Mathematical Programming: Modelling and Applications

September 2009

Sonia Cafieri

LIX, École Polytechnique

cafieri@lix.polytechnique.fr

- An easy modelling problem
- Formulation of the mathematical model
- The AMPL model
- Files .mod, .dat, .run
- Solution

A firm is planning the production of 3 products A1, A2, A3.

In a month production can be active for 22 days.

The following are given:

- maximum demands (units=100Kg)
- selling price (\$/100Kg)
- production costs (per 100Kg of product)
- production quotas (maximum amount of 100Kg units of product that would be produced in a day if all production lines were dedicated to the product).

Mixed production problem

Product	A1	A2	A3	
Maximum demand	5300	4500	5400	
Selling price	\$124	\$109	\$115	
Production cost	\$73.30	\$52.90	\$65.40	
Production quota	500	450	550	

Formulate an AMPL model to determine the

production plan to maximize the total income

What is to be identified to write the mathematical formulation?

- Decision variables
- Objective function
- Constraints
- Parameters

• What are the decision variables?

 x_i $i \in \{1,2,3\}$: quantity of product i to produce any bound? $\forall i \in \{1,2,3\}$ $x_i \ge 0$

• What is the objective function?

determine the production plan to maximize the total income

each x_i has a selling price and a production cost

 $\max \sum_{i=1}^{\tilde{v}} (v_i - c_i) x_i$

- What are the constraints?
- demand: $\forall i \in \{1,2,3\}$ $x_i \leq d_i$

production:
$$\sum_{i=1}^{3} \frac{x_i}{q_i} \le P$$

P = number of production days in a month

- What are the parameters?
- P = number of production days in a month
- d_i = maximum market demand for product i
- v_i = selling price for product i
- C_i = production cost for product i
- q_i = maximum production quota for product i

Remember that it is necessary to write:

1. a model file (extension .mod)

contains the mathematical formulation of the problem

- logical structure of the problem -

2. a **data** file (extension .dat)

contains the numerical values of the problem parameters

- more data files may correspond to the same model -
- 3. (possibly) a **run** file (extension .run)

specifies the solution algorithm

AMPL model/data

Model file

Logical structure:

1.Parameters _____ param name_parameter;

2.Variables ______ var name_variable;

3.Objective function _ maximize(minimize) name_objective:...

4.Constraint(s) _____ subject to name_constraint: ...

Data file

param name_parameter1 := ...;

param name_parameter2 := ...;

AMPL model – mixed production

Starting from the mathematical formulation, try to code the AMPL model

> You already know the parameters:

days demand price cost quota

All of them are non negative: >= 0

demand, price, cost, quota are indexed on a set containing the products:

```
set PRODUCTS;
param days >= 0;
param demand { PRODUCTS } >= 0;
param price { PRODUCTS } >= 0;
param cost { PRODUCTS } >= 0;
param quota { PRODUCTS } >= 0;
```

AMPL model – mixed production

 \succ Decision variables: x

All of them are non negative: >= 0

Are indexed on a set containing the products (previously declared).

> Objective function:

In order to code in ampl the objective function of the mathematical formulation, you just need to know how to write a sum in ampl:

sum {i in PRODUCTS} ...

```
> Constraints:
```

- 1. <u>Each</u> x_i must be less than or equal to its demand: subject to requirement {i in PRODUCTS}
- 2. The <u>sum</u> of x_i/q_i must be less than or equal to the number of the days of production: subject to production: sum {i in PRODUCTS}

AMPL file mod

mixedproduction.mod

```
set PRODUCTS;
param days >= 0;
param demand { PRODUCTS } >= 0;
param price { PRODUCTS } >= 0;
param cost { PRODUCTS } >= 0;
param quota { PRODUCTS } >= 0;
var x { PRODUCTS } >= 0;
                                         # quantity of product
maximize revenue: sum {i in PRODUCTS} (price[i] - cost[i]) * x[i];
subject to requirement {i in PRODUCTS}:
x[i] <= demand[i];</pre>
subject to production:
sum {i in PRODUCTS} (x[i] / quota[i]) <= days;</pre>
```

AMPL file dat

mixedproduction.dat set PRODUCTS := A1 A2 A3 ; param days := 22; param demand := A1 5300 Alternatively: A2 4500 A3 5400 param : demand price cost quota := ; 124 A1 5300 73.30 500 A2 4500 109 52.90 450 param price := A3 5400 115 65.40 550; A1 124 A2 109 $\mathbf{\Lambda}$ A3 115 ; the same indices set for each param param cost := A1 73.30 A2 52.90 A3 65.40 ; param quota := A1 500 A2 450 A3 550

;

AMPL file run

mixedproduction.run

model mixedproduction.mod;
data mixedproduction.dat;

option solver cplex; solve;

display x;

Solving the problem with AMPL

1:

ampl: model mixedproduction.mod; ampl: data mixedproduction.dat; ampl: option solver cplex; ampl: solve; ampl: display x;

2:

cat mixedproduction.run | ampl

3:

ampl < mixedproduction.run</pre>

Mixed production: solution

```
ILOG AMPL 10.100, licensed to "ecolepolytechnique-palaiseau".
AMPL Version 20060626 (Linux 2.6.9-5.ELsmp)
ILOG CPLEX 10.100, licensed to "ecolepolytechnique-palaiseau",
options: e m b q use=8
CPLEX 10.1.0: optimal solution; objective 576483
0 dual simplex iterations (0 in phase I)
x [*] :=
A1 5300
A2 711.818
A3 5400
;
```


One step more:

- Change the mathematical program and the AMPL model to cater for a fixed activation cost on the production line, as follows:

Product	A1	A2	A3
Activation cost	\$170000	\$150000	\$100000

- Change the mathematical program and the AMPL model to cater for both the fixed activation cost and for a minimum production batch:

Product	A1	A2	A3
Minimum batch	20	20	16

Mathematical model updated

The basic model is unchanged. But something has to be added.

Parameters. We have 2 parameters more:

- a_i = activation cost for the plant producing i
- b_i = minimum batch of product i

Variables. For each product i, the production line can be activated or not

 y_i = activation status of the product i Binary variable:

$$\forall i \in \{1,2,3\} \quad y_i = \begin{cases} 1 & \text{if product } i \text{ is active} \\ 0 & \text{otherwise} \end{cases}$$

Mathematical model updated

Objective function. Takes into account the possible activation for each product: 3

$$\max\sum_{i=1}^{3} \left(\left(v_i - c_i \right) x_i - a_i y_i \right)$$

Constraints. Two constraints more:

original constraints +

activation: $\forall i \in \{1,2,3\} \ x_i \leq Pq_i y_i$

minimum batch: $\forall i \in \{1,2,3\}$ $x_i \ge b_i y_i$

AMPL file mod updated

mixedproduction.mod

```
set PRODUCTS;
param days >= 0;
param demand { PRODUCTS } >= 0;
param price { PRODUCTS } >= 0;
param cost { PRODUCTS } >= 0;
param quota { PRODUCTS } >= 0;
param activ_cost { PRODUCTS } >= 0;  # activation costs
param min_batch { PRODUCTS } >= 0;  # minimum batches
var x { PRODUCTS } >= 0;
                                       # quantity of product
var y { PRODUCTS } >= 0, binary;
                                       # activation of production lines
maximize revenue: sum {i in PRODUCTS}
((price[i] - cost[i]) * x[i] - activ_cost[i] * y[i]);
subject to requirement {i in PRODUCTS}: x[i] <= demand[i];</pre>
subject to production: sum {i in PRODUCTS} (x[i] / quota[i]) <= days;
subject to activation {i in PRODUCTS}: x[i] <= days * quota[i] * y[i];
subject to batch {i in PRODUCTS}: x[i] >= min_batch[i] * y[i];
```

AMPL file dat updated

mixedproduction.dat

set PRODUCTS := A1 A2 A3 ;

param days := 22;

param :	demand	price	cost	quota	activ_cost	min_batch :=
A1	5300	124	73.30	500	170000	20
A2	4500	109	52.90	450	150000	20
A3	5400	115	65.40	550	100000	16 ;

Mixed production updated: solution

```
ILOG AMPL 10.100, licensed to "ecolepolytechnique-palaiseau".
AMPL Version 20060626 (Linux 2.6.9-5.ELsmp)
ILOG CPLEX 10.100, licensed to "ecolepolytechnique-palaiseau", options:
embquse=8
CPLEX 10.1.0: optimal integer solution; objective 270290
1 MIP simplex iterations
0 branch-and-bound nodes
x [*] :=
A1 0
A2 4500
A3 5400
;
y [*] :=
A1 0
A2 1
A3 1
;
```