Mathematical Programming: Modelling and Applications

September 2009

Sonia Cafieri

LIX, École Polytechnique

cafieri@lix.polytechnique.fr

Writing the mathematical model

Preliminary observations:

• There are some quantities (parameters) defined

for each product :

selling price, production cost, production quota, activation cost, minimum batch, storage cost

for each month: number of production days

for each product and each month: maximum demand for each product in each month

independently on product/month: storage capacit*y.*

• Furthermore:

For each product, there is a different quantity produced, sold, stocked during each month and the activation status of each production line is also dependent on the months.

Writing the mathematical model

Sets and indices:

- 3 products \rightarrow use an index $i \in I$
- 4 months \rightarrow use an index $j \in J$

define parameters / variables indexed on i, j

What decisions should we take?

product i, month j quantity produced quantity sold quantity stocked

also take into account the activation status

Mathematical model

• Parameters

 P_j : number of production days in month j;

 d_{ij} : maximum demand for product i in month j;

- *v_i*: selling price for product i;
- *c*_{*i*}: production cost of product i;
- q_i: maximum production quota of product i;
- *a_i*: activation cost for production i;
- *b_i* : minimum batch for production i;
- *s_i* : storage cost for product i;
- C: storage capacity in number of units.

Mathematical model

• Variables

 x_{ij} : quantity of product i produced during month j;All variables are non w_{ij} : quantity of product i sold during month j;negative z_{ij} : quantity of product i stocked during month j;negative y_{ij} : activation status for production i during month j;negative

$$y_{ij}$$
 binary $y_{ij} = \begin{cases} 1 & \text{if product } i \text{ is active during month } j \\ 0 & \text{otherwise} \end{cases}$

Objective function

maximize the total income total income sum income obtained during each month

$$\max \sum_{i \in I} \left(v_i \sum_{j \in J} w_{ij} - c_i \sum_{j \in J} x_{ij} - s_i \sum_{j \in J} z_{ij} - a_i \sum_{j \in J} y_{ij} \right)$$

Mathematical model

- Constraints
- demand: $\forall i \in I, j \in J \quad w_{ij} \leq d_{ij}$
- production: $\forall j \in J \quad \sum_{i \in I} \frac{x_{ij}}{q_i} \leq P_j$
- balance: $\forall i \in I, j \in J$ $z_{i,j-1} + x_{ij} = z_{ij} + w_{ij}$
- capacity: $\forall j \in J \quad \sum_{i \in I} z_{ij} \leq C$
- activation: $\forall i \in I, j \in J \quad x_{ij} \leq P_j q_i y_{ij}$
- minimum batch: $\forall i \in I, j \in J \quad x_{ij} \ge b_i y_{ij}$
- december: $\forall i \in I \quad z_{i0} = 0$