
Sampling/searching in simple
generative models:

A details-oriented CS perspective

Yann Ponty

LIX, Ecole Polytechnique, France

Generative models for RNA design/modeling

• 1998: Covariance Models (CMs)

• InfeRNAl is the workhorse underlying RFAM

• CMs can be used to search novel ncRNAs, but also as generative models

[Nawrocki et al 2009]

Modern physics-inspired generative models

Potts model (DCA)

1 N
1

N

5 10

≠ 0

Modern physics-inspired generative models

Potts model (DCA)

1 N
1

N

5 10

≠ 0

Restricted Boltzmann Machines

1 N5 10

1 M

≠ 0

Generative models as (hyper)graphs

Potts model (DCA)

• CS perspective: Weighted CSP ([W]CSP), aka graphical models

• (Hyper)Graph model G=(V,E): V → sequence positions

E → Informative pairs

1 N

1

N

5 10

+ Evaluation functions

𝑓1, 𝑓2… : 𝑣 ∈ 𝑉 ∪ 𝑉
2 ↦ ℝ

Generative models as (hyper)graphs

Potts model (DCA)

• CS perspective: Weighted CSP ([W]CSP), aka graphical models

• (Hyper)Graph model G=(V,E): V → sequence positions

E → Informative pairs

1 N

1

N

5 10

+ Evaluation functions

𝑓1, 𝑓2… : 𝑣 ∈ 𝑉 ∪ 𝑉
2 ↦ ℝ

1

2

3

4

5

6
7

8

9

10

11
N

Generative models as (hyper)graphs

• CS perspective: Weighted CSP ([W]CSP), aka graphical models

• Hypergraph model G=(V,H): V → sequence positions

H → Informative subsets
+ Evaluation functions

𝑓1, 𝑓2… : 𝑣 ⊆ 𝑉 ↦ ℝ

Restricted Boltzmann Machine

1 N5 10

1 M

≠ 0

Generative models as (hyper)graphs

• CS perspective: Weighted CSP ([W]CSP), aka graphical models

• Hypergraph model G=(V,H): V → sequence positions

H → Informative subsets
+ Evaluation functions

𝑓1, 𝑓2… : 𝑣 ⊆ 𝑉 ↦ ℝ

Restricted Boltzmann Machine

1

2

3

4

5
6

7

8

9

10

11
N

1 N5 10

1 M

≠ 0

Generative models: Algorithmic problems

Hypergraph model G=(V,H): V → sequence positions

H → Informative subsets

+ Evaluation functions

𝑓1, 𝑓2… : 𝑣 ⊆ 𝑉 ↦ ℝ

Algorithmic questions/problems (fixed h for RBMs):

Generative models: Algorithmic problems

Hypergraph model G=(V,H): V → sequence positions

H → Informative subsets

+ Evaluation functions

𝑓1, 𝑓2… : 𝑣 ⊆ 𝑉 ↦ ℝ

Algorithmic questions/problems (fixed h for RBMs):

•OPT: Find most likely sequence (alt centroid sequence)

Generative models: Algorithmic problems

Hypergraph model G=(V,H): V → sequence positions

H → Informative subsets

+ Evaluation functions

𝑓1, 𝑓2… : 𝑣 ⊆ 𝑉 ↦ ℝ

Algorithmic questions/problems (fixed h for RBMs):

•OPT: Find most likely sequence (alt centroid sequence)

•Partition function: Compute

Generative models: Algorithmic problems

Hypergraph model G=(V,H): V → sequence positions

H → Informative subsets

+ Evaluation functions

𝑓1, 𝑓2… : 𝑣 ⊆ 𝑉 ↦ ℝ

Algorithmic questions/problems (fixed h for RBMs):

•OPT: Find most likely sequence (alt centroid sequence)

•Partition function: Compute

•Sampling: Generate sequence from

Generative models: Algorithmic problems

Hypergraph model G=(V,H): V → sequence positions

H → Informative subsets

+ Evaluation functions

𝑓1, 𝑓2… : 𝑣 ⊆ 𝑉 ↦ ℝ

Algorithmic questions/problems (fixed h for RBMs):

•OPT: Find most likely sequence (alt centroid sequence)

•Partition function: Compute

•Sampling: Generate sequence from

•Searching: Given large sequence (genome), find ML match

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

Computing the partition function

1

2

3

4

5
6

7

8

9

10

11
N

Goal: Compute PF

Computing the partition function

1

2

3

4

5
6

7

8

9

10

11
N

Goal: Compute PF

• Brute force

Computing the partition function

1

2

3

4

5
6

7

8

9

10

11
N

Goal: Compute PF

• Brute force

• Product over connected components

Computing the partition function

1

2

3

4

5
6

7

8

9

10

11
N

Goal: Compute PF

• Brute force

• Product over connected components

• PF of path computable in linear time by dyn. prog.

Computing the partition function

1

2

3

4

5
6

7

8

9

10

11
N

Goal: Compute PF

• Brute force

• Product over connected components

• PF of path computable in linear time by dyn. prog.

• Complexity dominated by largest card. hyperedge

Computing the partition function

Goal: Compute PF

• Brute force

• Product over connected components

• PF of path computable in linear time by dyn. prog.

• Cycles can be broken through variable elimination

1

2

3

4

5
6

7

8

9

10

11
N

Divide and conquer-ing the partition function
Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

Work sequentially through Right1

2

3

6

8

9

10

11
N

7

4

5

Divide and conquer-ing the partition function
Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

Work sequentially through Right1

2

3

6

8

9

10

11
N

1

7

4

5

Divide and conquer-ing the partition function
Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

Work sequentially through Right1

2

3

6

8

9

10

11
N

1

2

7

4

5

Divide and conquer-ing the partition function
Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

Work sequentially through Right1

2

3

6

8

9

10

11
N

1

2

7
6

4

5

Divide and conquer-ing the partition function
Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

Work sequentially through Right

Work sequentially through Left

1

2

3

6

8

9

10

11
N

1

2

7

3

6

4

5

Divide and conquer-ing the partition function
Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

Work sequentially through Right

Work sequentially through Left

1

2

3

6

8

9

10

11
N

1

2

7

3

6

8 4

5

Divide and conquer-ing the partition function
Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

Work sequentially through Right

Work sequentially through Left

1

2

3

6

8

9

10

11
N

1

2

7

3

6

N

8 4

5

Divide and conquer-ing the partition function
Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

Work sequentially through Right

Work sequentially through Left

1

2

3

6

8

9

10

11
N

1

2

7

3

6

N

8 4

5

9

Divide and conquer-ing the partition function
Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

Work sequentially through Right

Work sequentially through Left

1

2

3

6

8

9

10

11
N

1

2

7

3

6

N

8

11

10

4

5

9

Tree decomposition (TD)
Definition :
A tree decomposition for G = (V, E) is a tree T of bags B1, B2, …, Bi ⊆ V, such that :
• Each vertex v ∈ V is represented in some bag/node B of T (v ∈ B)
• Each edge e = (v, v’) ∈ E is represented in some bag/node B of T (e ⊆ B)
• Consistency: For all v ∈ V, the bags featuring v are connected in T

Tree decomposition (TD)
Definition :
A tree decomposition for G = (V, E) is a tree T of bags B1, B2, …, Bi ⊆ V, such that :
• Each vertex v ∈ V is represented in some bag/node B of T (v ∈ B)
• Each edge e = (v, v’) ∈ E is represented in some bag/node B of T (e ⊆ B)
• Consistency: For all v ∈ V, the bags featuring v are connected in T

1

2

3

4

5

6
7

8

9

10

11
N

∅

2 | ∅1 | ∅ 3,4,5 |∅

11 | 2

8 | 11

7 | 8

6 | 7

N | 1

9 | N

10 | 9

tw=3

Tree decomposition (TD)
Definition :
A tree decomposition for G = (V, E) is a tree T of bags B1, B2, …, Bi ⊆ V, such that :
• Each vertex v ∈ V is represented in some bag/node B of T (v ∈ B)
• Each edge e = (v, v’) ∈ E is represented in some bag/node B of T (e ⊆ B)
• Consistency: For all v ∈ V, the bags featuring v are connected in T

1

2

3

4

5
6

7

8

9

10

11
N

4,5,7 | ∅

1 | 4,5,78 | 4,5,7

2 | 1,4,5,7

6 | 2,4,5,7

3 | 2,4,6

N | 4,5,8

9 | 4,5,8,N

10 | 4,9,N

11 | 9,10,N

tw=5
1

2

3

4

5

6
7

8

9

10

11
N

∅

2 | ∅1 | ∅ 3,4,5 |∅

11 | 2

8 | 11

7 | 8

6 | 7

N | 1

9 | N

10 | 9

tw=3

Tree decomposition (TD)
Definition :
A tree decomposition for G = (V, E) is a tree T of bags B1, B2, …, Bi ⊆ V, such that :
• Each vertex v ∈ V is represented in some bag/node B of T (v ∈ B)
• Each edge e = (v, v’) ∈ E is represented in some bag/node B of T (e ⊆ B)
• Consistency: For all v ∈ V, the bags featuring v are connected in T

Tree width tw of a tree decomposition = Size (#indices) of largest bag

Partition function computed in time using dyn. prog.

+ Computing an optimal (min tw) TD → NP-hard, but Fixed Parameter Tractable for tw

1

2

3

4

5
6

7

8

9

10

11
N

4,5,7 | ∅

1 | 4,5,78 | 4,5,7

2 | 1,4,5,7

6 | 2,4,5,7

3 | 2,4,6

N | 4,5,8

9 | 4,5,8,N

10 | 4,9,N

11 | 9,10,N

tw=5
1

2

3

4

5

6
7

8

9

10

11
N

∅

2 | ∅1 | ∅ 3,4,5 |∅

11 | 2

8 | 11

7 | 8

6 | 7

N | 1

9 | N

10 | 9

tw=3

[Boedlander 1992]

Meta algorithm – Partition function
Input. Trained generative model M

• Convert M to (hyper)graph instance G

• Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G

• Precompute partition function (bottom-up dyn. prog.) through:

v: Assignments to variables shared with parent; F(B): Functions assigned to bag

Output. Return Complexity: + Tree decomposer (O(N), exp. on tw)

Meta algorithm – Partition function
Input. Trained generative model M

• Convert M to (hyper)graph instance G

• Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G

• Precompute partition function (bottom-up dyn. prog.) through:

v: Assignments to variables shared with parent; F(B): Functions assigned to bag

Output. Return Complexity: + Tree decomposer (O(N), exp. on tw)

+ Sampling: k i.i.d. sequences through Stochastic Backtrack, starting from root:
Choose w ∈ with probability contribution to . Recurse until leaves.

Complexity: (+ part. fun.) for sampling k i.i.d. sequences

Meta algorithm – Partition function
Input. Trained generative model M

• Convert M to (hyper)graph instance G

• Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G

• Precompute partition function (bottom-up dyn. prog.) through:

v: Assignments to variables shared with parent; F(B): Functions assigned to bag

Output. Return Complexity: + Tree decomposer (O(N), exp. on tw)

+ Sampling: k i.i.d. sequences through Stochastic Backtrack, starting from root:
Choose w ∈ with probability contribution to . Recurse until leaves.

Complexity: (+ part. fun.) for sampling k i.i.d. sequences

+ OPT: Max. probability/min. energy sequence for free

InfraRed – A practical implementation

• Python/C++ declarative framework (constraints and pseudo-energies)

• Runs tree decomp.; Reports part. fun.; Samples Boltzmann distr.; Optimal sequence

• Bonus: Autolearns weights to target expected features (ΔG, GC%...)

• Use-cases:

• RNA multiple design - RNARedPrint [Hammer et al, RECOMB 2018; BMC Bioinfo 2019]

• RNA inverse folding - RNAPond [Yao et al, RECOMB 2021]

https://gitlab.inria.fr/amibio/Infrared/

RNAPoND – Positive and Negative Design

• Obeys positive constraints but learns disruptive BPs and cancels them

• Naïve infrared (tw < 10) implementation competitive with state of the art

[Yao et al, RECOMB 2021]

Treewidths of actual RNAs (PDB)

Treewidth of generative models???

TreeDiet – Simplifying tree decompositions
[Marchand et al, BMC Bioinfo 2022]

Goal: Remove few (weighted) edges from treewidth tw input graph, to reach tw’ < tw

Theory: FPT on tw; Practice: No reasonable tractable algorithm known

Idea: Start from tree decomposition, rephrase as coloring on tree (practically FPT on tw)

Correct induced error through rejection sampling, subopts or progressive filtering (search)

Treewidth can be reduced w/o much information loss

Treewidth can be reduced w/o much information loss

Conclusion
• Avenues to apply parameterized complexity to bio* generative models

• Purely declarative, exact sampling

• Low complexity post precomputation

To a hammer, everything is a nail
Build it and they will come

https://gitlab.inria.fr/amibio/Infrared/

Conclusion
• Avenues to apply parameterized complexity to bio* generative models

• Purely declarative, exact sampling

• Low complexity post precomputation

Additional assets:

• Derivatives/moments/correlations exactly computable (same complexity)

• Genomic search for occurrences of gen model (Σ → [1,M], XP comp.)

To a hammer, everything is a nail
Build it and they will come

https://gitlab.inria.fr/amibio/Infrared/

[Rinaudo et al, WABI 2012]

[Saule et al, WABI 2011]

Conclusion
• Avenues to apply parameterized complexity to bio* generative models

• Purely declarative, exact sampling

• Low complexity post precomputation

Additional assets:

• Derivatives/moments/correlations exactly computable (same complexity)

• Genomic search for occurrences of gen model (Σ → [1,M], XP comp.)

Limitation (possibly):

• Assumes that tw ≪ N

• Sparseness in generative models: structure prediction vs design

To a hammer, everything is a nail
Build it and they will come

https://gitlab.inria.fr/amibio/Infrared/

[Rinaudo et al, WABI 2012]

[Saule et al, WABI 2011]

Acknowledgements

https://gitlab.inria.fr/amibio/Infrared/

Sebastian Will Sarah Berkemer

Bertrand Marchand Laurent Bulteau Philippe Rinaudo

Alain DeniseHua-Ting Yao Stefan Hammer

