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Generative models for RNA design/modeling

• 1998: Covariance Models (CMs)

• InfeRNAl is the workhorse underlying RFAM

• CMs can be used to search novel ncRNAs, but also as generative models

[Nawrocki et al 2009]
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Generative models: Algorithmic problems

Hypergraph model G=(V,H): V → sequence positions 

H → Informative subsets

+ Evaluation functions

𝑓1, 𝑓2… : 𝑣 ⊆ 𝑉 ↦ ℝ

Algorithmic questions/problems (fixed h for RBMs):

•OPT: Find most likely sequence (alt centroid sequence)

•Partition function: Compute 

•Sampling: Generate sequence from 

•Searching: Given large sequence (genome), find ML match
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Computing the partition function

Goal: Compute PF 

• Brute force

• Product over connected components

• PF of path computable in linear time by dyn. prog.

• Cycles can be broken through variable elimination
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Rem: Given values for separator {4,5,7}, Left and Right contributions become independent
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Tree decomposition (TD)
Definition : 
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• Each vertex v ∈ V is represented in some bag/node B of T (v ∈ B)
• Each edge e = (v, v’) ∈ E is represented in some bag/node B of T (e ⊆ B)
• Consistency: For all v ∈ V, the bags featuring v are connected in T
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Tree decomposition (TD)
Definition : 
A tree decomposition for G = (V, E) is a tree T of bags B1, B2, …, Bi ⊆ V, such that :
• Each vertex v ∈ V is represented in some bag/node B of T (v ∈ B)
• Each edge e = (v, v’) ∈ E is represented in some bag/node B of T (e ⊆ B)
• Consistency: For all v ∈ V, the bags featuring v are connected in T

Tree width tw of a tree decomposition = Size (#indices) of largest bag

Partition function computed in                      time using dyn. prog.

+ Computing an optimal (min tw) TD → NP-hard, but Fixed Parameter Tractable for tw
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[Boedlander 1992]
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• Convert M to (hyper)graph instance G

• Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G

• Precompute partition function (bottom-up dyn. prog.) through:

v: Assignments to variables shared with parent; F(B): Functions assigned to bag

Output. Return                      Complexity:                         + Tree decomposer (O(N), exp. on tw )

+ Sampling: k i.i.d. sequences through Stochastic Backtrack, starting from root: 
Choose w ∈ with probability       contribution to     .   Recurse until leaves.

Complexity: (+ part. fun.) for sampling k i.i.d. sequences

+ OPT: Max. probability/min. energy sequence for free



InfraRed – A practical implementation

• Python/C++ declarative framework (constraints and pseudo-energies)

• Runs tree decomp.; Reports part. fun.; Samples Boltzmann distr.; Optimal sequence

• Bonus: Autolearns weights to target expected features (ΔG, GC%...)

• Use-cases: 

• RNA multiple design - RNARedPrint [Hammer et al, RECOMB 2018; BMC Bioinfo 2019]

• RNA inverse folding - RNAPond [Yao et al, RECOMB 2021]

https://gitlab.inria.fr/amibio/Infrared/



RNAPoND – Positive and Negative Design

• Obeys positive constraints but learns disruptive BPs and cancels them

• Naïve infrared (tw < 10) implementation competitive with state of the art

[Yao et al, RECOMB 2021]



Treewidths of actual RNAs (PDB)

Treewidth of generative models???



TreeDiet – Simplifying tree decompositions
[Marchand et al, BMC Bioinfo 2022]

Goal: Remove few (weighted) edges from treewidth tw input graph, to reach tw’ < tw

Theory: FPT on tw; Practice: No reasonable tractable algorithm known

Idea: Start from tree decomposition, rephrase as coloring on tree (practically FPT on tw)

Correct induced error through rejection sampling, subopts or progressive filtering (search)
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• Low complexity post precomputation

Additional assets:

• Derivatives/moments/correlations exactly computable (same complexity)

• Genomic search for occurrences of gen model (Σ → [1,M], XP comp.)

Limitation (possibly): 

• Assumes that tw ≪ N

• Sparseness in generative models: structure prediction vs design

To a hammer, everything is a nail
Build it and they will come

https://gitlab.inria.fr/amibio/Infrared/

[Rinaudo et al, WABI 2012]
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