Mathematical Programming: Modelling and Applications

September 2009

Sonia Cafieri

LIX, École Polytechnique

cafieri@lix.polytechnique.fr

- Some basic AMPL useful operations & commands
- A modelling problem
- Formulation of the mathematical model
- The AMPL model
- Solution of the problem

AMPL basic set operations

These operations become useful or necessary in many problems

- Let A, B, and U be sets
- AMPL allows simple set operations:
 - U = A union B elements of A or B Union:

 - Intersection: U = A inter B elements of A and B
 - Difference: U = A diff B elements of A and not of B

Union: Example

```
ampl: set MONTHS := {1,2,3,4};
ampl: set MONTHS0 := {0} union MONTHS;
ampl: display MONTHS0;
set MONTHSO := 0 1 2 3 4;
```

AMPL commands

AMPL recognizes a lot of commands.

- Some commands you already know are, e.g.:
 - model: switch to model mode
 - data: switch to data mode
 - exit: exit AMPL
 - display: print model entities and expressions
 - let:

.....

- change data values
- Other useful commands:
 - fix: freeze a variable at its current value
 - unfix: undo a fix command
 - delete: delete model entities
 - purge: delete model entities and their dependents

AMPL commands

Note that fix, unfix, delete, purge,.. are used for *changing a model :* it is possible in AMPL modifying models and data.

Fix: Example

fix varname

- This command instructs AMPL to treat the indicated variable as though fixed at its current value (e.g. in solve command): we have a constant.
- If varname is the name of an indexed collection of variables, fix (and unfix) affects all members of the collection.
- Fixing a variable we have a further constraint in the problem.

AMPL commands: fix

```
ampl: var y{1..4} >=1;
ampl: let y[3] := 10;
ampl: fix y[3];
ampl: display y[3];
v[3] = 10
ampl: minimize somma: sum{i in 1..4} y[i];
ampl: option solver cplex;
ampl: solve;
ILOG CPLEX 10.100, licensed to "ecolepolytechnique-palaiseau",
options: e m b q use=8
CPLEX 10.1.0: optimal solution; objective 13
0 dual simplex iterations (0 in phase I)
ampl: display y;
y [*] :=
1 1
2 1
3 10
4 1
;
```

Production planning problem

A firm is planning the production of 3 products A1, A2, A3 over a time horizon of 4 months (January to April). We know:

- The demand for the products over the 4 months;
- Prices, production costs, production quotas, activation costs and minimum batches for each product;

Furthermore:

- There is a different number of *productive days* over the 4 months;
- The activation status of a production line can be changed every month.
- Minimum batches are monthly.
- Each product needs to be stored. There are different *monthly rates* for renting the storage space for each product.
- Each product takes the same amount of storage space.

The total available volume is given.

Production planning problem: data

Demand for the products over the months:

Demand	January	February	March	April
A1	5300	1200	7400	5300
A2	4500	5400	6500	7200
A3	4400	6700	12500	13200

Prices, production costs, production quotas, activation costs and minimum batches:

Product	A1	A2	A3
Selling prices	\$124	\$109	\$115
Activation costs	\$150000	\$150000	\$100000
Production costs	\$73.30	\$52.90	\$65.40
Production quotas	500	450	550
Minimum batches	20	20	16

Production planning problem: data

Number of productive days over the months:

January	23
February	20
March	23
April	22

Monthly rates for storage space:

A1	\$3.50
A2	\$4.00
A3	\$3.00

Total available volume: 800 units.

Write a mathematical program to maximize the income, and solve it with AMPL.