TD#1

Advanced Mathematical Programming

Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

INF580 — 2017

Section 2

Modelling

The transportation problem

Given a set P of production facilities with production capacities a_i for $i \in P$, a set Q of customer sites with demands b_j for $j \in Q$, and knowing that the unit transportation cost from facility $i \in P$ to customer $j \in Q$ is c_{ij} , find the optimal transportation plan

The art of modelling!

▶ Use drawings — they help to think

First fundamental question

1. What decisions does the problem require?

First fundamental question

- 1. What decisions does the problem require?
 - I. what's given?
 - 2. costs unit, refers to quantities
 - 3. capacities and demand based on quantities
 - 4. ⇒ let's decide quantities
 - 5. (pitfall: the question "quantity of what?" is irrelevant and you don't know in advance which questions are irrelevant)

First fundamental question

- I. What decisions does the problem require?
 - 1. what's given?
 - 2. costs unit, refers to quantities
 - 3. capacities and demand based on quantities
 - 4. ⇒ let's decide quantities
 - 5. (pitfall: the question "quantity of what?" is irrelevant and you don't know in advance which questions are irrelevant)
- ► As you go on with the model, you might find your initial choices were poor you might have to go back and change them

Second fundamental question

1. How can the decision be encoded?

Second fundamental question

1. How can the decision be encoded?

let's go back to the drawing

Second fundamental question

1. How can the decision be encoded?

let's go back to the drawing

► How about:

 $z_i = \text{qty. produced at } i$ $y_j = \text{qty. demanded at } j$

Let's try this choice

- I. Sets and indices
 - a. $i \in P \subset \mathbb{N}$
 - b. $j \in Q \subset \mathbb{N}$
- 2. Parameters
 - a. $\forall i \in P \quad a_i \in \mathbb{R}_+$
 - b. $\forall j \in Q \quad b_j \in \mathbb{R}_+$
 - c. $\forall i \in P, j \in Q \quad c_{ij} \in \mathbb{R}_+$
- 3. Decision variables
 - a. $\forall i \in P \quad z_i \in [0, a_i]$
 - b. $\forall j \in Q \quad y_j \in [b_j, \infty]$
- 4. Constraints
 - a. All that is produced must be delivered: $\sum\limits_{i\in P}z_i=\sum\limits_{j\in Q}y_j$

necessary condition, but is it sufficient?

5. Objective function: ???

no way of knowing what fraction of the production out of i went to j, so how do we consider transportation costs?

Bummer! Let's go back

- ► Failure to express "fraction of i going to j" must inspire us! Let's try $x_{ij} = \text{qty.}$ transported from i to j
- 1. Sets: as before
- 2. Parameters: as before
- 3. Decision variables

a.
$$\forall i \in P, j \in Q \quad x_{ij} \in \mathbb{R}_+$$

4. Objective function

$$\min \sum_{i \in P} \sum_{j \in Q} c_{ij} x_{ij}$$

- 5. Constraints
 - a. No facility can produce more than the maximum:

$$\forall i \in P \quad \sum_{j \in Q} x_{ij} \le a_i$$

b. No customer must receive less than its demand:

$$\forall j \in Q \quad \sum_{i \in P} x_{ij} \ge b_j$$

Much better!