Sampling/searching in simple
generative models:
A getaHs-ortented CS perspective

Yann Ponty
LIX, Ecole Polytechnique, France

Generative models for RNA design/modeling

tRNA 1 GgagauaUAGCuchgU. .GGU . AgaGCqucgBacUuaadAuCegaaggegegGEUUCghalcCegonaucueca
G:AG:U:U+G:: AGU GGU A ::C U GG:CUU AA:CC A ++C:CGGGUUCGAAUCCCG: :A:CU:CA

NC 013790.1 2130335 GCAGCUGUGGUAUAGUcuGGUUAUUACUUGGGCCUUCCAAGCCUACARCCCGGEUUCGAAUCCCGGCAGCUGCA
APPSR ———

1 Biologica :‘

e 1998: Covariance Models (CMs) e 8
listic models ‘“

* InfeRNAL is the workhorse underlying RFAM [Nawrocki et a/2009] [l

3 3
g H 5 a
(-) G—_cC 4000 ..‘.,.-..
model (2 model g-c /
consensus {_) consensus 2”3 2 /'
secondary (-) query a-u 'E 3000 o
- u-a
structure f _; sequence a-u ya i ,.‘“’.
; >>>>>="_ u cgccc A © /._'
_ ; [_ v9a A | [g 5 L
- —<<<< < << << cucCGaG gcgGG c < 2000 ./
L I G T & Uy Q
T >>>> g - Gyad? Gc g 2 /
- ' <-»'"7 v u-—-a agd 2 .—-—.
<-> c—g
<-> g_c 5 1000
<-> -C H* - @
<-> a-u o= =
__ c a G
- o U a 0 (L0
_ u a a
C="1 L= 1 2004 2008 2012 2016 2020
anticodon anticodon RFAM DB release date

* CMs can be used to search novel ncRNAs, but also as generative models

Modern physics-inspired generative models

Potts model (DCA)

ocexp{z Z (wi, w; +Zh }

1=1 j=i+1

1 5 10 N
1 ‘
.
E:’gj
\ #+ 0

Modern physics-inspired generative models
Potts model (DCA) Restricted Boltzmann Machines

ocexp{z Z (w;, w, +Zh } P(W,h)ocexp{ZVi(w@)wLZZ/{#(h#)Zlﬁ(w)hﬁ}

=1 g5=1i+1 i=1 n=1 n=1

1 1 5 10 N Ip(w):zwm(wi)
[]
1
g Wi h
£0
\Y
€jj 1 ”
\ # 0

Generative models as (hyper)graphs

* CS perspective: Weighted CSP ([W]CSP), aka graphical models

* (Hyper)Graph model G=(V,E): V - sequence positions
E - Informative pairs

+ Evaluation functions
fl,fz UEVUVZ - R

Potts model (DCA) 1 : 0 N

P(w) o< exp {Z Z (wi, w;) +Zh w; }

Generative models as (hyper)graphs

* CS perspective: Weighted CSP ([W]CSP), aka graphical models

* (Hyper)Graph model G=(V,E): V - sequence positions
E - Informative pairs

+ Evaluation functions
fl,fz UEVUVZ - R

Potts model (DCA)

P(w) o< exp {Z Z eij(wi, wj) + Z hi(wi)}
i=1 j=i+1 1=1

Generative models as (hyper)graphs

* CS perspective: Weighted CSP ([W]CSP), aka graphical models

* Hypergraph model G=(V,H): V- sequence positions
H - Informative subsets

+ Evaluation functions
fi,fr . .ivEV R

Generative models as (hyper)graphs

* CS perspective: Weighted CSP ([W]CSP), aka graphical models

* Hypergraph model G=(V,H): V- sequence positions
H - Informative subsets

+ Evaluation functions
fl,fz . VEV PR

Generative models: Algorithmic problems

+ Evaluation functions
fl,fz .. VEV PR

Hypergraph model G=(V,H): V > sequence positions
H - Informative subsets

Algorithmic questions/problems (fixed h for RBMs):

Generative models: Algorithmic problems

+ Evaluation functions
fl,fz .. VEV PR

Hypergraph model G=(V,H): V > sequence positions
H - Informative subsets

Algorithmic questions/problems (fixed h for RBMs):

*OPT: Find most likely sequence (alt centroid sequence)

Generative models: Algorithmic problems

+ Evaluation functions
fl,fz .. VEV PR

Hypergraph model G=(V,H): V > sequence positions
H - Informative subsets

Algorithmic questions/problems (fixed h for RBMs):

*OPT: Find most likely sequence (alt centroid sequence)

*Partition function: Compute 2z =) e #FW
WEZN

Generative models: Algorithmic problems

Hypergraph model G=(V,H): V > sequence positions
H - Informative subsets

+ Evaluation functions
fl,fz .. VEV PR

Algorithmic questions/problems (fixed h for RBMs):

*OPT: Find most likely sequence (alt centroid sequence)

*Partition function: Compute 2z =) e #FW
weXN
Sampling: Generate sequence from P(w) o e #-#(W)

Generative models: Algorithmic problems

Hypergraph model G=(V,H): V > sequence positions
H - Informative subsets

+ Evaluation functions
fl,fz .. VEV PR

Algorithmic questions/problems (fixed h for RBMs):

*OPT: Find most likely sequence (alt centroid sequence)
*Partition function: Compute 2z =) e #FW

wenN
Sampling: Generate sequence from P(w) o e #-#(W)

*Searching: Given large sequence (genome), find ML match

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

[Monte Carlofort»in;]

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

[Monte Carlofort»in;]
ey If you feel paranoid,
- check stats for
convergence

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

[Monte Carlofort»in;]

Ifyou feel paran0|d
check stats for
convergence

FA\DAHI

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

OPT generalizes SAT, MIS... > decision NP—hard!\

Monte Carlo for the win! Partition function #P hard & APX!!

Markov Chain may be disconnected!!!
Mixing time could be exponential!!!!

Ifyou feel paran0|d
check stats for
convergence

TADAH!

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

OPT generalizes SAT, MIS... > decision NP—hard!\
[Monte Carlo for the win! Partition function #P hard & APX!!
Markov Chain may be disconnected!!!
. {. J

/

.

Mixing time could be exponential!!!!
If you feel paranoid,
check stats for
convergence

=

Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

OPT generalizes SAT, MIS... > decision NP—hard!\
[Monte Carlo for the win! Partition function #P hard & APX!!
Markov Chain may be disconnected!!!
. {. J

Mixing time could be exponential!!!!
If you feel paranoid,
check stats for
convergence

=

But wait a minute...
If hypergraph is
sparse/tree-like, why
not use exact FPT
Kdynamic programming?

Computing the partition function

e

Goal: Compute PF Z = Z o~ B-E(W)
weXN

~\

Computing the partition function

e

Goal: Compute PF Z = Z o~ B-E(W)
weXN

~\

e Brute force © (|Z}|N)

Computing the partition function

(N

Goal: Compute PF Z = Z o~ B-E(W)
weXN

* Brute force © (|E|N)
* Product over connected components z =[] Z(co)

ceCV

Computing the partition function

(N

Goal: Compute PF Z = Z o~ B-E(W)
weXN

* Brute force © (|E|N)
* Product over connected components z =[] Z(co)

ceCV

* PF of path computable in linear time by dyn. prog.
Z(iy-rig) = Y Z(iz ik | wi,)
w;, €2
Z(ig--ip | ws,) = Z e—ﬁ.eﬁl,m{wil,w;z)og(ie’...?;k: | ws)

'?_UéQ €2l

Computing the partition function

(N

Goal: Compute PF Z = Z o~ B-E(W)
weXN

* Brute force © (|E\N)
* Product over connected components z =[] Z(co)

ceCV

* PF of path computable in linear time by dyn. prog.
w;, €2

Zlig-ix | wy,) = Z e_ﬁ'eilﬂ'z(wil"‘”'*'2).2(3'3 g | we)
wy €2l

* Complexity dominated by largest card. hyperedge

Computing the partition function

(N

Goal: Compute PF Z = Z o~ B-E(W)
weXN

* Brute force © (|E\N)
* Product over connected components z =[] Z(co)

ceCV

* PF of path computable in linear time by dyn. prog.
Z(iy-rig) = Y Z(iz ik | wi,)
w;, €2
Z(ig- g | wy,) = Z e_ﬁ-ﬁfnﬂz(wn;w'az).Z(ig iy | we)
Wi, €2
* Cycles can be broken through variable elimination

Divide and conquer-ing the partition function

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

_3 (}L(w4)+}z,('m5)+}:,(w7))
zZ = Z Z(1--T| wg,ws,wz) X Z(8--- N | wy, ws,wz) X e tea,5(ws,ws)

wa,ws,wr €33

Work sequentially through Right

Divide and conquer-ing the partition function

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

.y (}b(w4)+fb('w5)+}z,('w7))
zZ = Z Z(1---7 | wg, w5, wy) X Z(8 -+ N | wa, ws,wy) X e +ea,5(wa,ws)

wa,ws,wr €33

Work sequentially through Right

Z(L--T| wy, w5, wr) = Z Z(2-- 7| wi, wy, wy, wy) x e FH)

w1EX

Divide and conquer-ing the partition function

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

" (h(w4)+h(w5)+h(w7))
zZ = Z Z(1---7 | wg, w5, wy) X Z(8 -+ N | wa, ws,wy) X e +ea,5(wa,ws)

wa,ws,wr €33

Work sequentially through Right

Z(L- T wg,ws,wy) = Z Z(2-- 7| wi, wy, wy, wy) x e FH)

w1 €Y
' _5(h(w2)+e(w1,w2))
Z(2-- T | wy,wy, ws, wy) = Z Z(3-+-6 | wa, wy, ws,wr) X e +e(wz,wr)

woEX

Divide and conquer-ing the partition function

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

" (h(w4)+h(w5)+h(w7))
zZ = Z Z(1--T| wg,ws,wz) X Z(8--- N | wy, ws,wz) X e tea,5(ws,ws)

wa,ws,wr €33

Work sequentially through Right

Z(L- T wg,ws,wy) = Z Z(2-- 7| wi, wy, wy, wy) x e FH)

_5(h(w2)+e(w1,w2))
Z(2-- T | wy,wy, ws, wy) = Z Z(3-+-6 | wa, wy, ws,wr) X e +e(wz,wr)

2(36 | wQ?le’wtt;,’iU?) —)Z(35 | ’LUQ,’(U4,’LU5,’(U6)

Divide and conquer-ing the partition function

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

" (h(w4)+h(w5)+h(w7))
zZ = Z Z(1--T| wg,ws,wz) X Z(8--- N | wy, ws,wz) X e tea,5(ws,ws)

wa,ws,wr €33

Work sequentially through Right

Z(L- T wg,ws,wy) = Z Z(2-- 7| wi, wy, wy, wy) x e FH)

_5(h(w2)+e(w1,w2))
Z(2-- T | wy,wy, ws, wy) = Z Z(3-+-6 | wa, wy, ws,wr) X e +e(wz,wr)

Divide and conquer-ing the partition function

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

" (h(w4)+h(w5)+h(w7))
zZ = Z Z(1--T| wg,ws,wz) X Z(8--- N | wy, ws,wz) X e tea,5(ws,ws)

wa,ws,wr €33

Work sequentially through Right

Z(L- T wg,ws,wy) = Z Z(2-- 7| wi, wy, wy, wy) x e FH)

_5(h(w2)+e(w1,w2))
Z(2-- T | wy,wy, ws, wy) = Z Z(3-+-6 | wa, wy, ws,wr) X e +e(wz,wr)

Work sequentially through Left

Z(8-- N | wy, ws,wr) = Z Z(9--- N | wy, ws, wg) x e Alhlws)+elwr,ws))
wg €Y

Divide and conquer-ing the partition function

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

" (h(w4)+h(w5)+h(w7))
zZ = Z Z(1--T| wg,ws,wz) X Z(8--- N | wy, ws,wz) X e tea,5(ws,ws)

wa,ws,wr €33

Work sequentially through Right

Z(L- T wg,ws,wy) = Z Z(2-- 7| wi, wy, wy, wy) x e FH)

_5(h(w2)+e(w1,w2))
Z(2-- T | wy,wy, ws, wy) = Z Z(3-+-6 | wa, wy, ws,wr) X e +e(wz,wr)

Work sequentially through Left

Z(8-- N | wy, ws,wr) = Z Z(9--- N | wy, ws, wg) x e Alhlws)+elwr,ws))
wg EX
Z(QN | ’LU4,’UJ5,’LU8) — Z(g 11 I w4,w5,w8?w;\;) — Z(l(] 11 | w4,w9,wN)

Divide and conquer-ing the partition function

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

" (h(w4)+h(w5)+h(w7))
zZ = Z Z(1--T| wg,ws,wz) X Z(8--- N | wy, ws,wz) X e tea,5(ws,ws)

wa,ws,wr €33

Work sequentially through Right

Z(L- T wg,ws,wy) = Z Z(2-- 7| wi, wy, wy, wy) x e FH)

_5(h(w2)+e(w1,w2))
Z(2-- T | wy,wy, ws, wy) = Z Z(3-+-6 | wa, wy, ws,wr) X e +e(wz,wr)

Work sequentially through Left

Z(8-- N | wy, ws,wr) = Z Z(9--- N | wy, ws, wg) x e Alhlws)+elwr,ws))
ws €L
Z(QN | ’LU4,’UJ5,’LU8) — 2(9 11 I w4,w5,wg?w;\;) — Z(l(] 11 | w4,w9,wN)

Divide and conquer-ing the partition function

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

" (h(w4)+h(w5)+h(w7))
Z= Y Z(-7|wiws,wr) x 28N | wg,ws,w) x e\ Fenstwaws)

wa,ws,wr €33

Work sequentially through Right

Z(L- T wg,ws,wy) = Z Z(2-- 7| wi, wy, wy, wy) x e FH)

_5(h(w2)+e(w1,w2))
Z(2-- T | wy,wy, ws, wy) = Z Z(3-+-6 | wa, wy, ws,wr) X e +e(wz,wr)

Work sequentially through Left

Z(8-- N | wy, ws,wr) = Z Z(9--- N | wy,ws,wg) X e~ Bh(ws)te(wr,ws))
ws €L
Z(QN | ’LU4,’UJ5,’LU8) — 2(9 11 I ?_U4,'1U5,’LU8?MN) — Z(l(] 11 | w4,w9,wN)

Tree decomposition (TD)

(Definition :

* Each vertex v € Vis represented in some bag/node B of T (v € B)
* Each edge e =(v, V') € Eis represented in some bag/node B of T (e € B)
_° Consistency: For all v € V, the bags featuring v are connected in T

~

A tree decomposition for G = (V, E) is a tree T of bags B,, B, ..., B, € V, such that :

J

Tree decomposition (TD)

(" Definition :)
A tree decomposition for G = (V, E) is a tree T of bags B,, B, ..., B, € V, such that :

* Each vertex v € Vis represented in some bag/node B of T (v € B)

* Each edge e =(v, V') € Eis represented in some bag/node B of T (e € B)

_° Consistency: For all v € V, the bags featuring v are connected in T)

tw=3 2

Tree decomposition (TD)

(" Definition :)
A tree decomposition for G = (V, E) is a tree T of bags B,, B,, ..., B, € V, such that :
* Each vertex v € Vis represented in some bag/node B of T (v € B)

* Each edge e =(v, V') € Eis represented in some bag/node B of T (e € B)

_° Consistency: For all v € V, the bags featuring v are connected in T)

tw=3 0 tw=5 45710

211,457

9| 4,5,8N

624,57
10 | 4,9,N

11]9,10,N

Tree decomposition (TD)

(" Definition :)
A tree decomposition for G = (V, E) is a tree T of bags B,, B,, ..., B, € V, such that :
* Each vertex v € Vis represented in some bag/node B of T (v € B)

* Each edge e =(v, V') € Eis represented in some bag/node B of T (e € B)

_° Consistency: For all v € V, the bags featuring v are connected in T)

tw=3 0 tw=5 45710

211,457

9| 4,5,8N

624,57
10 | 4,9,N

11]9,10,N

Tree width tw of a tree decomposition = Size (#indices) of largest bag

Partition function computed in O(N |X|") time using dyn. prog. Boedlander 1992]

+ Computing an optimal (min tw) TD » NP-hard, but Fixed Parameter Tractable for tw

Meta algorithm — Partition function

4 N

Input. Trained generative model M

* Convert M to (hyper)graph instance G
* Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G
* Precompute partition function (bottom-up dyn. prog.) through:

Z(B | V) — Z e_/5 ZfeF(B) f(VU{’w}) H Z(Bf | v U {’U}})
we B’ € children(B)
v: Assignments to variables shared with parent; F(B): Functions assigned to bag

Output. Return Z(root) Complexity: O(N |X|*™) + Tree decomposer (O(N), exp. on tw)

S

Meta algorithm — Partition function

4 N

Input. Trained generative model M

* Convert M to (hyper)graph instance G
* Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G
* Precompute partition function (bottom-up dyn. prog.) through:

Z(B | V) — Z e_/5 ZfeF(B) f(VU{’w}) H Z(Bf | v U {’U}})
we B’ € children(B)
v: Assignments to variables shared with parent; F(B): Functions assigned to bag

Output. Return Z(root) Complexity: O(N |X|*™) + Tree decomposer (O(N), exp. on tw)

S

+ Sampling: k i.i.d. sequences through Stochastic Backtrack, starting from root:
Choose w € Y. with probability OC contribution to Z. Recurse until leaves.
Complexity: O(k N |X|) (+ part. fun.) for sampling k i.i.d. sequences

Meta algorithm — Partition function

4 N

Input. Trained generative model M

* Convert M to (hyper)graph instance G
* Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G
* Precompute partition function (bottom-up dyn. prog.) through:

Z(B | V) — Z e_/5 ZfeF(B) f(VU{’w}) H Z(Bf | v U {’U}})
we B’ € children(B)
v: Assignments to variables shared with parent; F(B): Functions assigned to bag

Output. Return Z(root) Complexity: O(N |X|*™) + Tree decomposer (O(N), exp. on tw)

S

+ Sampling: k i.i.d. sequences through Stochastic Backtrack, starting from root:
Choose w € >, with probability OC contribution to Z. Recurse until leaves.
Complexity: O(k N X)) (+ part. fun.) for sampling ki.i.d. sequences

+ OPT: Max. probability/min. energy sequence for free

InfraRed — A practical implementation

https //gitlab.inria. fr/amlblo/Infrared/

def single_target_design_model(target):
n, bps = len(target), rna.parse(target)
model = ir_Model(n, 4)
model . add_constraints(rna.BPComp(i, j) for (i, j) in bps)
model . add_functions([rna.GCCont(i) for i in range(n)], 'gc')
model . add_functions([rna.BPEnerqgy(i, j, (i-1, j+1) not in bps)
for (i,j) in bps], 'energy')
model . set_feature_weight(-1.5, ‘energy’)
return model

Python/C++ declarative framework (constraints and pseudo-energies)
Runs tree decomp.; Reports part. fun.; Samples Boltzmann distr.; Optimal sequence
Bonus: Autolearns weights to target expected features (AG, GC%...)

Use-cases:
 RNA multiple design - RNARedPrint [Hammer et a/, RECOMB 2018; BMC Bioinfo 2019]
* RNA inverse folding - RNAPond [Yao et al, RECOMB 2021]

RNAPoND — Positive and Negative Design

[Yao et al, RECOMB 2021]

Input

10
'

T [

1 30

Output

Iha se
O o “ ;
Extended ' - W” N

N sampling
Target structure 5 Designs
T Yes
Initialization No
Evaluation
Jw s.t. MFE(w)=S?

CGCCCUUAAUGGAUGCA.

GGGCGAUUUACGAAGCU.

—_— GGUCCUUACCGGAACGA.

CGCCCUCAUUGGAGCAC.

CCCCGAUAUACGAUGCG.

UCGCCAUUAGGGUUGCU.
L1

DBPs :
Inference

Ensemble
analysis

“? Sampling

Disruptive Base Pairs (DBPs)

Main |00p Admissible sequences Expected base pairing profile Consistent updated DPBs

* Obeys positive constraints but learns disruptive BPs and cancels them
* Naive 1nfrared (tw < 10) implementation competitive with state of the art

Treewidths of actual RNAs (PDB

number of PDB structures (RNA only)

Treewidth of all RNA-only PDB stuctures
(excluding non-canonical interactions)

2000 A

1750 -

1500 A

1250 -

[
o
o
o
1

750 A

500 A

250 A

100

- 80

- 60

- 40

- 20

2 6 10
treewidth

cumulative percentage

number of PDB structures (RNA only)

2000

1750

1500

1250

=
o
o
o

750

500

250

Treewidth of all RNA-only PDB stuctures
(including non-canonical interactions)

d 100

- 80

- - 60

L

- 40

dth=3-32.7%
- 20

-0

2 6 10 14 18 22 26 30 34 38
treewidth

Treewidth of generative models???

cumulative percentage

TreeDiet — Simplitying tree decompositions

[Marchand et al, BMC Bioinfo 2022]

&

FPT/XP algorithm

l

A s

Tree diet

p El£3
! 28 i)
4 -
(Labeled) graph representation % 25 HHH '§“ o

?ﬂ 8% 3 - IS
_ 898 o =
Inpl'It H‘Ei/“‘\“ Tree decomposition S %‘ % §
é Initial width fw = 4 E € 23 &

oh g5 g=

©

Goal: Remove few (weighted) edges from treewidth tw input graph, to reach tw’ < tw
Theory: FPT on tw; Practice: No reasonable tractable algorithm known

Idea: Start from tree decomposition, rephrase as coloring on tree (practically FPT on tw)

Correct induced error through rejection sampling, subopts or progressive filtering (search)

Treewidth can be reduced w/o much information loss

#Preserved BPs
tw’ EteRNA22 EteRNAT7

9 ~ 183
8 - 182
7 — 180
6 465 176
' 5 460 168
. 4 456 157
6 3 445 144
5 2 418 121
4 1 320 86
Width

>

Corrected alignment score (SPS)

Treewidth can be reduced w/o much information loss

— w=2 — w=3 — w=4 — B - Twister Ribozyme (40JI)

0
_50 -
T T T T T CCGCCUAACACUGCCAGCGCCGGCCCCGCGCCCGGAAAAGAGUGGGGGGGGCGG
50 COCCECs s« CCEE=LCoo Y CCCCLLEL+>2)))D 0 w0000)))..1113)))
0- C - Best hit (c = —18.7)
CCGC-CUAACACUGCCAGCGCCGGCCCCGCGCC-CGG-AAAAG-AGUGGGGGGGGCGG
Lerrrrrerend ||||| e i Irrerd RN |
GUUGCUUAACACUGCCAAUGCC (CAAGCCCGGAUAAAAGUGGAGGGGGCACGGU
50 - ||| |||||1 b |
= ' ! l
Ll I T T
el D - Second best hit (c = —9.9)
CCGCCUAACACUGCC-AGCGCCGGCCCC--GCGCCCGGAAAAGAGUGGGGGGGGCGG-
(| | L | Ll bkl i
0 1 t t UUUAUUCAAUGUUUGCAGCUUUUGAAUUUGACAGCAGACACAGACCUGGGGUAUAUUC

Positions

. . . . J Ll kLS]| I I | |
—4000 -2000 0 2000 4000 I—

To a hammer, everything is a nail

CO NC | UsS | on Build it and they will come

* Avenues to apply parameterized complexity to bio* generative models

* Purely declarative, exact sampling

* Low complexity post precomputation

https://gitlab.inria.fr/amibio/Infrared/

" To a hammer, everything is a nail
Conclusion ything

Build it and they will come
* Avenues to apply parameterized complexity to bio* generative models
* Purely declarative, exact sampling
* Low complexity post precomputation
Additional assets: [Saule et al, WABI 2011]
 Derivatives/moments/correlations exactly computable (same complexity)

e Genomic search for occurrences of gen model (2 » [1,M], XP comp.)
[Rinaudo et al, WABI 2012]

https://gitlab.inria.fr/amibio/Infrared/

" To a hammer, everything is a nail
Conclusion ything

Build it and they will come
* Avenues to apply parameterized complexity to bio* generative models
* Purely declarative, exact sampling
* Low complexity post precomputation
Additional assets: [Saule et al, WABI 2011]
 Derivatives/moments/correlations exactly computable (same complexity)
e Genomic search for occurrences of gen model (2 » [1,M], XP comp.)
Limitation (possibly): [Rinaudo et al, WABI 2012]
* Assumes that tw K N
e Sparseness in generative models: structure prediction vs design

https://gitlab.inria.fr/amibio/Infrared/

Sebastian Will Sarah Berkemer Hua-Ting Yao Stefan Hammer

Bertrand Marchand Laurent Bulteau Philippe Rinaudo

https://gitlab.inria.fr/amibio/Infrared/

