
HybridFluctuat: a static analyzer of numerical
programs within a continuous environment

Olivier Bouissou1, Eric Goubault1, Sylvie Putot1, Karim Tekkal2, and
Franck Vedrine1

1 CEA, LIST, Modelisation and Analysis of Systems in Interaction,
Bôıte 65, Gif-sur-Yvette, F-91191 France

2 FCS Digiteo, Route de l’Orme des Merisiers, Saint-Aubin, F-91190 France

Firstname.Lastname@cea.fr

Abstract. A new static analyzer is described, based on the analyzer
Fluctuat. Its goal is to synthetize invariants for hybrid systems, en-
compassing a continuous environment described by a system of possibly
switched ODEs, and an ANSI C program, in interaction with it. The evo-
lution of the continuous environment is over-approximated using a guar-
anteed integrator that we developped, and special assertions are added
to the program that simulate the action of sensors and actuators, making
the continuous environment and the program communicate. We demon-
strate our approach on an industrial case study3, a part of the flight
control software of ASTRIUM’s Automated Transfer Vehicle (ATV).

1 Introduction

An emerging trend in the software verification community is to extend the anal-
ysis of programs to take into account their interaction with the external world.
In the case of embedded programs, one of the most important interaction to
consider is the one between the program and a physical environment on which
it acts [4, 5, 9]. Generally, static analyzers abstract these interactions in a simple
way: inputs and outputs are abstracted by intervals. If this is obviously sound, it
leads to an important overestimation as it assumes that a continuously evolving
variable can instantaneously jump from its minimum to its maximum value.

In this paper we present a new static analyzer, named HybridFluctuat, that
makes it possible to analyze the interactions of an embedded program with its
environment. Thanks to a language of assertions, it takes into account sensors
(from which the program reads the value of a physical variable) and actuators
(with which the program acts on the system behavior). The continuous environ-
ment is modeled as a set of switched ODEs and its evolution is abstracted using
the guaranteed integration solver GRKLib, while the analysis of the program
itself relies on the analyzer Fluctuat.
Running example To illustrate this, let us look at a typical example of an
embedded, control command program. Listing 1.1 shows a simplified version of
3 This work was partially funded by the ESA project ITI 19783 “Space Software

Validation using Abstract Interpretation”. Thaks are also due to ASTRIUM SAS.



1 I n i t i a l i z e ( ) ;
2 for ( i =1; ; i++) {
3 // Get new v a l u e f o r qnav and wnav
4 // Make two s t e p s o f RK4
5 a = ac [ i −1] ; ( q1 , w1) = RK4( a , qnav , wnav , h1 ) ;
6 a = ac [ i ] ; (q ,w) = RK4(a , q1 , w1 , h2 ) ;
7 ( qest , west ) = Fk(q ,w, qnav , wnav ) ; // Kalman f i l t e r
8 ac [ i +1] = Fa( qest , west , q ,w) ; // Next command
9 // Send ac to the a c t u a t o r

10 }

Listing 1.1. Simplified algorithmic view of the ATV program

the MSU main control loop, part of the Automated Transfer Vehicle (ATV)
control software. Its behavior is typical of embedded programs: at each cycle, its
configuration (the position, speed, etc.) is read from sensors, then the program
computes the command sent to actuators to achieve the desired thrust with the
engines. In this application, the command is computed using a Kalman filter,
where the prediction step is done using two Runge-Kutta integrations of order
4. The external environment (relating the position of the ATV to accelerations
due to thrusters) is modeled by an ODE of dimension 7 that links the position
of the ATV (recorded as qnav in the program) with its angular velocity (wnav).
It also has three parameters that are linked with the vector ac of the program.

At line 3 of the program, the value of qnav and wnav is modified by the
sensors: it takes its value from the solution of the system of ODEs. Then, the
program computes the value of the command ac. This value is sent to the ac-
tuators that modify the thrust of the engines on line 9, and thus changes the
parameters of the ODE and the evolution of the continuous system.
Contributions The main contribution of HybridFluctuat is that it extends the
static analysis of embedded programs by considering the physical environment
in which they are executed. The analyzer considers programs written in C-ANSI
and ordinary differential equations presented as a C++ function (see Listing 1.2
later). The tool then automatically derives invariants on the whole system.
Related work Static analyzers for hybrid systems [2, 7] mainly focus on high
level models like hybrid automata and are generally used to prove the reachability
of some state. Our approach differs from these as we consider the program itself
and not a derived model of it, which allows us to analyze the impact of the
implementation choices (e.g. the use of floating point numbers) on the behavior
of the whole system (this feature is not yet implemented, but is a straightforward
consequence of our approach).

2 HybridFluctuat: description and user point of view

In this section, we briefly describe the principles and use of HybridFluctuat.
HybridFluctuat builds on two previously existing tools, Fluctuat and GRKLib,
more details on which can be found in [3, 8, 11]. In practice, Fluctuat will be used



void on (double∗ res , double∗ y , double∗ param )
{ r e s [ 0 ] = param[0]−y [ 0 ] / 3 ; }

void o f f (double∗ res , double∗ y , double∗ param )
{ r e s [ 0 ] = −y [ 0 ] / 3 ; }

Listing 1.2. Environment of the heater problem written as C++ functions.

to analyze a C program with special assertions specifying its interaction with
the environment, and will call GRKlib whenever it encounters such assertions.

Fluctuat [8, 11] is a static analyzer by abstract interpretation [6] that inter-
prets a program written in ANSI-C with idealized semantics (real and integer
numbers) and finite precision semantics (floating-point and machine integers). It
gives bounds for variables with these two semantics, and bounds the error due to
the use of finite precision numbers instead of real numbers. It decomposes this
error on its provenance in the analyzed program, thus indicating which part of
the program is responsible for the main imprecision.
GRKLib [3] is a C++ library that, given a system of ordinary differential equa-
tions (ODE) and an interval initial value, computes an interval overapproxima-
tion of its solution, either at a specific time stamp or over a whole time interval.
To do so, the algorithm turns a numerical, non guaranteed Runge-Kutta method
into a guaranteed integration method.

The input of HybridFluctuat is a system of ODEs given by the user as C++
functions, and a C program, in which the user added special assertions specifying
the interaction between the program and the environment, i.e. between variables
of the programs and the solutions or parameters of the ODEs.
There may be several systems of ODEs that model different parts of the environ-
ment, and interact with different parts of the program. We associate a different
name system_i to each system. The program may modify a system system_i in
two ways. Either the program makes a discrete change of mode, thus changing
completely the evolution of the environment, or the program modifies a param-
eter in the ODE. To model these two kinds of interactions, we associate to each
system_i several ODEs (named mode_j in the following), each representing one
mode. Each mode mode_j also contains formal parameters that will be modified
by the program. This models the action of actuators. For example, the ODEs of
Listing 1.2 model the evolution of the temperature of a room with a heater that
may be on (ODE on) or off (ODE off). The parameter param[0] represents the
power of the heater (that may be changed by the controller).
In return, the environment influences the program: the program questions the
values of physical variables (solutions of the ODEs), and uses them in the pro-
gram. We suppose that the continuous time is computed by the program: when
the program interacts with its environment, it must specify the time at which
this interaction takes place. We now specify the assertions that represent these
interactions in the C program.
Initializing the environment First, the initial mode of each system system_i
must be specified using the assertion HYBRID_INIT_MODE(system_i, mode_j).
Then, the initial value param of the jth parameter of the system system_i must



be given using the assertion HYBRID_PARAM_DINIT(system_i, j, param).
Finally, for each system system_i, the value of each component of the initial
state must be set by HYBRID_DINIT(system_i, j, value), where j means that
we set the value of the jth component. When the analyzer encounters these as-
sertions, it sends the information to the guaranteed integrator via XML files.
Getting values from the environment As we said, the program can read values
from the environment by calling HYBRID_DVALUE(system_i, component_j, t).
It reads the jth component of the state of system_i at global time t. When the
analyzer encounters this assertion, it performs the guaranteed integration of the
system system_i up to time t: the result of the assertion is the solution of this
integration, transmitted again through an XML file.
Modifying the environment Finally, the program can change the mode of a given
system system_i at time t to the new mode mod_j. It uses the assertion:
HYBRID_MODE(system_i, mode_j, t). The assertion for changing the value of
the jth parameters of the system system_i to the new value value at time t is:
HYBRID_PARAM(system_i, j, value, t). In practice, this changes the system
of ODEs that will be used in order to compute the next values that will be read.
Before that, the existing system is integrated until time t.

3 Experiments

The two tanks system [10] This system is composed of two water tanks linked by
a tube, and a controller that must keep the water levels in both tanks between
safe bounds. We encoded the system as a C program 4 plus a set of ODEs and
analyzed it with HybridFluctuat. We set the initial values of the levels to the
range [3, 8] × [4, 7]. As a result, HybridFluctuat proved that the water levels in
both tanks remain in the range [2.4, 8.5]×[3.5, 7.8]. We are thus able to automat-
ically prove the correctness of the control command program on the whole state
space with non-linear dynamics, which, to the best of our knowledge, cannot be
done by existing verification tools. As the initial ranges of values are large, we
used in the analysis regular subdivisions of width 0.1 on these initial ranges (this
was done automatically by our tool). The analysis took one hour.

The heating system [1] This system is composed of n adjacent rooms, each with a
heater, so that only m of them can be switched on at the same time. A controller
must maintain a certain temperature in all the rooms. We used our tool to com-
pute a range on the rooms temperature: this time, we set the initial condition
to be a point (a temperature of 20 in all rooms) and introduced an uncertainty
of 10% on all the parameters of the system (power of the heater, outside tem-
perature...). HybridFluctuat proved, in 28 seconds, that the temperature in all
rooms remains above 11.5, which is similar to results obtained using PHAVer [7].

4 The programs and ODEs mentioned in this article can be found at
http://www.lix.polytechnique.fr/˜bouissou/progs/hybridfluctuat/



0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1. Trajectory of the ATV over time in the quaternion coordinates. The black line
is the first dimension of the quaternion, the dashed ones are the 3 others.

Industrial case study We used HybridFluctuat to analyze the behavior of a sim-
plified version of the MSU part of the safety ATV control program described in
Section 1. The C program is about 400 lines of code including many array manip-
ulations and non linear floating point computations. The ODE is of dimension 7
with 3 parameters. The open-loop system is particularly unstable, the continuous
environment only converges under the action of the control program. This made
this whole system hard to analyze. We first computed an overapproximation of
the continuous trajectories on the 50 first seconds, with the initial condition be-
ing a point. We obtained Figure 1 that shows that the measured values converge
towards (1, 0, 0, 0), which is the safe state that the ATV is supposed to reach in
this escape mode. This analysis, although performed on a finite time range, gives
a good indication on the correctness of the control command program. Ideally,
a fixpoint computation proving the convergence for unbounded time would be
needed to prove the correctness. This is not implemented in HybridFluctuat yet.

We also measured the estimation error, i.e. the difference between the pre-
dicted position of the ATV and the position given by the sensors at the next
cycle. The predictions were proved to be accurate: their error is around 5%.

4 Conclusion and future work

In this article, we presented the new static analyzer HybridFluctuat that extends
the static analysis of numerical properties of embedded programs performed by
Fluctuat, by accurately modeling their interaction with their physical environ-
ment. The evolution of the environment is overapproximated by GRKLib, a
guaranteed integrator of ODEs. Although it is a preliminary work, we obtained
very promising results and the case study we performed shows that it can be
used for industrial applications. For the time being, we used HybridFluctuat to
compute invariants on values of the variables of the program, and overapproxi-
mations of the continuous trajectories. We are thus able to prove the numerical
stability of the implementation of a control-command algorithm. We next intend
to extend this analysis in two natural directions described hereafter.

One specificity of Fluctuat is to model the propagation of initial uncertainties
and rounding errors through numerical computations, pointing out the sources
of the main errors on the outputs. In HybridFluctuat, we consider for now that



the values sent to the actuators are error free, which is obviously not the case.
We thus want to investigate the influence of the difference between the com-
mands actually sent to the environment, and the ones that would be sent if the
program used real numbers: this difference induces two distinct evolutions of
the environment. We want to consider the difference between both evolutions
to be the propagation of the computation errors. Secondly, we want to remove
the current limitation of HybridFluctuat that imposes to analyze the system on
a finite time range. To do so, we need to compute fixpoints of the continuous
variables, i.e. fixpoints of the solutions of the ODEs: extrapolation algorithms
may be of great help in this perspective. Finally, a current use of Fluctuat aims
at bounding, when possible, not only the imprecision due to the implementation,
but also the imprecision due to the method. In some applications (like the ATV
case study), approximate ODE solvers are part of the program implemented.
HybridFluctuat, with its guaranteed ODE solver, can give an estimation of the
idealized result, and the difference with the result of the implementation, which
can be seen and propagated as a method error.

References

1. A.Fehnker and F.Ivancic. Benchmarks for hybrid systems verification. In HSCC,
volume 2993 of LNCS, 2004.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

3. O. Bouissou and M. Martel. GRKLib: a guaranteed runge-kutta library. In Follow-
up of International Symposium on Scientific Computing, Computer Arithmetic and
Validated Numerics. IEEE Press, 2007.

4. O. Bouissou and M. Martel. Abstract interpretation of the physical inputs of
embedded programs. In VMCAI’08, volume 4905 of LNCS. Springer, 2008.

5. P. Cousot. Integrating physical systems in the static analysis of embedded control
software. In APLAS’05, volume 3780 of LNCS. Springer, Berlin, 2005.

6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximations of fixed points. Principles
of Programming Languages 4, pages 238–252, 1977.

7. G. Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In
HSCC’05, volume 3414 of LNCS, pages 258–273. Springer, 2005.

8. E. Goubault, M. Martel, and S. Putot. Asserting the precision of floating-point
computations: A simple abstract interpreter. In ESOP, volume 2305 of LNCS.
Springer, 2002.

9. E. Goubault, M. Martel, and S. Putot. Some future challenges in the validation of
control systems. In ERTS. SEE, 2006.

10. S. Kowalewski, O. Stursberg, M. Fritz, H. Graf, I. H., J. Preuß, and et al. A case
study in tool-aided analysis of discretely controlled continuous systems: the two
tanks problem. In Hybrid Systems V, volume 1567 of LNCS. Springer, 1999.

11. S. Putot, E. Goubault, and M. Martel. Static analysis-based validation of floating-
point computations. In Numerical Software with Result Verification, volume 2991
of LNCS. Springer, 2003.


