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nature of the constraints, in other words, which combinations of values are allowed forvariables which are mutually constrained. Examples of the �rst approach can be foundin [7, 9, 12, 22, 23] and examples of the second approach can be found in [4, 14, 16, 8,17, 22, 28, 29].In this paper we take the second approach, and investigate those classes of constraintswhich only give rise to tractable problems whatever way they are combined. A numberof distinct classes of constraints with this property have previously been identi�ed andshown to be maximal [4, 14, 16].In this paper we establish that any class of constraints which does not give riseto NP-complete problems must satisfy a certain algebraic closure condition, and hencethis algebraic property is a necessary condition for a class of constraints to be tractable(assuming that P is not equal to NP). We also show that many forms of this algebraicclosure property are su�cient to ensure tractability.As an example of the wide applicability of these results, we show that all knownexamples of tractable constraint classes over �nite domains can be characterized by analgebraic condition of this kind, even though some of them were originally de�ned in verydi�erent ways.Finally, we describe a simple computational procedure to determine the algebraicclosure properties of a given set of constraints. The test involves calculating the solutionsto a �xed constraint satisfaction problem involving constraints from the given set.The work described in this paper represents a generalization of earlier results con-cerning tractable subproblems of the Generalized Satisfiability problem. Schae-fer [26] identi�ed all possible tractable classes of constraints for this problem, whichcorresponds to the special case of the constraint satisfaction problem in which the vari-ables are Boolean. The tractable classes described in [26] are special cases of the tractableclasses of general constraints described below, and they are given as examples.A number of tractable constraint classes have also been identi�ed by Feder and Vardiin [8]. They de�ne a notion of `width' for constraint satisfaction problems in terms of thelogic programming language Datalog, and show that problems with bounded width aresolvable in polynomial time. It is stated in [8] that the problem of determining whethera �xed collection of constraints gives rise to problems of bounded width is not knownto be decidable. However, it is shown that a more restricted property, called `boundedstrict width', is decidable, and in fact corresponds to an algebraic closure property of theform described here. Other tractable constraint classes are also shown to be characterisedby a closure property of this type. This paper builds on the work of Feder and Vardiby examining the general question of the link between algebraic closure properties andtractability of constraints, and establishing necessary and su�cient conditions for theseclosure properties.A di�erent approach to identifying tractable constraints is taken in [28], where itis shown that a property of constraints, referred to as `row-convexity', together withpath-consistency, is su�cient to ensure tractability in binary constraint satisfaction prob-lems. It should be noted, however, that because of the additional requirement for path-consistency, row-convex constraints do not constitute a tractable class in the sense de�nedin this paper. In fact, the class of problems which contain only row-convex constraints isNP-complete [4].The paper is organised as follows. In Section 2 we give the basic de�nitions, and inSection 3 we de�ne what we mean by an algebraic closure property for a set of relations2



and examine the possible forms of such a closure property. In Section 4 we identify whichof these forms are necessary conditions for tractability, and in Section 5 we identify whichof them are su�cient for tractability. In Section 6 we describe a computational methodto determine the closure properties satis�ed by a set of relations. Finally, we summarisethe results presented and draw some conclusions.2 De�nitions2.1 The constraint satisfaction problemNotation 2.1 For any set D, and any natural number n, we denote the set of all n-tuples of elements of D by Dn. For any tuple t 2 Dn, and any i in the range 1 to n,we denote the value in the ith coordinate position of t by t[i]. The tuple t may then bewritten in the form ht[1]; t[2]; : : : ; t[n]i.A subset of Dn is called an n-ary relation over D.We now de�ne the (�nite) constraint satisfaction problem which has been widelystudied in the Arti�cial Intelligence community [18, 20, 22].De�nition 2.2 An instance of a constraint satisfaction problem consists of� a �nite set of variables, V ;� a �nite domain of values, D;� a set of constraints fC1; C2; : : : ; Cqg.Each constraint Ci is a pair (Si; Ri), where Si is a list of variables of length mi,called the constraint scope, and Ri is an mi-ary relation over D, called the con-straint relation. (The tuples of Ri indicate the allowed combinations of simultaneousvalues for the variables in Si.)The length of the tuples in the constraint relation of a given constraint will be called thearity of that constraint. In particular, unary constraints specify the allowed values for asingle variable, and binary constraints specify the allowed combinations of values for apair of variables. A solution to a constraint satisfaction problem is a function from thevariables to the domain such that the image of each constraint scope is an element of thecorresponding constraint relation.Deciding whether or not a given problem instance has a solution is NP-complete ingeneral [20] even when the constraints are restricted to binary constraints. In this paperwe shall consider how restricting the allowed constraint relations to some �xed subset ofall the possible relations a�ects the complexity of this decision problem. We thereforemake the following de�nition.De�nition 2.3 For any set of relations, �, CSP(�) is de�ned to be the decision problemwithINSTANCE: An instance, P , of a constraint satisfaction problem, in which all con-straint relations are elements of �.QUESTION: Does P have a solution? 3



If there exists an algorithm which solves every problem instance in CSP(�) in polynomialtime, then we shall say that CSP(�) is a tractable problem, and � is a tractable set ofrelations.Example 2.4 The binary disequality relation over a set D, denoted 6=D, is de�ned as6=D = fhd1; d2i 2 D2 j d1 6= d2g:Note that CSP(f6=Dg) corresponds precisely to the Graph jDj-Colorability prob-lem [11]. This problem is tractable when jDj � 2 and NP-complete when jDj � 3.2Example 2.5 Consider the ternary relation � over the set D = f0; 1g which is de�nedby � = fh0; 0; 1i; h0; 1; 0i; h1; 0; 0i; h0; 1; 1i; h1; 0; 1i; h1; 1; 0ig:The problem CSP(f�g) corresponds precisely to the Not-All-Equal Satisfiabilityproblem [11], which is NP-complete [26]. 2Example 2.6 We now describe three relations which will be used as examples of con-straint relations throughout the paper.Each of these relations is a set of tuples of elements from the domain D = f0; 1; 2g,as de�ned below:R1 = f h0; 0i;h1; 2i;h0; 1i;h2; 1i g R2 = f h0; 1; 2i;h1; 2; 0i;h2; 0; 1i gR3 = f h2; 2i;h2; 1i;h2; 0i;h1; 2i;h1; 1i;h1; 0i;h0; 2i;h0; 1i gThe problem CSP(fR1; R2; R3g) consists of all constraint satisfaction problem instancesin which the constraint relations are all chosen from the set fR1; R2; R3g.The complexity of CSP(�) for arbitrary subsets � of fR1; R2; R3g will be determinedusing the techniques developed later in this paper (see Example 6.6). 22.2 Operations on relationsIn Section 4 we shall examine conditions on a set of relations � which allow known NP-complete problems to be reduced to CSP(�). The reductions will be described usingstandard operations from relational algebra [1], which are described in this section.De�nition 2.7 We de�ne the following operations on relations.4



� Let R be an n-ary relation over a domain D and let S be an m-ary relation overD. The Cartesian product R� S is de�ned to be the (n+m)-ary relationR� S = fht[1]; t[2]; : : : ; t[n+m]i j (ht[1]; t[2]; : : : ; t[n]i 2 R) ^(ht[n+ 1]; t[n+ 2]; : : : ; t[n+m]i 2 S)g:� Let R be an n-ary relation over a domain D. Let 1 � i; j � n. The equalityselection �i=j(R) is de�ned to be the n-ary relation�i=j(R) = ft 2 R j t[i] = t[j]g:� Let R be an n-ary relation over a domain D. Let i1; : : : ; im be a subsequence of1; : : : ; n. The projection �i1;:::;im(R) is de�ned to be the m-ary relation�i1;:::;im(R) = fht[i1]; : : : ; t[im]i j t 2 Rg:It is well-known that the combined e�ect of two constraints in a constraint satisfactionproblem can be obtained by performing a relational join operation [1] on the two con-straints [12]. The next result is a simple consequence of the de�nition of the relationaljoin operation.Lemma 2.8 Any relational join of relations R and S can be calculated by performing asequence of Cartesian product, equality selection, and projection operations on R and S.In view of this result, it will be convenient to use the following notation.Notation 2.9 The set of all relations which can be obtained from a given set of relations,�, using some sequence of Cartesian product, equality selection, and projection operationswill be denoted �+.Note that �+ contains exactly those relations which can be obtained as `derived' relationsin a constraint satisfaction problem instance with constraint relations chosen from � [2].3 Closure operationsWe shall establish below that signi�cant information about CSP(�) can be determinedfrom algebraic properties of the set of relations �. In order to describe these algebraicproperties we need to consider arbitrary operations on D, in other words, arbitraryfunctions from Dk to D, for arbitrary values of k.For the results below we shall be particularly interested in certain special kinds ofoperations. We therefore make the following de�nition:De�nition 3.1 Let 
 be a k-ary operation from Dk to D.� If 
 is such that, for all d 2 D, 
(d; d; : : : ; d) = d then 
 is said to be idempotent.� If there exists an index i 2 f1; 2; : : : ; kg such that for all hd1; d2; : : : ; dni 2 Dk wehave 
(d1; d2; : : : ; dn) = f(di); where f is a non-constant unary operation on D,then 
 is called essentially unary. (Note that f is required to be non-constant, soconstant operations are not essentially unary.)If f is the identity operation, then 
 is called a projection.5



� If k � 3 and there exists an index i 2 f1; 2; : : : ; kg such that for all d1; d2; : : : ; dk 2 Dwith jfd1; d2; : : : ; dkgj < k we have 
(d1; d2; : : : ; dk) = di; but 
 is not a projection,then 
 is called a semiprojection [25, 27].� If k = 3 and for all d; d0 2 D we have 
(d; d; d0) = 
(d; d0; d) = 
(d0; d; d) = d;then 
 is called a majority operation.� If k = 3 and for all d1; d2; d3 2 D we have 
(d1; d2; d3) = d1�d2+d3; where + and� are binary operations on D such that hD;+;�i is an Abelian group [27], then 
is called an a�ne operation.Any operation on D can be extended to an operation on tuples over D by applying theoperation in each coordinate position separately (i.e., pointwise). Hence, any operationde�ned on the domain of a relation can be used to de�ne an operation on the tuples inthat relation, as follows:De�nition 3.2 Let 
 : Dk ! D be a k-ary operation on D and let R be an n-aryrelation over D.For any collection of k tuples, t1; t2; : : : ; tk 2 R, (not necessarily all distinct) then-tuple 
(t1; t2; : : : ; tk) is de�ned as follows:
(t1; t2; : : : ; tk) =h
(t1[1]; t2[1]; : : : ; tk[1]);
(t1[2]; t2[2]; : : : ; tk[2]); : : : ;
(t1[n]; t2[n]; : : : ; tk[n])i:Finally, we de�ne 
(R) to be the n-ary relationf
(t1; : : : ; tk) j t1; : : : ; tk 2 Rg:Using this de�nition, we now de�ne the following closure property of relations.De�nition 3.3 Let 
 be a k-ary operation on D, and let R be an n-ary relation overD. The relation R is closed under 
 if 
(R) � R.Example 3.4 Let 4 be the ternary majority operation de�ned as follows:4(x; y; z) = ( y if y = z;x otherwise.The relation R2 de�ned in Example 2.6 is closed under 4, since applying the 4operation to any 3 elements of R2 yields an element of R2. For example,4(h0; 1; 2i; h1; 2; 0i; h1; 2; 0i) = h1; 2; 0i 2 R2:The relation R3 de�ned in Example 2.6 is not closed under 4, since applying the 4operation to the last 3 elements of R3 yields a tuple which is not an element of R3:4(h1; 0i; h0; 2i; h0; 1i) = h0; 0i 62 R3: 26



For any set of relations �, and any operation 
, if every R 2 � is closed under 
, then weshall say that � is closed under 
. The next lemma indicates that the property of beingclosed under some operation is preserved by all possible projection, equality selection,and product operations on relations, as de�ned in Section 2.2.Lemma 3.5 For any set of relations �, and any operation 
, if � is closed under 
,then �+ is closed under 
.Proof: Follows immediately from the de�nitions.Notation 3.6 For any set of relations � with domain D, the set of all operations on Dunder which � is closed will be denoted ��.The set of closure operations, ��, can be used to obtain a great deal of information aboutthe problem CSP(�), as we shall demonstrate in the next two Sections.As a �rst example of this, we shall show that the operations in �� can be used obtaina reduction from one problem to another.Proposition 3.7 For any set of �nite relations �, and any 
 2 ��, there is a polynomial-time reduction from CSP(�) to CSP(
(�)), where 
(�) = f
(R) j R 2 �g.Proof: Let P be any problem instance in CSP(�) and consider the instance P 0 obtainedby replacing each constraint relation Ri of P by the relation 
(Ri). It is clear that P0can be obtained from P in polynomial-time. It follows from De�nition 3.3 that P 0 has asolution if and only if P has a solution.It follows from this result that if �� contains a non-injective unary operation, thenCSP(�) can be reduced to a problem over a smaller domain. One way to view this isthat the presence of a non-injective unary operation in �� indicates that constraints withrelations chosen from � allow a form of global `substitutability', similar to the notionde�ned by Freuder in [10].If �� does not contain any non-injective unary operations, then we shall say that � isreduced. The next theorem uses a general result from universal algebra [25, 27] to showthat the possible choices for �� are quite limited.Theorem 3.8 For any reduced set of relations �, on a �nite set, either1. �� contains essentially unary operations only, or2. �� contains an operation which is(a) a constant operation; or(b) a majority operation; or(c) an idempotent binary operation (which is not a projection); or(d) an a�ne operation; or(e) a semiprojection.Proof: The set of operations �� contains all projections and is closed under composition,hence it constitutes a `clone' [3, 27]. It was shown in [25] that any non-trivial clone on a�nite set must contain a minimal clone, and that any minimal clone contains either7



1. a non-identity unary operation; or2. a constant operation; or3. a majority operation; or4. an idempotent binary operation (which is not a projection); or5. an a�ne operation; or6. a semiprojection.Furthermore, if � is reduced, and �� contains any operations which are not essentiallyunary, then it is straightforward to show, by considering such an operation of the smallestpossible arity, that �� contains an operation in one of the last �ve of these classes [27, 19].In the next two Sections we shall examine each of these possibilities in turn, in order toestablish what can be said about the complexity of CSP(�) in the various cases.4 A necessary condition for tractabilityIn this Section we will show that any set of relations which is only closed under essentiallyunary operations will give rise to a class of constraint satisfaction problems which is NP-complete.Theorem 4.1 For any �nite set of relations, �, over a �nite set D, if �� containsessentially unary operations only then CSP(�) is NP-complete.Proof: When jDj � 2, then we may assume without loss of generality that D � f0; 1g,where 0 corresponds to the Boolean value false and 1 corresponds to the Boolean valuetrue. It follows that the problem CSP(�) corresponds to the Generalised Satisfia-bility problem over the set of Boolean relations �, as de�ned in [26] (see also [11]).It was established in [26] that this problem is NP-complete unless one of the followingconditions holds:1. Every relation in � contains the tuple (0; 0; : : : ; 0);2. Every relation in � contains the tuple (1; 1; : : : ; 1);3. Every relation in � is de�nable by a formula in conjunctive normal form in whicheach conjunct has at most one negated variable;4. Every relation in � is de�nable by a formula in conjunctive normal form in whicheach conjunct has at most one unnegated variable;5. Every relation in � is de�nable by a formula in conjunctive normal form in whicheach conjunct contains at most 2 literals;6. Every relation in � is the set of solutions of a system of linear equations over the�nite �eld GF(2). 8



It is straightforward to show that in each of these cases � is closed under some operationwhich is not essentially unary (see [13] for details). Hence the result holds when jDj = 2.For larger values of jDj we proceed by induction. Assume that jDj � 3 and theresult holds for all smaller values of jDj. Let m = jDj(jDj � 1) and let n = jDjm. LetM be an m by n matrix over D in which the columns consist of all possible m-tuplesover D (in some order). Let R0 be the relation consisting of all the tuples occuring asrows of M . The only condition we place on the choice of order for the columns of M isthat �1;2(R0) = 6=D, where 6=D is the binary disequality relation over D, as de�ned inExample 2.4.We now construct a relation R̂0 which is the `closest approximation' to R0 that we canobtain from the relations in � and the domain D using the Cartesian product, equalityselection and projection operations:R̂0 = \fR 2 (� [D1)+ j R0 � Rg:Since this is a �nite intersection, and intersection is a special case of join, we have fromLemma 2.8 that R̂0 2 (� [D1)+. In other words, the relation R̂0 can be obtained as aderived constraint relation in some problem belonging to CSP(�).There are now two cases to consider:1. If there exists some tuple t0 2 R̂0 with t0[1] = t0[2], then we will construct, usingt0, an appropriate operation under which � is closed.De�ne the function 
 : Dm ! D by setting 
(d1; d2; : : : ; dm) = t0[j] where j is theunique column of M corresponding to the m-tuple hd1; d2; : : : ; dmi. We will showthat � is closed under 
.Choose any R 2 �, and let p be the arity of R. We are required to show that R isclosed under 
. Consider any sequence t1; t2 : : : ; tm of tuples of R (not necessarilydistinct), and, for i = 1; 2; : : : ; p, let ci be the m-tuple ht1[i]; t2[i]; : : : ; tm[i]i. Foreach pair of indices, i; j, such that ci = cj , apply the equality selection �i=j to R,to obtain a new relation R0.Now choose a maximal set of indices, I = fi1; i2; : : : ; isg, such that the correspond-ing ci are all distinct, and construct the relation R00 = �I(R0) � Dn�jIj. Finally,permute the coordinate positions of R00 (by a sequence of Cartesian product, equal-ity selection, and projection operations), such that R00 � R0 (this is always possible,by the construction of R0 and R00). Since R00 2 (� [D1)+, we know that t0 is atuple of R00, by the de�nition of R̂0. Hence the appropriate projection of t0 is anelement of R, and R is closed under 
.If 
 is not essentially unary, then we have the result. Otherwise, let f : D ! D bethe corresponding unary operation, and setf(D) = ff(d) j d 2 Dg;f(�) = ffhf(d1); f(d2); : : : ; f(dr)i j hd1; d2; : : : ; dri 2 Cg j C 2 �g:By the choice of t0, f cannot be injective, so jf(D)j < jDj. By the inductivehypothesis, we know that either CSP(f(�)) is NP-complete (in which case CSP(�)must also be NP-complete) or else f(�) is closed under some operation � which isnot essentially unary (in which case � is closed under the operation �f , which isalso not essentially unary). Hence, the result follows by induction in this case.9



2. Alternatively, if R̂0 contains no tuple t such that t[1] = t[2], then �1;2(R̂0) = 6=D, so6=D 2 (� [D1)+. But this implies that CSP(f6=Dg) is reducible to CSP(�), sinceevery occurence of the constraint relation 6=D can be replaced with an equivalentcollection of constraints with relations chosen from �. However, it was pointed outin Example 2.4 that CSP(f6=Dg) corresponds to the Graph jDj-Colorabilityproblem [11], which is NP-complete when jDj � 3. Hence, this implies that CSP(�)is NP-complete, and the result holds in this case also.Combining Theorem 4.1 with Theorem 3.8 gives the following necessary condition fortractability.Corollary 4.2 Assuming that P is not equal to NP, any tractable set of reduced rela-tions must be closed under either a constant operation, or a majority operation, or anidempotent binary operation, or an a�ne operation, or a semiprojection.Note that the arity of a semiprojection is at most jDj, so for any �nite set D there areonly �nitely many operations matching the given criteria, which means that there is a�nite procedure to check whether this necessary condition is satis�ed (see Corollary 6.5,below).5 Su�cient conditions for tractabilityWe have shown in the previous section that when � is a tractable set of relations, then ��must contain an operation from a limited range of types. We now consider each of thesepossibilities in turn, to determine whether or not they are su�cient to ensure tractability.5.1 Constant operationsClosure under a constant operation is easily shown to be a su�cient condition fortractability.Proposition 5.1 For any set of relations �, if � is closed under a constant operation,then CSP(�) is solvable in polynomial time.Proof: If every relation in � is closed under some constant operation 
, with constantvalue d, then every non-empty relation in � must contain the tuple hd; d; : : : ; di. Hence,in this case, the decision problem for any constraint satisfaction problem instance P inCSP(�) is clearly trivial to solve, since P either contains an empty constraint, in whichcase it does not have a solution, or else P allows the solution in which every variable isassigned the value d.The class of sets of relations closed under some constant operation is a rather trivialtractable class. It is referred to in [14] as Class 0.Example 5.2 Let > denote the unary operation on the domain D = f0; 1; 2g whichreturns the constant value 1. The constraint R3 de�ned in Example 2.6 is closed under>, since applying the > operation to any element of R3 yields the tuple h1; 1i, which is10



an element of R3. The constraint R2 de�ned in Example 2.6 is not closed under >, sinceapplying the > operation to any element of R2 yields the tuple h1; 1; 1i, which is not anelement of R2. In fact, R2 is clearly not closed under any constant operation. 2Example 5.3 When D = ftrue,falseg, there are only two possible constant operationson D.The �rst two tractable subproblems of the Generalised Satisfiability problemidenti�ed by Schaefer in [26] correspond to the tractable classes of relations characterisedby closure under these two constant operations. 25.2 Majority operationsWe will now show that closure under a majority operation is a su�cient condition fortractability.We �rst establish that when a relation R is closed under a majority operation, anyconstraint involving R can be decomposed into binary constraints.Proposition 5.4 Let R be a relation of arity n which is closed under a majority opera-tion, and let C be any constraint C = (S;R) constraining the variables in S with relationR. For any problem P with constraint C, the problem P0 which is obtained by replacingC by the set of constraintsf((S[i]; S[j]); �i;j(R)) j 1 � i � j � nghas exactly the same solutions as P.Proof: It is clear that any solution to P is a solution to P 0, since P 0 is obtained bytaking binary projections of a constraint from P.Now let � be any solution to P 0, and set t = h�(S[1]); �(S[2]); : : : ; �(S[n])i. We shallprove, by induction on n, that t 2 R, thereby establishing that � is a solution to P.For n < 3 the result holds trivially, so assume that n � 3, and that the result holds forall smaller values. Let I = f1; 2; : : : ; ng be the set of indices of positions in S and choosei1; i2; i3 2 I. By Proposition 3.5 and the inductive hypothesis, applied to �Infijg(R), thereis some tj 2 R which agrees with t at all positions except ij, for j = 1; 2; 3. Since R isclosed under a majority operation, applying this operation to t1; t2; t3 gives t 2 R.Example 5.5 Recall the relation R2 de�ned in Example 2.6.It was shown in Example 3.4 that R2 is closed under the operation 4. Since thisoperation is a majority operation, we know by Proposition 5.4 that any constraint withrelation R2 can be decomposed into a collection of binary constraints with the followingrelations:� �1;2(R2) = fh0; 1i; h1; 2i; h2; 0ig� �1;3(R2) = fh1; 0i; h2; 1i; h0; 2ig� �2;3(R2) = fh0; 1i; h1; 2i; h2; 0ig 11



2It is, of course, not always the case that a constraint can be replaced by a collection ofbinary constraints on the same variables. In many cases the binary projections of theconstraint relation allow extra solutions, as the following example demonstrates.Example 5.6 Recall the relation � on domain D = f0; 1g de�ned in Example 2.5. Thebinary projections of � are as follows:� �1;2(�) = fh0; 0i; h0; 1i; h1; 0i; h1; 1ig� �1;3(�) = fh0; 0i; h0; 1i; h1; 0i; h1; 1ig� �2;3(�) = fh0; 0i; h0; 1i; h1; 0i; h1; 1igThe join of these binary projections contains the tuples h0; 0; 0i and h1; 1; 1i, which arenot elements of �. It clearly follows that � cannot be replaced by any set of binaryconstraints on the same variables. 2Theorem 5.7 Let � be any set of relations over a �nite domain, D.If � is closed under a majority operation, then CSP(�) is solvable in polynomial time.Proof: For any problem instance P in CSP(�) we can impose strong (jDj + 1)-consistency [5] in polynomial time to obtain a new instance P 0 with the same solutions.All of the constraints in P 0 are elements of �+, and so they are closed under a majorityoperation, by Proposition 3.5. Hence, all of the constraints of P 0 are decomposable intobinary constraints by Proposition 5.4. Hence, by Corollary 3.2 of [5], P 0 is solvable inpolynomial time.Example 5.8 When D = ftrue,falseg, there is only one possible majority operationon D, (which is equal to the 4 operation de�ned in Example 3.4). It is easily shownthat all possible binary Boolean relations are closed under 4. Hence, it follows fromProposition 5.4 that the Boolean relations of arbitrary arity which are closed underthis majority operation are precisely the relations which are de�nable by a formula inconjunctive normal form in which each conjunct contains at most 2 literals. Hence, if aset of Boolean relations � is closed under a majority operation, then CSP(�) is equivalentto the 2-Satisfiability problem (2-Sat) [24], which is well-known to be a tractablesubproblem of the Satisfiability problem [26]. 2Recall the class of tractable constraints identi�ed independently in [4] and [17], andreferred to as 0/1/all constraints or implicational constraints. (This class of tractableconstraints is referred to as Class I in [14].) It was shown in [14] that these constraintsare in fact precisely the relations closed under the majority operation 4 de�ned in Ex-ample 3.4. This result is rather unexpected, in view of the fact that 0/1/all constraintswere originally de�ned purely in terms of their syntactic structure [4].However, we remark here that the class of tractable sets of relations de�ned by closureunder some majority operation is a true generalization of the class containing all sets of0/1/all constraints. In other words, there exist tractable sets of relations which are closedunder some majority operation but are not closed under the4 operation, as the followingexample demonstrates. 12



Example 5.9 Let � be the ternary majority operation on D = f0; 1; 2g which returnsthe median value of its three arguments (in the standard ordering of D).Recall the relation R3 de�ned in Example 2.6. It is easy to show that R3 is closedunder �, since applying the � operation to any 3 elements of R3 yields an element of R3.For example, �(h1; 0i; h0; 2i; h0; 1i) = h0; 1i 2 R3:Hence, by Theorem 5.7, CSP(fR3g) is tractable.However, it was shown in Example 3.4 that R3 is not closed under 4, and hence R3is not a 0/1/all constraint. 25.3 Binary operationsWe �rst show that closure under an arbitrary idempotent binary operation is not ingeneral su�cient to ensure tractability.Lemma 5.10 There exists a set of relations � closed under an idempotent binary oper-ation (which is not a projection) such that CSP(�) is NP-complete.Proof: Consider the binary operation 2 on the set D = f0; 1; 2; 3g which is de�ned bythe following table: 2 0 1 2 30 0 1 0 11 0 1 0 12 2 3 2 33 2 3 2 3This operation is idempotent but it is not a projection (in fact, it is an example of a formof binary operation known as a `rectangular band' [21].)Now consider the functions b1 : D ! f0; 1g and b2 : D ! f0; 1g which return the �rstand second bit in the binary expression for the numerical value of each element of D.Using these functions, we de�ne ternary relations R1 and R2 over D, as follows:R1 = fhd; d0; d00i 2 D3 j (b1(d) 6= b1(d0)) _ (b1(d0) 6= b1(d00)) _ (b1(d00) 6= b1(d))gR2 = fhd; d0; d00i 2 D3 j (b2(d) 6= b2(d0)) _ (b2(d0) 6= b2(d00)) _ (b2(d00) 6= b2(d))gFinally, we de�ne R = R1 \R2.It is easily shown that R is closed under 2, since applying the operation 2 to any 2elements of R yields an element of R.However, it can also be shown that the Not-All-Equal Satisfiability prob-lem [26], which is known to be NP-complete, is reducible in polynomial time to CSP(fRg).Hence, CSP(fRg) is NP-complete, and the result follows.We now describe some additional conditions which may be imposed on binary operations.It will be shown below that closure under any binary operation satisfying these additionalconditions is a su�cient condition for tractability.De�nition 5.11 Let u : D2 ! D be an idempotent binary operation on the set D suchthat, for all d1; d2; d3 2 D, 13



� u(u(d1; d2); d3) = u(d1;u(d2; d3)); and (Associativity)� u(d1; d2) = u(d2; d1). (Commutativity)Then u is said to be an ACI operation.We will make use of the following result about ACI operations, which is well-known fromelementary algebra [3, 21].Lemma 5.12 Let u be an ACI operation on the set D. The binary relation R on Dde�ned by R(d1; d2) () u(d1; d2) = d2is a partial order on D in which any two elements d1; d2 have a least upper bound givenby u(d1; d2).It follows from Lemma 5.12 that any (�nite) non-empty set D0 � D which is u-closedcontains a least upper bound with respect to the partial order R. This upper bound willbe denoted u(D0).Using Lemma 5.12, we now show that relations which are closed under some arbitraryACI operation form a tractable class.Theorem 5.13 For any set of relations � over a �nite domain D, if � is closed undersome ACI operation, then CSP(�) is solvable in polynomial time.Proof: Let � be a set of relations closed under the ACI operation u, and let P be anyproblem instance in CSP(�). First enforce pairwise consistency to obtain a new instanceP 0 with the same set of solutions which is pairwise consistent. Such a P 0 can be obtainedby forming the join of every pair of constraints in P, replacing these constraints with the(possibly smaller) constraints obtained by projecting down to the original scopes, andthen repeating this process until there are no further changes in the constraints. Thetime complexity of this procedure is polynomial in the size of P, and the resulting P 0 isa member of CSP(�+). Hence, all the constraint relations in P 0 are closed under u, byProposition 3.5.Now let D(v) denote the set of values allowed for variable v by the constraints of P 0.Since D(v) equals the projection of some u-closed constraint onto v, it must be u-closed,by Proposition 3.5. There are two cases to consider:1. If any of the sets D(v) is empty then P 0 has no solutions, so the decision problemis trivial.2. On the other hand, if all of these sets are non-empty, then we claim that assigningthe value u(D(v)) to each variable v gives a solution to P 0, so the decision problemis again trivial. To establish this claim, consider any constraint C = (S;R) in P 0,with relation R of arity n, and scope S. For each i 2 f1; 2; : : : ; ng, there must besome tuple ti 2 R such that ti[i] = fu(D(S[i]))g, by the de�nition of D(S[i]). Nowconsider the tuple t = u(t1;u(t2; : : : ;u(tr�1; tr)) � � �). We know that t 2 R, since Ris closed under u. Furthermore, for each i, t[i] = u(D(S[i])), because u(D(S[i])) isan upper bound of D(S[i]), sou(d;u(D(S[i]))) = u(D(S[i]))14



for all d 2 D(S[i]). Hence the constraint C allows the assignment of u(D(v)) toeach variable v in S. Since C was arbitrary, we have shown that this assignment isa solution to P0, and hence a solution to P.Example 5.14 When D = ftrue,falseg, there are only two idempotent binary oper-ations on D (which are not projections), corresponding to the logical AND operationand the logical OR operation. These two operations are both ACI operations, and theycorrespond to the two possible orderings of D.It is well-known [6, 16, 24] that a Boolean relation is closed under AND if and only if itcan be de�ned by a Horn sentence (that is, a conjunction of clauses each of which containsat most one unnegated literal). Hence, if a set of Boolean relations � is closed under AND,then CSP(�) is equivalent to the Horn clause satis�ability problem, Hornsat [24], whichis a tractable subproblem of the Satisfiability problem [26].Similarly, a Boolean relation is closed under OR if and only if it can be de�ned by aconjunction of clauses each of which contains at most one negated literal, and this classor relations also gives rise to a tractable subproblem of the Satisfiability problem [26].2Example 5.15 Let D be a �nite subset of the natural numbers. The operation MAX :D2 ! D which returns the larger of any pair of numbers is an ACI operation. Thefollowing types of arithmetic constraints (amongst many others) are closed under thisoperation:� aX 6= b� aX = bY + c� aX � bY + c� aX � bY + c� a1X + a2Y + � � �+ arZ � c� aXY � c� (a1X � b1) _ (a2Y � b2) _ (a3Z � b3)where upper-case letters represent variables and lower-case letters represent positive con-stants. Hence, by Theorem 5.13 it is possible to determine e�ciently whether any collec-tion of constraints of these types has a solution. These constraints include (and extend)the `basic' arithmetic constraints allowed by the well-known constraint programminglanguage, CHIP [29]. 2The class of tractable constraints �rst identi�ed in [16], and referred to as max-closedconstraints, are in fact relations closed under an u operation with the additional propertythat the partial order R, de�ned in Lemma 5.12, is a total ordering of D. Hence, a setof constraints is max-closed if and only if the constraint relations are closed under some15



specialized ACI operation of this kind (see, for example, Example 5.15). This class oftractable constraints is referred to as Class II in [14].However, we remark here that the class of tractable sets of relations de�ned by closureunder some ACI operation is a true generalization of the class containing all sets of max-closed constraints. In other words, there exist tractable relations which are closed undersome ACI operation but are not closed under the maximum operation associated withany (total) ordering of the domain. (An example of such a relation is the relation R1de�ned in Example 2.6, see Example 6.4 below.)5.4 A�ne operationsWe will now show that closure under an a�ne operation is a su�cient condition fortractability.This result was established in [14] using elementary methods, for the special case whenthe domain D contains a prime number, p, of elements. It was shown in [14] that, in thisspecial case, constraints which are closed under an a�ne operation correspond preciselyto constraints which may be expressed as conjunctions of linear equations modulo p.(This class of tractable constraints is referred to as Class III in [14].)We now generalise this result to arbitrary �nite domain sizes by making use of a resultstated by Feder and Vardi in [8].Theorem 5.16 ([8]) For any �nite group G, and any set � of cosets of subgroups ofdirect products of G, CSP(�) is solvable in polynomial time.Corollary 5.17 For any set of relations �, if � is closed under an a�ne operation, thenCSP(�) is solvable in polynomial time.Proof: By De�nitions 3.1 and 3.2, any relation R which is closed under an a�neoperation is a subset of a direct product of some Abelian group, with the property thatfor all t1; t2; t3 2 R, t1 � t2 + t3 2 R. However, this is equivalent to saying that R is acoset of a subgroup of this direct product group [21], so we may apply Theorem 5.16 to� to obtain the result.Example 5.18 Let r be the a�ne operation on D = f0; 1; 2g which is de�ned byr(d1; d2; d3) = d1 � d2 + d3, where addition and subtraction are both modulo 3.The relation R2 de�ned in Example 2.6 is closed under r, since applying the roperation to any 3 elements of R2 yields an element of R2. For example,r(h0; 1; 2i; h1; 2; 0i; h2; 0; 1i) = h1; 2; 0i 2 R2:Since jDj is prime, the results of [14] indicate that R2 must be the set of solutions tosome system of linear equations over the integers modulo 3. In fact, we haveR2 = fhx1; x2; x3i j (x1 � x2 � 2 (mod 3)) ^ (x2 � x3 � 2 (mod 3))g: 216



Example 5.19 Let G be the Abelian group hD;+;�i, where D = f0; 1; 2; 3g and the +operation is de�ned by the following table:+ 0 1 2 30 0 1 2 31 1 0 3 22 2 3 0 13 3 2 1 0Now let r be the a�ne operation on D = f0; 1; 2; 3g which is de�ned by r(d1; d2; d3) =d1 � d2 + d3, where addition and subtraction are as de�ned in G.Any relation R over D which is a coset of a subgroup of a direct product of G will beclosed under r, and hence CSP(fRg) will be tractable by Corolllary 5.17. One exampleof such a relation is the following:R = fh0; 1; 2i; h1; 1; 2i; h2; 2; 0i; h3; 2; 0igIt is easily seen that in this case R is not the set of solutions to any system of linearequations over a �eld. 2Example 5.20 When D = ftrue,falseg, there is only one possible Abelian group struc-ture over D and hence only one possible a�ne operation on D.If a set of Boolean relations � is closed under this a�ne operation, then CSP(�) isequivalent to the problem of solving a set of simultaneous linear equations over the inte-gers modulo 2. This corresponds to the �nal tractable subproblem of the generalisedSatisfiability problem identi�ed by Schaefer in [26]. 25.5 SemiprojectionsWe now show that closure under a semiprojection operation is not in general a su�cientcondition for tractability. In fact we shall establish a much stronger result, which showsthat even being closed under all semiprojections is not su�cient to ensure tractability.Lemma 5.21 For any �nite set D, with jDj � 3, there exists a set of relations � overD, such that � is closed under all semiprojections on D, and CSP(�) is NP-complete.Proof: Let D be a �nite set with jDj � 3 and let d1; d2 be elements of D. Consider therelation R = fhd1; d1; d2i; hd1; d2; d1i; hd2; d1; d1i; hd2; d2; d1i; hd2; d1; d2i; hd1; d2; d2ig. Thisrelation is closed under all semiprojections on D, since any 3 elements of R contain atmost two distinct values in each coordinate position.However, if we identify d1 with the Boolean value true and d2 with the Booleanvalue false, then it is easy to see that CSP(fRg) is isomorphic to the Not-All-EqualSatisfiability problem [11], which is NP-complete [26] (see Example 2.5).It is currently unknown whether there are tractable sets of relations closed under somecombination of semiprojections, unary operations and binary operations which are notincluded in any of the tractable classes listed above.However, when jDj = 2 the situation is very simple, as the next example shows.Example 5.22 When D = ftrue,falseg, there are no semiprojections on D, so thereare no subproblems of the Satisfiability problem which are characterised by a closureoperation of this form. 217



6 Calculating closure operationsFor any set of relations �, over a set D, the operations under which � is closed are simplymappings from Dk to D, for some k, which satisfy certain constraints, as described inDe�nition 3.3. In this Section we show that it is possible to identify these operations bysolving a single constraint satisfaction problem in CSP(�). In fact, we shall show thatthese closure operations are precisely the solutions to a constraint satisfaction problemof the following form.De�nition 6.1 Let � be a set of relations over a �nite domain D.For any natural number m > 0, the indicator problem for � of order m is de�ned tobe the constraint satisfaction problem IP(�;m) with� Set of variables Dm;� Domain of values D;� Set of constraints fC1; C2; : : : ; Cqg, such that for each R 2 �, and for each se-quence t1; t2; : : : ; tm of tuples from R, there is a constraint Ci = (Si; R) withSi = (v1; v2; : : : ; vn) where n is the arity of R and vj = ht1[j]; t2[j]; : : : ; tm[j]i.Example 6.2 Consider the relation R1 over D = f0; 1; 2g, de�ned in Example 2.6.The indicator problem for fR1g of order 1, IP(fR1g; 1), has 3 variables and 4 con-straints. The set of variables is fh0i; h1i; h2ig;and the set of constraints is f ((h0i; h0i); R1);((h0i; h1i); R1);((h1i; h2i); R1);((h2i; h1i); R1) g:The indicator problem for fR1g of order 2, IP(fR1g; 2), has 9 variables and 16 con-straints. The set of variables isfh0; 0i; h0; 1i; h0; 2i; h1; 0i; h1; 1i; h1; 2i; h2; 0i; h2; 1i; h2; 2ig;and the set of constraints isf ((h0; 0i; h0; 0i); R1); ((h0; 0i; h0; 1i); R1);((h0; 0i; h1; 0i); R1); ((h0; 0i; h1; 1i); R1);((h0; 1i; h0; 2i); R1); ((h0; 1i; h1; 2i); R1);((h0; 2i; h0; 1i); R1); ((h0; 2i; h1; 1i); R1);((h1; 0i; h2; 0i); R1); ((h1; 0i; h2; 1i); R1);((h1; 1i; h2; 2i); R1); ((h1; 2i; h2; 1i); R1);((h2; 0i; h1; 0i); R1); ((h2; 0i; h1; 1i); R1);((h2; 1i; h1; 2i); R1); ((h2; 2i; h1; 1i); R1) g:Further illustrative examples of indicator problems are given in [15]. 218



Solutions to the indicator problem for � of order m are functions from Dm to D, or inother words, m-ary operations on D. We now show that they are precisely the m-aryoperations under which � is closed.Theorem 6.3 For any set of relations � over domain D, the set of solutions to IP(�;m)is equal to the set of m-ary operations under which � is closed.Proof: By De�nition 3.3, we know that � is closed under the m-ary operation 
 if andonly if 
 satis�es the condition 
(t1; t2; : : : ; tm) 2 R for each possible choice of R 2 �and t1; t2; : : : ; tm 2 R (not necessarily all distinct). But this is equivalent to saying that
 satis�es all the constraints in IP(�;m), so the result follows.Example 6.4 Consider the relation R1 over D = f0; 1; 2g, de�ned in Example 2.6.The indicator problem for fR1g of order 1, de�ned in Example 6.2, has 2 solutions,which may be expressed in tabular form as follows:Variablesh0i h1i h2iSolution 1 0 0 0Solution 2 0 1 2One of these solutions is a constant operation, so CSP(fR1g) is tractable, by Proposi-tion 5.1. In fact, any problem in CSP(fR1g) has the solution which assigns the value 0to each variable, so the complexity of CSP(fR1g) is trivial.The indicator problem for fR1g of order 2, de�ned in Example 6.2, has 4 solutions,which may be expressed in tabular form as follows:Variablesh0; 0i h0; 1i h0; 2i h1; 0i h1; 1i h1; 2i h2; 0i h2; 1i h2; 2iSolution 1 0 0 0 0 0 0 0 0 0Solution 2 0 1 2 0 1 2 0 1 2Solution 3 0 0 0 1 1 1 2 2 2Solution 4 0 0 0 0 1 0 0 0 2The �rst of these solutions is a constant operation, and the second and third are es-sentially unary operations. However, the fourth solution shown in the table is moreinteresting. It is easily checked that this operation is an associative, commutative, idem-potent (ACI) binary operation, so we have a second proof that CSP(fR1g) is tractable,by Theorem 5.13. Furthermore, this result shows that R1 can be combined with anyother relations (of any arity) which are also closed under this ACI operation to obtainlarger tractable problem classes. 2Corollary 6.5 For any set of relations � over a domain D, with jDj � 3, if all solutionsto IP(�; jDj) are essentially unary, then CSP(�) is NP-complete.Proof: Follows from Theorem 3.8, Theorem 4.1, and Theorem 6.3.19



Example 6.6 Recall the relations R1, R2 and R3 de�ned in Example 2.6. It has beenshown in Examples 6.4, 5.18, and 5.2 that a set containing any one of these relations onits own is tractable.For any set � containing more than one of these relations, it can be shown, usingCorollary 6.5, that CSP(�) is NP-complete. 2In the special case when jDj = 2 we obtain an even stronger result.Corollary 6.7 For any set of relations � over a domain D, with jDj = 2, if all solutionsto IP(�; 3) are essentially unary then CSP(�) is NP-complete, otherwise it is polynomial.Proof: It has been shown in Examples 5.3, 5.8, 5.14, 5.20, and 5.22 that when jDj = 2 allpossible closure operations of the restricted types speci�ed in Corollary 4.2 are su�cientto ensure tractability.This result demonstrates that solving the indicator problem of order 3 provides a simpleand complete test for tractability of any set of relations over a domain with 2 elements.This answers a question posed by Schaefer in 1978 [26] concerning the existence of ane�cient test for tractability in the Generalised Satisfiability problem. Note thatcarrying out the test requires �nding the solutions to a constraint satisfaction problemwith just 8 Boolean variables.7 ConclusionIn this paper we have shown how the algebraic properties of relations can be used todistinguish between sets of relations which give rise to tractable constraint satisfactionproblems and those which give rise to NP-complete problems. Furthermore, we haveproposed a method for determining the operations under which a set of relations is closedby solving a particular form of constraint satisfaction problem, which we have called anindicator problem.For problems where the domain contains just two elements these results provide anecessary and su�cient condition for tractability (assuming that P is not equal to NP),and an e�cient test to distinguish the tractable sets of relations.For problems with larger domains we have described algebraic closure properties whichare a necessary condition for tractability. We have also shown that in many cases theseclosure properties are su�cient to ensure tractability.In particular, we have shown that closure under any constant operation, any major-ity operation, any ACI operation, or any a�ne operation, is a su�cient condition fortractability. It can be shown using the results of [13] that for any operation of one ofthese types, the set, �, containing all relations which are closed under that operation isa maximal set of tractable relations. In other words, the addition of any other relationwhich is not closed under the same operation changes CSP(�) from a tractable probleminto an NP-complete problem. Hence, the tractable classes de�ned in this way are aslarge as possible.We are now investigating the application of these results to particular problem types,such as temporal problems involving subsets of the interval algebra. We are also at-tempting to determine how the presence of particular algebraic closure properties in theconstraints can be used to derive appropriate e�cient algorithms for tractable problems.20
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