a solution of DGP gives a consistent position of the devices

at time t.

L. Liberti (LIX) distance geometry problem jan 2018 4 / 21

First mathematical model

Euclidean Distance Geometry Problem (EDGP):

If we consider the the 2-norm (Euclidean norm), the constraint becomes:

∀(u, v) ∈ E
√∑

k≤K

(xuk − xvk)2 = duv

and if we square both sides:

∀(u, v) ∈ E
∑
k≤K

(xuk − xvk)
2 = duv

2

L. Liberti (LIX) distance geometry problem jan 2018 5 / 21

First mathematical model

Remark 1: because it consists of a set of constraints for which we need to find a

solution, the DGP is a Constraint Programming (CP) problem. On the other

hand, CP problems usually have integer, bounded variables, whereas the DGP

has continuous unbounded ones. So it makes more sense to see it as a feasibility

Nonlinear programming (NLP) problem, i.e. an NLP problem with zero

objective function.

Remark 2: anyhow, it is difficult to solve DGP as systems of nonlinear

constraints. Usually, MP solvers are better at improving optimality than ensuring

feasibility. A nice feature of DGP is that we can write them as a minimization of

constraint errors.

L. Liberti (LIX) distance geometry problem jan 2018 6 / 21

First mathematical model

Slack variables:

In order to get a minimization problem, we could introduce slack variables and

rewrite our constraints:

∀(u, v) ∈ E
∑
k≤K

(xuk − xvk)
2 = duv

2 + slackuv

and minimize their sum, introducing in this way our objective:

min

 ∑
(u,v)∈E

slackuv
2

Formulate a mathematical model and solve it by AMPL + solvers

L. Liberti (LIX) distance geometry problem jan 2018 7 / 21

Drawing Graphs in 2D: solvers

Baron (The Optimization Firm): general nonlinear optimizer capable of solving
nonconvex optimization problems to global optimality. Decision variables may
be continuous, integer, or a mixture of the two.
Knitro (Artelys): nonlinear solver that can deal with varied objective and
constraint nonlinearities in continuous and integer variables. Special features:
extensive use of shared-memory multi-core computing.
Snopt (Stanford Systems Optimization Laboratory): widely used large-scale
optimizer for difficult large-scale nonlinear problems.

https://ampl.com/products/solvers/solvers-we-sell/

L. Liberti (LIX) distance geometry problem jan 2018 8 / 21

Drawing Graphs in 2D, preparation

Download: dgpsystem.mod, dgp-preamble.mod, dgp-postprocess.run, dgp.run,
data.zip, dgp-postprocess.run and also rlz2.plt, rlz3.plt.
put everything in a single directory
unzip data.zip
download and install gnuplot

L. Liberti (LIX) distance geometry problem jan 2018 9 / 21

Drawing Graphs in 2D

work on random graphs in 2D first
ampl < dgp.run
obtain some realizations (dgp_solution.tab)
display them with gnuplot (gnuplot < rlz2.plt; on windows open gnuplot and
from within gnuplot open file rlz2.plt)
compare solutions of same formulation/instance for different solvers
("compare" = "plot and see whether solutions differ")
hint: edit dgp.run to choose formulation, instance, solver

L. Liberti (LIX) distance geometry problem jan 2018 10 / 21

Drawing Graphs in 2D, alternative constraints

remove the range constraints from the variables: any changes?
uncomment the barycenter (zerocenter) constraint: changes with regard to when
it was commented?

L. Liberti (LIX) distance geometry problem jan 2018 11 / 21

Drawing Graphs in 2D, alternative constraints

Barycenter (zerocenter) constraint makes all translated solutions infeasible

conceive alternative constraints for the same purpose
conceive constraints for making rotations infeasible
conceive constraints for making reflections infeasible

L. Liberti (LIX) distance geometry problem jan 2018 12 / 21

Drawing Graphs in 2D, alternative formulations

propose other formulations of DGP and implement them using AMPL
choose an instance and to vary formulation/solvers: compare (as above,
graphically)

L. Liberti (LIX) distance geometry problem jan 2018 13 / 21

Protein graphs

move to the three protein graphs
let Kdim := 3;
plot solutions over varying formulations/solvers using gnuplot < rlz3.plt,
beginning with pept_gph.dat
plot solutions over varying formulations/solvers using gnuplot < rlz3.plt

move on to tiny instance (this is a disconnected graph)
Activate/deactivate the barycenter (zerocenter) constraint (i.e.
comment/uncomment): what changes are there?

L. Liberti (LIX) distance geometry problem jan 2018 14 / 21

Multistart

Multistart: run repeatedly a constructive method from multiple starting points

Multistart methods, normally, have two phases that are repeated for a certain
number of overall iterations:

1 The first phase generates an initial feasible solution
2 The second phase seeks to improve it.

Each overall iteration (i.e. both phases 1 and 2) tries to produce an improved
solution (that is typically a local optimum).
The number of iteration is bounded by some kind of threshold (cpu time . . .)
The best overall solution is the output of the algorithm.

Propose a multistart algorithm for DGP and implement it using AMPL

L. Liberti (LIX) distance geometry problem jan 2018 15 / 21

Multistart

Remarks and hints

Code your multistart algorithm in a .run file named dgp_ms.run
Look at dgp.run, last lines: "let solver := multistart" and "include "dgp_ms.run"
dgp_ms.run is on the same level as baron or knitro;
Every execution starts from is dgp.run
Use snopt or knitro to find your initial solution (phase 1 of the algorithm)
Try to improve it (phase 2 of the algorithm)
Repeat 1 and 2 from different starting points
Limit somehow the number of iterations.
Keep the best of the solutions produced by all iterations

L. Liberti (LIX) distance geometry problem jan 2018 16 / 21

Multistart - implementation: dgp_ms.opt

We could define some configurable parameters in a separate file named dgp_ms.opt,
which we can include in our main file

configurable parameters
optimality tolerance
param ms_epsilon default 1e-3;
time limit
param ms_maxcputime default 10; #900;
original variable bounds -- initialize with original var bounds if != +/-M
param orig_xL{V,K} default M;
param orig_xU{V,K} default -M;

solver for multistart
#option solver snopt;
option solver knitro;

L. Liberti (LIX) distance geometry problem jan 2018 17 / 21

Multistart - implementation: dgp_ms.run (1)
The main algorithm begins here...

simple MultiStart for DGP
assuming realization is in var x{V,K} <= M, >= -M
option randseed 0;
option solver_msg 0;

include "dgp_ms.opt";

nonconfigurable parameters

termination
param ms_termination binary default 0;
realization error wrt given distances
param ms_err;
best solution so far
param ms_xstar{V,K};
lowest realization error so far
param ms_errstar;
CPU time
param ms_cputime default 0;

L. Liberti (LIX) distance geometry problem jan 2018 18 / 21

Multistart - implementation: dgp_ms.run (2)

solve the problem locally
let{v in V, k in K} x[v,k] := Uniform(orig_xL[v,k], orig_xU[v,k]);
solve > nul;
initialize first "best so far" point
let{v in V, k in K} ms_xstar[v,k] := x[v,k];
compute the realization error
let ms_errstar :=

(1/card(E))*sum{(u,v) in E}
abs(sqrt(abs(sum{k in K} (x[u,k]-x[v,k])^2)) - c[u,v]);

printf "ms: starting solution err = %g\n", ms_errstar;

param ms_opt binary, default 0;
param ms_k integer, default 0;

L. Liberti (LIX) distance geometry problem jan 2018 19 / 21

Multistart - implementation: dgp_ms.run (3)
repeat while(ms_termination == 0) {

initialize iteration counter at each loop

...to be completed...

choose initial random point

...to be completed...

solve the problem locally

...to be completed...

compute the realization error

...to be completed...

check for global optimality
if (ms_err < ms_epsilon) ...to be completed...

check termination condition

...to be completed...
}

L. Liberti (LIX) distance geometry problem jan 2018 20 / 21

Multistart - implementation (4)

...and finally...

save the solution into x

...to be completed...

L. Liberti (LIX) distance geometry problem jan 2018 21 / 21

	Distance geometry problem: introduction and first model
	Drawing graphs in 2D
	Protein graphs

