Sampling/searching in simple generative models:
 A details-oriented CS perspective

Yann Ponty
LIX, Ecole Polytechnique, France

Generative models for RNA design/modeling

- 1998: Covariance Models (CMs)
- InfeRNAl is the workhorse underlying RFAM [Nawrocki et al 2009]

- CMs can be used to search novel ncRNAs, but also as generative models

Modern physics-inspired generative models

Potts model (DCA)
$\mathbb{P}(\mathbf{w}) \propto \exp \left\{\sum_{i=1}^{N} \sum_{j=i+1}^{N} e_{i, j}\left(w_{i}, w_{j}\right)+\sum_{i=1}^{N} h_{i}\left(w_{i}\right)\right\}$

Modern physics-inspired generative models

Potts model (DCA)
$\mathbb{P}(\mathbf{w}) \propto \exp \left\{\sum_{i=1}^{N} \sum_{j=i+1}^{N} e_{i, j}\left(w_{i}, w_{j}\right)+\sum_{i=1}^{N} h_{i}\left(w_{i}\right)\right\}$

Restricted Boltzmann Machines

$$
\begin{aligned}
& \mathbb{P}(\mathbf{w}, \mathbf{h}) \propto \exp \left\{\sum_{i=1}^{N} \mathcal{V}_{i}\left(w_{i}\right)+\sum_{\mu=1}^{M} \mathcal{U}_{\mu}\left(h_{\mu}\right)-\sum_{\mu=1}^{M} I_{\mu}(\mathbf{w}) h_{\mu}\right\} \\
& I_{\mu}(\mathbf{w})=\sum_{i=1}^{N} \mathcal{W}_{i \mu}\left(w_{i}\right)
\end{aligned}
$$

Generative models as (hyper)graphs

- CS perspective: Weighted CSP ([W]CSP), aka graphical models
- (Hyper)Graph model $G=(V, E): V \rightarrow$ sequence positions $\mid+$ Evaluation functions $E \rightarrow$ Informative pairs $\quad f_{1}, f_{2} \ldots: v \in V \cup V^{2} \mapsto \mathbb{R}$

$$
\operatorname{Pr}(\mathbf{w}) \propto \exp \left\{\sum_{i=1}^{N} \sum_{j=i+1}^{N} e_{i, j}\left(w_{i}, w_{j}\right)+\sum_{i=1}^{N} h_{i}\left(w_{i}\right)\right\}
$$

Generative models as (hyper)graphs

- CS perspective: Weighted CSP ([W]CSP), aka graphical models
- (Hyper)Graph model $G=(V, E): V \rightarrow$ sequence positions $\mid+$ Evaluation functions $E \rightarrow$ Informative pairs $\quad f_{1}, f_{2} \ldots: v \in V \cup V^{2} \mapsto \mathbb{R}$

Generative models as (hyper)graphs

- CS perspective: Weighted CSP ([W]CSP), aka graphical models
- Hypergraph model $G=(\mathrm{V}, \mathrm{H})$: | $V \rightarrow$ sequence positions |
| :---: | :---: |
| $H \rightarrow$ Informative subsets | \(\begin{array}{r}Evaluation functions

f_{1}, f_{2} ···: v \subseteq V \mapsto \mathbb{R}\end{array}\)

Restricted Boltzmann Machine $\mathbb{P}(\mathbf{w}, \mathbf{h}) \propto \exp \left\{\sum_{i=1}^{N} \mathcal{V}_{i}\left(w_{i}\right)+\sum_{\mu=1}^{M} \mathcal{U}_{\mu}\left(h_{\mu}\right)-\sum_{\mu=1}^{M} I_{\mu}(\mathbf{w}) h_{\mu}\right\}$

Generative models as (hyper)graphs

- CS perspective: Weighted CSP ([W]CSP), aka graphical models
- Hypergraph model $G=(\mathrm{V}, H)$: | $V \rightarrow$ sequence positions | + Evaluation functions |
| :--- | :--- |
| $H \rightarrow$ Informative subsets | $f_{1}, f_{2} \ldots: v \subseteq V \mapsto \mathbb{R}$ |

Restricted Boltzmann Machine $\mathbb{P}(\mathbf{w}, \mathbf{h}) \propto \exp \left\{\sum_{i=1}^{N} v_{i}\left(w_{i}\right)+\sum_{\mu=1}^{M} \mathcal{U}_{\mu}\left(h_{\mu}\right)-\sum_{\mu=1}^{M} I_{\mu}(\mathbf{w}) h_{\mu}\right\}$

$$
I_{\mu}(\mathbf{w})=\sum_{i=1}^{N} \mathcal{W}_{i \mu}\left(w_{i}\right)
$$

Generative models: Algorithmic problems

Hypergraph model $G=(\mathrm{V}, \mathrm{H}): \quad V \rightarrow$ sequence positions $\mid+$ Evaluation functions
$H \rightarrow$ Informative subsets $\quad f_{1}, f_{2} \ldots: v \subseteq V \mapsto \mathbb{R}$
Algorithmic questions/problems (fixed \mathbf{h} for RBMs):

Generative models: Algorithmic problems

Hypergraph model $G=(\mathrm{V}, \mathrm{H})$:

$$
\begin{array}{c|c}
V \rightarrow \text { sequence positions } & + \text { Evaluation functions } \\
H \rightarrow \text { Informative subsets } & f_{1}, f_{2} \ldots: v \subseteq V \mapsto \mathbb{R}
\end{array}
$$

Algorithmic questions/problems (fixed \mathbf{h} for RBMs):
-OPT: Find most likely sequence (alt centroid sequence)

Generative models: Algorithmic problems

Hypergraph model $G=(\mathrm{V}, \mathrm{H})$:

$$
\begin{array}{c|c}
V \rightarrow \text { sequence positions } & + \text { Evaluation functions } \\
H \rightarrow \text { Informative subsets } & f_{1}, f_{2} \ldots: v \subseteq V \mapsto \mathbb{R}
\end{array}
$$

Algorithmic questions/problems (fixed \mathbf{h} for RBMs):
-OPT: Find most likely sequence (alt centroid sequence)
-Partition function: Compute $\mathcal{Z}=\sum_{\mathbf{w} \in \Sigma^{N}} e^{-\beta . E(\mathbf{w})}$

Generative models: Algorithmic problems

Hypergraph model $G=(\mathrm{V}, \mathrm{H})$:

$$
\begin{array}{c|c}
V \rightarrow \text { sequence positions } & + \text { Evaluation functions } \\
H \rightarrow \text { Informative subsets } & f_{1}, f_{2} \ldots: v \subseteq V \mapsto \mathbb{R}
\end{array}
$$

Algorithmic questions/problems (fixed \mathbf{h} for RBMs):
-OPT: Find most likely sequence (alt centroid sequence)
-Partition function: Compute $\mathcal{Z}=\sum_{\mathbf{w} \in \Sigma^{N}} e^{-\beta \cdot E(\mathbf{w})}$
-Sampling: Generate sequence from $\mathbb{P}(\mathbf{w}) \propto e^{-\beta \cdot E(\mathbf{w})}$

Generative models: Algorithmic problems

Hypergraph model $G=(V, H): \quad V \rightarrow$ sequence positions $\mid+$ Evaluation functions
$H \rightarrow$ Informative subsets $\quad f_{1}, f_{2} \ldots: v \subseteq V \mapsto \mathbb{R}$
Algorithmic questions/problems (fixed \mathbf{h} for RBMs):
-OPT: Find most likely sequence (alt centroid sequence)
-Partition function: Compute $\mathcal{Z}=\sum_{\mathbf{w} \in \Sigma^{N}} e^{-\beta \cdot E(\mathbf{w})}$
-Sampling: Generate sequence from $\mathbb{P}(\mathbf{w}) \propto e^{-\beta \cdot E(\mathbf{w})}$
-Searching: Given large sequence (genome), find ML match

Generating from physics-inspired models

Ask a physicist

Ask a Computer Scientist

Generating from physics-inspired models

Ask a physicist

Ask a Computer Scientist

Monte Carlo for the win!

Generating from physics-inspired models

Ask a physicist

Monte Carlo for the win!

If you feel paranoid, check stats for convergence

Ask a Computer Scientist

Generating from physics-inspired models

Ask a physicist

Monte Carlo for the win!

If you feel paranoid, check stats for convergence

TADAH!

Ask a Computer Scientist

Generating from physics-inspired models

Ask a physicist

Monte Carlo for the win!

Ask a Computer Scientist

Generating from physics-inspired models

Ask a physicist

Monte Carlo for the win!

Ask a Computer Scientist

Generating from physics-inspired models

Ask a physicist

Monte Carlo for the win!

Ask a Computer Scientist

Computing the partition function

$$
\text { Goal: Compute PF } \mathcal{Z}=\sum_{\mathbf{w} \in \Sigma^{N}} e^{-\beta \cdot E(\mathbf{w})}
$$

Computing the partition function

$$
\text { Goal: Compute PF } \mathcal{Z}=\sum_{\mathbf{w} \in \Sigma^{N}} e^{-\beta \cdot E(\mathbf{w})}
$$

- Brute force $\mathcal{O}\left(|\Sigma|^{N}\right)$

Computing the partition function

$$
\text { Goal: Compute PF } \mathcal{Z}=\sum_{\mathbf{w} \in \Sigma^{N}} e^{-\beta \cdot E(\mathbf{w})}
$$

- Brute force $\mathcal{O}\left(|\Sigma|^{N}\right)$
- Product over connected components $\mathcal{Z}=\prod_{c c \subset V} \mathcal{Z}(c c)$

Computing the partition function

$$
\text { Goal: Compute PF } \mathcal{Z}=\sum_{\mathbf{w} \in \Sigma^{N}} e^{-\beta \cdot E(\mathbf{w})}
$$

- Brute force $\mathcal{O}\left(|\Sigma|^{N}\right)$
- Product over connected components $\mathcal{Z}=\prod_{c c c V} \mathcal{Z}(c c)$
- PF of path computable in linear time by dyn. prog.

$$
\begin{gathered}
\mathcal{Z}\left(i_{1} \cdots i_{k}\right)=\sum_{w_{i_{1}} \in \Sigma} \mathcal{Z}\left(i_{2} \cdots i_{k} \mid w_{i_{1}}\right) \\
\mathcal{Z}\left(i_{2} \cdots i_{k} \mid w_{i_{1}}\right)=\sum_{w_{i_{2}} \in \Sigma} e^{-\beta \cdot e_{i_{1}, i_{2}}\left(w_{i_{1}}, w_{i_{2}}\right)} \cdot \mathcal{Z}\left(i_{3} \cdots i_{k} \mid w_{2}\right)
\end{gathered}
$$

Computing the partition function

$$
\text { Goal: Compute PF } \mathcal{Z}=\sum_{\mathbf{w} \in \Sigma^{N}} e^{-\beta \cdot E(\mathbf{w})}
$$

- Brute force $\mathcal{O}\left(|\Sigma|^{N}\right)$
- Product over connected components $\mathcal{Z}=\prod_{c c \subset V} \mathcal{Z}(c c)$
- PF of path computable in linear time by dyn. prog.

$$
\begin{gathered}
\mathcal{Z}\left(i_{1} \cdots i_{k}\right)=\sum_{w_{i_{1}} \in \Sigma} \mathcal{Z}\left(i_{2} \cdots i_{k} \mid w_{i_{1}}\right) \\
\mathcal{Z}\left(i_{2} \cdots i_{k} \mid w_{i_{1}}\right)=\sum_{w_{i_{2}} \in \Sigma} e^{-\beta \cdot e_{i_{1}, i_{2}}\left(w_{i_{1}}, w_{i_{2}}\right)} \cdot \mathcal{Z}\left(i_{3} \cdots i_{k} \mid w_{2}\right)
\end{gathered}
$$

- Complexity dominated by largest card. hyperedge

Computing the partition function

$$
\text { Goal: Compute PF } \mathcal{Z}=\sum_{\mathbf{w} \in \Sigma^{N}} e^{-\beta \cdot E(\mathbf{w})}
$$

- Brute force $\mathcal{O}\left(|\Sigma|^{N}\right)$
- Product over connected components $\mathcal{Z}=\prod_{c c \subset V} \mathcal{Z}(c c)$
- PF of path computable in linear time by dyn. prog.

$$
\begin{gathered}
\mathcal{Z}\left(i_{1} \cdots i_{k}\right)=\sum_{w_{i_{1}} \in \Sigma} \mathcal{Z}\left(i_{2} \cdots i_{k} \mid w_{i_{1}}\right) \\
\mathcal{Z}\left(i_{2} \cdots i_{k} \mid w_{i_{1}}\right)=\sum_{w_{i_{2}} \in \Sigma} e^{-\beta \cdot e_{i_{1}, i_{2}}\left(w_{i_{1}}, w_{i_{2}}\right)} \cdot \mathcal{Z}\left(i_{3} \cdots i_{k} \mid w_{2}\right)
\end{gathered}
$$

- Cycles can be broken through variable elimination

Divide and conquer-ing the partition function

Rem: Given values for separator $\{4,5,7\}$, Left and Right contributions become independent

Divide and conquer-ing the partition function

Rem: Given values for separator $\{4,5,7\}$, Left and Right contributions become independent

$\mathcal{Z}=\sum_{w_{4}, w_{5}, w_{7} \in \Sigma^{3}} \mathcal{Z}\left(1 \cdots 7 \mid w_{4}, w_{5}, w_{7}\right) \times \mathcal{Z}\left(8 \cdots N \mid w_{4}, w_{5}, w_{7}\right) \times e^{-\beta\binom{h\left(w_{4}\right)+h\left(w_{5}\right)+h\left(w_{4}\right)}{+e_{4}, 5\left(w_{4}, w_{5}\right)}}$
Work sequentially through Right

$$
\mathcal{Z}\left(1 \cdots 7 \mid w_{4}, w_{5}, w_{7}\right)=\sum_{w_{1} \in \Sigma} \mathcal{Z}\left(2 \cdots 7 \mid w_{1}, w_{4}, w_{5}, w_{7}\right) \times e^{-\beta . h\left(w_{1}\right)}
$$

Divide and conquer-ing the partition function

Rem: Given values for separator $\{4,5,7\}$, Left and Right contributions become independent

$$
\mathcal{Z}=\sum_{w_{4}, w_{5}, w_{7} \in \Sigma^{3}} \mathcal{Z}\left(1 \cdots 7 \mid w_{4}, w_{5}, w_{7}\right) \times \mathcal{Z}\left(8 \cdots N \mid w_{4}, w_{5}, w_{7}\right) \times e^{-\beta\binom{h\left(w_{4}\right)+h\left(w_{5}\right)+h\left(w_{4}\right)}{\left.+e_{4}, 5 w_{4}, w_{5}\right)}}
$$

Work sequentially through Right

$$
\begin{aligned}
& \mathcal{Z}\left(1 \cdots 7 \mid w_{4}, w_{5}, w_{7}\right)=\sum_{w_{1} \in \Sigma} \mathcal{Z}\left(2 \cdots 7 \mid w_{1}, w_{4}, w_{5}, w_{7}\right) \times e^{-\beta . h\left(w_{1}\right)} \\
& \mathcal{Z}\left(2 \cdots 7 \mid w_{1}, w_{4}, w_{5}, w_{7}\right)=\sum_{w_{2} \in \Sigma} \mathcal{Z}\left(3 \cdots 6 \mid w_{2}, w_{4}, w_{5}, w_{7}\right) \times e^{-\beta\binom{h\left(w_{2}\right)+e\left(w_{1}, w_{2}\right)}{+e\left(w_{2}, w_{7}\right)}}
\end{aligned}
$$

Divide and conquer-ing the partition function

Rem: Given values for separator $\{4,5,7\}$, Left and Right contributions become independent

Divide and conquer-ing the partition function

Rem: Given values for separator $\{4,5,7\}$, Left and Right contributions become independent

Divide and conquer-ing the partition function

Rem: Given values for separator $\{4,5,7\}$, Left and Right contributions become independent

Divide and conquer-ing the partition function

Rem: Given values for separator $\{4,5,7\}$, Left and Right contributions become independent

Divide and conquer-ing the partition function

Rem: Given values for separator $\{4,5,7\}$, Left and Right contributions become independent

Work sequentially through Right

$$
\begin{aligned}
& \mathcal{Z}\left(1 \cdots 7 \mid w_{4}, w_{5}, w_{7}\right)=\sum_{w_{1} \in \Sigma} \mathcal{Z}\left(2 \cdots 7 \mid w_{1}, w_{4}, w_{5}, w_{7}\right) \times e^{-\beta \cdot h\left(w_{1}\right)} \\
& \mathcal{Z}\left(2 \cdots 7 \mid w_{1}, w_{4}, w_{5}, w_{7}\right)=\sum_{w_{2} \in \Sigma} \mathcal{Z}\left(3 \cdots 6 \mid w_{2}, w_{4}, w_{5}, w_{7}\right) \times e^{-\beta\binom{h\left(w_{2}\right)+e\left(w_{1}, w_{2}\right)}{+e\left(w_{2}, w_{7}\right)}} \\
& \mathcal{Z}\left(3 \cdots 6 \mid w_{2}, w_{4}, w_{5}, w_{7}\right) \rightarrow \mathcal{Z}\left(3 \cdots 5 \mid w_{2}, w_{4}, w_{5}, w_{6}\right)
\end{aligned}
$$

Work sequentially through Left
$\mathcal{Z}\left(8 \cdots N \mid w_{4}, w_{5}, w_{7}\right)=\sum_{w_{8} \in \Sigma} \mathcal{Z}\left(9 \cdots N \mid w_{4}, w_{5}, w_{8}\right) \times e^{-\beta\left(h\left(w_{8}\right)+e\left(w_{7}, w_{8}\right)\right)}$
$\mathcal{Z}\left(9 \cdots N \mid w_{4}, w_{5}, w_{8}\right) \rightarrow \mathcal{Z}\left(9 \cdots 11 \mid w_{4}, w_{5}, w_{8}, w_{N}\right) \rightarrow \mathcal{Z}\left(10 \cdots 11 \mid w_{4}, w_{9}, w_{N}\right)$

Divide and conquer-ing the partition function

Rem: Given values for separator $\{4,5,7\}$, Left and Right contributions become independent

$$
\mathcal{Z}=\sum_{w_{4}, w_{5}, w_{7} \in \Sigma^{3}} \mathcal{Z}\left(1 \cdots 7 \mid w_{4}, w_{5}, w_{7}\right) \times \mathcal{Z}\left(8 \cdots N \mid w_{4}, w_{5}, w_{7}\right) \times e^{-\beta\binom{h\left(w_{4}\right)+h\left(w_{5}\right)+h\left(w_{7}\right)}{+e_{4,5}\left(w_{4}, w_{5}\right)}}
$$

Work sequentially through Right

$$
\begin{aligned}
& \mathcal{Z}\left(1 \cdots 7 \mid w_{4}, w_{5}, w_{7}\right)=\sum_{w_{1} \in \Sigma} \mathcal{Z}\left(2 \cdots 7 \mid w_{1}, w_{4}, w_{5}, w_{7}\right) \times e^{-\beta \cdot h\left(w_{1}\right)} \\
& \mathcal{Z}\left(2 \cdots 7 \mid w_{1}, w_{4}, w_{5}, w_{7}\right)=\sum_{w_{2} \in \Sigma} \mathcal{Z}\left(3 \cdots 6 \mid w_{2}, w_{4}, w_{5}, w_{7}\right) \times e^{-\beta\binom{h\left(w_{2}\right)+e\left(w_{1}, w_{2}\right)}{+e\left(w_{2}, w_{7}\right)}} \\
& \mathcal{Z}\left(3 \cdots 6 \mid w_{2}, w_{4}, w_{5}, w_{7}\right) \rightarrow \mathcal{Z}\left(3 \cdots 5 \mid w_{2}, w_{4}, w_{5}, w_{6}\right)
\end{aligned}
$$

Work sequentially through Left
$\mathcal{Z}\left(8 \cdots N \mid w_{4}, w_{5}, w_{7}\right)=\sum_{w_{8} \in \Sigma} \mathcal{Z}\left(9 \cdots N \mid w_{4}, w_{5}, w_{8}\right) \times e^{-\beta\left(h\left(w_{8}\right)+e\left(w_{7}, w_{8}\right)\right)}$
$\mathcal{Z}\left(9 \cdots N \mid w_{4}, w_{5}, w_{8}\right) \rightarrow \mathcal{Z}\left(9 \cdots 11 \mid w_{4}, w_{5}, w_{8}, w_{N}\right) \rightarrow \mathcal{Z}\left(10 \cdots 11 \mid w_{4}, w_{9}, w_{N}\right)$

Tree decomposition (TD)

Definition :
A tree decomposition for $G=(V, E)$ is a tree T of bags $B_{1}, B_{2}, \ldots, B_{i} \subseteq V$, such that :

- Each vertex $v \in V$ is represented in some bag/node B of $T(v \in B)$
- Each edge $e=\left(v, v^{\prime}\right) \in E$ is represented in some bag/node B of $T(e \subseteq B)$
- Consistency: For all $v \in V$, the bags featuring v are connected in T

Tree decomposition (TD)

Definition :

A tree decomposition for $G=(V, E)$ is a tree T of bags $B_{1}, B_{2}, \ldots, B_{i} \subseteq V$, such that :

- Each vertex $v \in V$ is represented in some bag/node B of $T(v \in B)$
- Each edge $e=\left(v, v^{\prime}\right) \in E$ is represented in some bag/node B of $T(e \subseteq B)$
- Consistency: For all $v \in V$, the bags featuring v are connected in T

Tree decomposition (TD)

Definition :

A tree decomposition for $G=(V, E)$ is a tree T of bags $B_{1}, B_{2}, \ldots, B_{i} \subseteq V$, such that :

- Each vertex $v \in V$ is represented in some bag/node B of $T(v \in B)$
- Each edge $e=\left(v, v^{\prime}\right) \in E$ is represented in some bag/node B of $T(e \subseteq B)$
- Consistency: For all $v \in V$, the bags featuring v are connected in T

Tree decomposition (TD)

Definition :

A tree decomposition for $G=(V, E)$ is a tree T of bags $B_{1}, B_{2}, \ldots, B_{i} \subseteq V$, such that :

- Each vertex $v \in V$ is represented in some bag/node B of $T(v \in B)$
- Each edge $e=\left(v, v^{\prime}\right) \in E$ is represented in some bag/node B of $T(e \subseteq B)$
- Consistency: For all $v \in V$, the bags featuring v are connected in T

Tree width tw of a tree decomposition = Size (\#indices) of largest bag Partition function computed in $\mathcal{O}\left(N|\Sigma|^{t w}\right)$ time using dyn. prog.

+ Computing an optimal (min $t w)$ TD \rightarrow NP-hard, but Fixed Parameter Tractable for $t w$

Meta algorithm - Partition function

Input. Trained generative model M

- Convert M to (hyper)graph instance G
- Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G
- Precompute partition function (bottom-up dyn. prog.) through:

$$
\mathcal{Z}(B \mid \mathbf{v})=\sum_{w \in \Sigma} e^{-\beta \sum_{f \in F(B)} f(\mathbf{v} \cup\{w\})} \prod_{B^{\prime} \in \operatorname{children}(B)} \mathcal{Z}\left(B^{\prime} \mid \mathbf{v} \cup\{w\}\right)
$$

\boldsymbol{v} : Assignments to variables shared with parent; $F(B)$: Functions assigned to bag
Output. Return $\mathcal{Z}\left(\right.$ root \quad Complexity: $\mathcal{O}\left(N|\Sigma|^{t w}\right)$ + Tree decomposer ($O(N)$, exp. on $\left.t w\right)$

Meta algorithm - Partition function

Input. Trained generative model M

- Convert M to (hyper)graph instance G
- Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G
- Precompute partition function (bottom-up dyn. prog.) through:

$$
\mathcal{Z}(B \mid \mathbf{v})=\sum_{w \in \Sigma} e^{-\beta \sum_{f \in F(B)} f(\mathbf{v} \cup\{w\})} \prod_{B^{\prime} \in \operatorname{children}(B)} \mathcal{Z}\left(B^{\prime} \mid \mathbf{v} \cup\{w\}\right)
$$

\boldsymbol{v} : Assignments to variables shared with parent; $F(B)$: Functions assigned to bag
Output. Return \mathcal{Z} (root) Complexity: $\mathcal{O}\left(N|\Sigma|^{t w}\right)+$ Tree decomposer ($O(N)$, exp. on $t w$)

+ Sampling: ki.i.d. sequences through Stochastic Backtrack, starting from root:
Choose $w \in \Sigma$ with probability \propto contribution to \mathcal{Z}. Recurse until leaves.
Complexity: $\mathcal{O}(k N|\Sigma|)$ (+ part. fun.) for sampling k i.i.d. sequences

Meta algorithm - Partition function

Input. Trained generative model M

- Convert M to (hyper)graph instance G
- Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G
- Precompute partition function (bottom-up dyn. prog.) through:

$$
\mathcal{Z}(B \mid \mathbf{v})=\sum_{w \in \Sigma} e^{-\beta \sum_{f \in F(B)} f(\mathbf{v} \cup\{w\})} \prod_{B^{\prime} \in \operatorname{children}(B)} \mathcal{Z}\left(B^{\prime} \mid \mathbf{v} \cup\{w\}\right)
$$

\boldsymbol{v} : Assignments to variables shared with parent; $F(B)$: Functions assigned to bag
Output. Return $\mathcal{Z}($ root $) \quad$ Complexity: $\mathcal{O}\left(N|\Sigma|^{t w}\right)+$ Tree decomposer ($O(N)$, exp. on $t w$)

+ Sampling: k i.i.d. sequences through Stochastic Backtrack, starting from root:
Choose $w \in \Sigma$ with probability \propto contribution to \mathcal{Z}. Recurse until leaves.
Complexity: $\mathcal{O}(k N|\Sigma|)$ (+ part. fun.) for sampling k i.i.d. sequences
+ OPT: Max. probability/min. energy sequence for free

InfraRed - A practical implementation

https://gitlab.inria.fr/amibio/Infrared/

```
def single_target_design_model(target):
    n, bps = len(target), rna.parse(target)
    model = ir.Model(n, 4)
    model.add_constraints(rna.BPComp(i, j) for (i, j) in bps)
    model.add_functions([rna.GCCont(i) for i in range(n)], 'gc')
    model.add_functions([rna.BPEnergy(i, j, (i-1, j+1) not in bps)
        for (i,j) in bps], 'energy')
    model.set_feature_weight(-1.5, 'energy')
    return model
```

- Python/C++ declarative framework (constraints and pseudo-energies)
- Runs tree decomp.; Reports part. fun.; Samples Boltzmann distr.; Optimal sequence
- Bonus: Autolearns weights to target expected features ($\Delta \mathrm{G}, \mathrm{GC} \% . .$.)
- Use-cases:
- RNA multiple design - RNARedPrint [Hammer et al, RECOMB 2018; BMC Bioinfo 2019]
- RNA inverse folding - RNAPond [Yao et al, RECOMB 2021]

RNAPoND - Positive and Negative Design

[Yao et al, RECOMB 2021]

- Obeys positive constraints but learns disruptive BPs and cancels them
- Naïve infrared ($t w<10$) implementation competitive with state of the art

Treewidths of actual RNAs (PDB)

Treewidth of generative models???

TreeDiet - Simplifying tree decompositions

[Marchand et al, BMC Bioinfo 2022]

Goal: Remove few (weighted) edges from treewidth $t w$ input graph, to reach $t w^{\prime}<t w$ Theory: FPT on tw; Practice: No reasonable tractable algorithm known Idea: Start from tree decomposition, rephrase as coloring on tree (practically FPT on tw) Correct induced error through rejection sampling, subopts or progressive filtering (search)

Treewidth can be reduced w/o much information loss

	\#Preserved BPs $t w^{\prime}$	
9	-	$\mathbf{1 8 3}$
EteRNA22	EteRNA77	
8	-	182
7	-	180
6	$\mathbf{4 6 5}$	176
5	460	168
4	456	157
3	445	144
2	418	121
1	320	86

Treewidth can be reduced w/o much information loss

B - Twister Ribozyme (4OJI)

C - Best hit ($c=-18.7$)
CCGC-CUAACACUGCCAGCGCCGGCCCCGCGCC-CGG-AAAAG-AGUGGGGGGGGCGG gug Illillill IIII 111 III IIII IIIII I GUUGCUUAACACUGCCAAUGCCGGUCCCAAGCCCGGAUAAAAGUGGAGGGGGCACGGU

D - Second best hit ($c=-9.9$)
CCGCCUAACACUGCC-AGCGCCGGCCCC--GCGCCCGGAAAAGAGUGGGGGGGGGCGG-

Conclusion

To a hammer, everything is a nail Build it and they will come

- Avenues to apply parameterized complexity to bio* generative models
- Purely declarative, exact sampling
- Low complexity post precomputation

Conclusion

To a hammer, everything is a nail Build it and they will come

- Avenues to apply parameterized complexity to bio* generative models
- Purely declarative, exact sampling
- Low complexity post precomputation

Additional assets:
[Saule et al, WABI 2011]

- Derivatives/moments/correlations exactly computable (same complexity)
- Genomic search for occurrences of gen model ($\Sigma \rightarrow[1, M], X P$ comp.)
[Rinaudo et al, WABI 2012]
https://gitlab.inria.fr/amibio/Infrared/

Conclusion

To a hammer, everything is a nail Build it and they will come

- Avenues to apply parameterized complexity to bio* generative models
- Purely declarative, exact sampling
- Low complexity post precomputation

Additional assets:

- Derivatives/moments/correlations exactly computable (same complexity)
- Genomic search for occurrences of gen model ($\Sigma \rightarrow[1, M], X P$ comp.)

Limitation (possibly):

[Rinaudo et al, WABI 2012]

- Assumes that $t w \ll N$
- Sparseness in generative models: structure prediction vs design https://gitlab.inria.fr/amibio/Infrared/

Acknowledgements

https://gitlab.inria.fr/amibio/Infrared/

