Sampling/searching in *simple* generative models: A details-oriented CS perspective

Yann Ponty
LIX, Ecole Polytechnique, France

Generative models for RNA design/modeling

- 1998: Covariance Models (CMs)
- InfeRNAl is the workhorse underlying RFAM [Nawrocki et al 2009]

CMs can be used to search novel ncRNAs, but also as generative models

Modern physics-inspired generative models

Potts model (DCA)

$$\mathbb{P}(\mathbf{w}) \propto \exp\left\{\sum_{i=1}^{N} \sum_{j=i+1}^{N} e_{i,j}(w_i, w_j) + \sum_{i=1}^{N} h_i(w_i)\right\}$$

Modern physics-inspired generative models

Potts model (DCA)

$$\mathbb{P}(\mathbf{w}) \propto \exp\left\{\sum_{i=1}^{N} \sum_{j=i+1}^{N} e_{i,j}(w_i, w_j) + \sum_{i=1}^{N} h_i(w_i)\right\}$$

Restricted Boltzmann Machines

$$\mathbb{P}(\mathbf{w}) \propto \exp\left\{\sum_{i=1}^{N} \sum_{j=i+1}^{N} e_{i,j}(w_i, w_j) + \sum_{i=1}^{N} h_i(w_i)\right\} \qquad \mathbb{P}(\mathbf{w}, \mathbf{h}) \propto \exp\left\{\sum_{i=1}^{N} \mathcal{V}_i(w_i) + \sum_{\mu=1}^{M} \mathcal{U}_{\mu}(h_{\mu}) - \sum_{\mu=1}^{M} I_{\mu}(\mathbf{w})h_{\mu}\right\}$$

$$\mathbf{I} \qquad \mathbf{I} \qquad \mathbf{I}$$

- CS perspective: Weighted CSP ([W]CSP), aka graphical models
- (Hyper)Graph model $G=(V,E): V \to \text{ sequence positions } | + \text{ Evaluation functions } E \to \text{ Informative pairs } | f_1, f_2 ... : v \in V \cup V^2 \mapsto \mathbb{R}$

Potts model (DCA)

$$\mathbb{P}(\mathbf{w}) \propto \exp\left\{\sum_{i=1}^{N} \sum_{j=i+1}^{N} e_{i,j}(w_i, w_j) + \sum_{i=1}^{N} h_i(w_i)\right\}$$

- CS perspective: Weighted CSP ([W]CSP), aka graphical models
- (Hyper)Graph model $G=(V,E): V \to \text{ sequence positions } | + \text{ Evaluation functions } E \to \text{ Informative pairs } | f_1, f_2 ... : v \in V \cup V^2 \mapsto \mathbb{R}$

Potts model (DCA)

$$\mathbb{P}(\mathbf{w}) \propto \exp \left\{ \sum_{i=1}^{N} \sum_{j=i+1}^{N} e_{i,j}(w_i, w_j) + \sum_{i=1}^{N} h_i(w_i) \right\}$$

 $h_i(w_i)$

- CS perspective: Weighted CSP ([W]CSP), aka graphical models
- Hypergraph model G=(V,H): $V \rightarrow$ sequence positions | + Evaluation functions | $H \rightarrow \text{Informative subsets} \qquad f_1, f_2 \dots : v \subseteq V \mapsto \mathbb{R}$

Restricted Boltzmann Machine
$$\mathbb{P}(\mathbf{w}, \mathbf{h}) \propto \exp \left\{ \sum_{i=1}^{N} \mathcal{V}_i(w_i) + \sum_{\mu=1}^{M} \mathcal{U}_{\mu}(h_{\mu}) - \sum_{\mu=1}^{M} I_{\mu}(\mathbf{w}) h_{\mu} \right\}$$

$$I_{\mu}(\mathbf{w}) = \sum_{i=1}^{N} \mathcal{W}_{i\mu}(w_i)$$

- CS perspective: Weighted CSP ([W]CSP), aka graphical models
- Hypergraph model G=(V,H): $V \rightarrow$ sequence positions | + Evaluation functions |*H* → Informative subsets $f_1, f_2 \dots : v \subseteq V \mapsto \mathbb{R}$

Restricted Boltzmann Machine
$$\mathbb{P}(\mathbf{w}, \mathbf{h}) \propto \exp \left\{ \sum_{i=1}^{N} \mathcal{V}_{i}(w_{i}) + \sum_{\mu=1}^{M} \mathcal{U}_{\mu}(h_{\mu}) - \sum_{\mu=1}^{M} I_{\mu}(\mathbf{w}) h_{\mu} \right\}$$


```
Hypergraph model G=(V, H): V \rightarrow \text{ sequence positions } | + \text{ Evaluation functions } H \rightarrow \text{ Informative subsets } | f_1, f_2 \dots : v \subseteq V \mapsto \mathbb{R}
```

```
Hypergraph model G=(V, H): V \rightarrow \text{ sequence positions } I + \text{ Evaluation functions } H \rightarrow \text{ Informative subsets } I + f_1, f_2 ... : <math>v \subseteq V \mapsto \mathbb{R}
```

Algorithmic questions/problems (fixed **h** for RBMs):

•OPT: Find most likely sequence (alt centroid sequence)

```
Hypergraph model G=(V, H): V \rightarrow \text{ sequence positions } I + \text{ Evaluation functions } H \rightarrow \text{ Informative subsets } I + f_1, f_2 ... : <math>v \subseteq V \mapsto \mathbb{R}
```

- •OPT: Find most likely sequence (alt centroid sequence)
- •Partition function: Compute $\mathcal{Z} = \sum_{\mathbf{w} \in \Sigma^N} e^{-\beta.E(\mathbf{w})}$

```
Hypergraph model G=(V,H): V \rightarrow \text{sequence positions} \mid + \text{Evaluation functions} \\ H \rightarrow \text{Informative subsets} \mid f_1, f_2 \dots : v \subseteq V \mapsto \mathbb{R}
```

- •OPT: Find most likely sequence (alt centroid sequence)
- •Partition function: Compute $\mathcal{Z} = \sum_{\mathbf{w} \in \Sigma^N} e^{-\beta.E(\mathbf{w})}$
- •Sampling: Generate sequence from $\mathbb{P}(\mathbf{w}) \propto e^{-\beta . E(\mathbf{w})}$

```
Hypergraph model G=(V, H): V \rightarrow \text{sequence positions} \mid + \text{Evaluation functions} \\ H \rightarrow \text{Informative subsets} \mid f_1, f_2 \dots : v \subseteq V \mapsto \mathbb{R}
```

- •OPT: Find most likely sequence (alt centroid sequence)
- •Partition function: Compute $\mathcal{Z} = \sum_{\mathbf{w} \in \Sigma^N} e^{-\beta . E(\mathbf{w})}$
- •Sampling: Generate sequence from $\mathbb{P}(\mathbf{w}) \propto e^{-\beta . E(\mathbf{w})}$
- •Searching: Given large sequence (genome), find ML match

Ask a physicist

Ask a physicist

Ask a physicist

Ask a physicist

Ask a physicist

Ask a Computer Scientist

OPT generalizes SAT, MIS... → decision NP-hard!
Partition function #P hard & APX!!
Markov Chain may be disconnected!!!
Mixing time could be exponential!!!!

Ask a physicist

Ask a physicist

Goal: Compute PF
$$\mathcal{Z} = \sum_{\mathbf{w} \in \Sigma^N} e^{-\beta.E(\mathbf{w})}$$

Goal: Compute PF
$$\mathcal{Z} = \sum_{\mathbf{w} \in \Sigma^N} e^{-\beta.E(\mathbf{w})}$$

• Brute force $\mathcal{O}\left(\left|\Sigma\right|^{N}\right)$

Goal: Compute PF
$$\mathcal{Z} = \sum_{\mathbf{w} \in \Sigma^N} e^{-\beta . E(\mathbf{w})}$$

- Brute force $\mathcal{O}\left(\left|\Sigma\right|^{N}\right)$
- Product over connected components $\mathcal{Z} = \prod_{cc \in V} \mathcal{Z}(cc)$

Goal: Compute PF
$$\mathcal{Z} = \sum_{\mathbf{w} \in \Sigma^N} e^{-\beta.E(\mathbf{w})}$$

- Brute force $\mathcal{O}\left(\left|\Sigma\right|^{N}\right)$
- Product over connected components $\mathcal{Z} = \prod_{c \in V} \mathcal{Z}(cc)$
- PF of path computable in linear time by dyn. prog.

$$\mathcal{Z}(i_1 \cdots i_k) = \sum_{w_{i_1} \in \Sigma} \mathcal{Z}(i_2 \cdots i_k \mid w_{i_1})$$

$$\mathcal{Z}(i_2 \cdots i_k \mid w_{i_1}) = \sum_{w_{i_2} \in \Sigma} e^{-\beta \cdot e_{i_1, i_2}(w_{i_1}, w_{i_2})} \cdot \mathcal{Z}(i_3 \cdots i_k \mid w_2)$$

Goal: Compute PF
$$\mathcal{Z} = \sum_{\mathbf{w} \in \Sigma^N} e^{-\beta.E(\mathbf{w})}$$

- Brute force $\mathcal{O}\left(\left|\Sigma\right|^{N}\right)$
- Product over connected components $\mathcal{Z} = \prod_{c \in V} \mathcal{Z}(cc)$
- PF of path computable in linear time by dyn. prog.

$$\mathcal{Z}(i_1 \cdots i_k) = \sum_{w_{i_1} \in \Sigma} \mathcal{Z}(i_2 \cdots i_k \mid w_{i_1})$$

$$\mathcal{Z}(i_2 \cdots i_k \mid w_{i_1}) = \sum_{w_{i_2} \in \Sigma} e^{-\beta \cdot e_{i_1, i_2}(w_{i_1}, w_{i_2})} \cdot \mathcal{Z}(i_3 \cdots i_k \mid w_2)$$

• Complexity dominated by largest card. hyperedge

Goal: Compute PF
$$\mathcal{Z} = \sum_{\mathbf{w} \in \Sigma^N} e^{-\beta.E(\mathbf{w})}$$

- Brute force $\mathcal{O}\left(\left|\Sigma\right|^{N}\right)$
- Product over connected components $\mathcal{Z} = \prod_{c \in V} \mathcal{Z}(cc)$
- PF of path computable in linear time by dyn. prog.

$$\mathcal{Z}(i_1 \cdots i_k) = \sum_{w_{i_1} \in \Sigma} \mathcal{Z}(i_2 \cdots i_k \mid w_{i_1})$$

$$\mathcal{Z}(i_2 \cdots i_k \mid w_{i_1}) = \sum_{w_{i_2} \in \Sigma} e^{-\beta \cdot e_{i_1, i_2}(w_{i_1}, w_{i_2})} \cdot \mathcal{Z}(i_3 \cdots i_k \mid w_2)$$

Cycles can be broken through variable elimination

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

$$\mathcal{Z} = \sum_{w_1, w_2, w_3 \in \Sigma^3} \mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) \times \mathcal{Z}(8 \cdots N \mid w_4, w_5, w_7) \times e^{-\beta \binom{h(w_4) + h(w_5) + h(w_7)}{+e_{4,5}(w_4, w_5)}}$$

Work sequentially through Right

$$\mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) = \sum_{w_1 \in \Sigma} \mathcal{Z}(2 \cdots 7 \mid w_1, w_4, w_5, w_7) \times e^{-\beta . h(w_1)}$$

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

$$\mathcal{Z} = \sum_{w_1, w_2 \in \Sigma^3} \mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) \times \mathcal{Z}(8 \cdots N \mid w_4, w_5, w_7) \times e^{-\beta \binom{h(w_4) + h(w_5) + h(w_7)}{+e_{4,5}(w_4, w_5)}}$$

Work sequentially through Right

$$\mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) = \sum_{w_1 \in \Sigma} \mathcal{Z}(2 \cdots 7 \mid w_1, w_4, w_5, w_7) \times e^{-\beta \cdot h(w_1)}$$

$$\mathcal{Z}(2\cdots7 \mid w_1, w_4, w_5, w_7) = \sum_{w_2 \in \Sigma} \mathcal{Z}(3\cdots6 \mid w_2, w_4, w_5, w_7) \times e^{-\beta \binom{h(w_2) + e(w_1, w_2)}{+e(w_2, w_7)}}$$

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

$$\mathcal{Z} = \sum_{w_4, w_5, w_7 \in \Sigma^3} \mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) \times \mathcal{Z}(8 \cdots N \mid w_4, w_5, w_7) \times e^{-\beta \binom{h(w_4) + h(w_5) + h(w_7)}{+e_{4,5}(w_4, w_5)}}$$

Work sequentially through Right

$$\mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) = \sum_{w_1 \in \Sigma} \mathcal{Z}(2 \cdots 7 \mid w_1, w_4, w_5, w_7) \times e^{-\beta \cdot h(w_1)}$$

$$\mathcal{Z}(2\cdots7 \mid w_1, w_4, w_5, w_7) = \sum_{w_2 \in \Sigma} \mathcal{Z}(3\cdots6 \mid w_2, w_4, w_5, w_7) \times e^{-\beta \binom{h(w_2) + e(w_1, w_2)}{+e(w_2, w_7)}}$$

$$\mathcal{Z}(3\cdots 6 \mid w_2, w_4, w_5, w_7) \to \mathcal{Z}(3\cdots 5 \mid w_2, w_4, w_5, w_6)$$

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

$$\mathcal{Z} = \sum_{w_4, w_5, w_7 \in \Sigma^3} \mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) \times \mathcal{Z}(8 \cdots N \mid w_4, w_5, w_7) \times e^{-\beta \binom{h(w_4) + h(w_5) + h(w_7)}{+e_{4,5}(w_4, w_5)}}$$

Work sequentially through Right

$$\mathcal{Z}(\mathbf{1} \cdots 7 \mid w_4, w_5, w_7) = \sum_{w_1 \in \Sigma} \mathcal{Z}(2 \cdots 7 \mid w_1, w_4, w_5, w_7) \times e^{-\beta \cdot h(w_1)}$$

$$\mathcal{Z}(\mathbf{2} \cdots 7 \mid w_1, w_4, w_5, w_7) = \sum_{w_2 \in \Sigma} \mathcal{Z}(3 \cdots 6 \mid w_2, w_4, w_5, w_7) \times e^{-\beta \left(\frac{h(w_2) + e(w_1, w_2)}{+e(w_2, w_7)}\right)}$$

$$\mathcal{Z}(3 \cdots 6 \mid w_2, w_4, w_5, w_7) \to \mathcal{Z}(3 \cdots 5 \mid w_2, w_4, w_5, w_6)$$

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

$$\mathcal{Z} = \sum_{w_4, w_5, w_7 \in \Sigma^3} \mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) \times \mathcal{Z}(8 \cdots N \mid w_4, w_5, w_7) \times e^{-\beta \binom{h(w_4) + h(w_5) + h(w_7)}{+e_{4,5}(w_4, w_5)}}$$

Work sequentially through Right

$$\mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) = \sum_{w_1 \in \Sigma} \mathcal{Z}(2 \cdots 7 \mid w_1, w_4, w_5, w_7) \times e^{-\beta \cdot h(w_1)}$$

$$\mathcal{Z}(2\cdots7 \mid w_1, w_4, w_5, w_7) = \sum_{w_2 \in \Sigma} \mathcal{Z}(3\cdots6 \mid w_2, w_4, w_5, w_7) \times e^{-\beta \binom{h(w_2) + e(w_1, w_2)}{+e(w_2, w_7)}}$$

$$\mathcal{Z}(3\cdots 6 \mid w_2, w_4, w_5, w_7) \to \mathcal{Z}(3\cdots 5 \mid w_2, w_4, w_5, w_6)$$

$$\mathcal{Z}(8 \cdots N \mid w_4, w_5, w_7) = \sum_{w_8 \in \Sigma} \mathcal{Z}(9 \cdots N \mid w_4, w_5, w_8) \times e^{-\beta(h(w_8) + e(w_7, w_8))}$$

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

$$\mathcal{Z} = \sum_{w_4, w_5, w_7 \in \Sigma^3} \mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) \times \mathcal{Z}(8 \cdots N \mid w_4, w_5, w_7) \times e^{-\beta \binom{h(w_4) + h(w_5) + h(w_7)}{+e_{4,5}(w_4, w_5)}}$$

Work sequentially through Right

$$\mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) = \sum_{w_1 \in \Sigma} \mathcal{Z}(2 \cdots 7 \mid w_1, w_4, w_5, w_7) \times e^{-\beta \cdot h(w_1)}$$

$$\mathcal{Z}(2\cdots7 \mid w_1, w_4, w_5, w_7) = \sum_{w_2 \in \Sigma} \mathcal{Z}(3\cdots6 \mid w_2, w_4, w_5, w_7) \times e^{-\beta \binom{h(w_2) + e(w_1, w_2)}{+e(w_2, w_7)}}$$

$$\mathcal{Z}(3\cdots 6 \mid w_2, w_4, w_5, w_7) \to \mathcal{Z}(3\cdots 5 \mid w_2, w_4, w_5, w_6)$$

$$\mathcal{Z}(8 \cdots N \mid w_4, w_5, w_7) = \sum_{w_8 \in \Sigma} \mathcal{Z}(9 \cdots N \mid w_4, w_5, w_8) \times e^{-\beta(h(w_8) + e(w_7, w_8))}$$

$$\mathcal{Z}(9\cdots N \mid w_4, w_5, w_8) \to \mathcal{Z}(9\cdots 11 \mid w_4, w_5, w_8, w_N) \to \mathcal{Z}(10\cdots 11 \mid w_4, w_9, w_N)$$

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

$$\mathcal{Z} = \sum_{w_4, w_5, w_7 \in \Sigma^3} \mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) \times \mathcal{Z}(8 \cdots N \mid w_4, w_5, w_7) \times e^{-\beta \binom{h(w_4) + h(w_5) + h(w_7)}{+e_{4,5}(w_4, w_5)}}$$

Work sequentially through Right

$$\mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) = \sum_{w_1 \in \Sigma} \mathcal{Z}(2 \cdots 7 \mid w_1, w_4, w_5, w_7) \times e^{-\beta \cdot h(w_1)}$$

$$\mathcal{Z}(2\cdots7 \mid w_1, w_4, w_5, w_7) = \sum_{w_2 \in \Sigma} \mathcal{Z}(3\cdots6 \mid w_2, w_4, w_5, w_7) \times e^{-\beta \binom{h(w_2) + e(w_1, w_2)}{+e(w_2, w_7)}}$$

$$\mathcal{Z}(3\cdots 6 \mid w_2, w_4, w_5, w_7) \to \mathcal{Z}(3\cdots 5 \mid w_2, w_4, w_5, w_6)$$

$$\mathcal{Z}(8 \cdots N \mid w_4, w_5, w_7) = \sum_{w_8 \in \Sigma} \mathcal{Z}(9 \cdots N \mid w_4, w_5, w_8) \times e^{-\beta(h(w_8) + e(w_7, w_8))}$$

$$\mathcal{Z}(9\cdots N \mid w_4, w_5, w_8) \to \mathcal{Z}(9\cdots 11 \mid w_4, w_5, w_8, w_N) \to \mathcal{Z}(10\cdots 11 \mid w_4, w_9, w_N)$$

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent

$$\mathcal{Z} = \sum_{w_4, w_5, w_7 \in \Sigma^3} \mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) \times \mathcal{Z}(8 \cdots N \mid w_4, w_5, w_7) \times e^{-\beta \binom{h(w_4) + h(w_5) + h(w_7)}{+e_{4,5}(w_4, w_5)}}$$

Work sequentially through Right

$$\mathcal{Z}(1 \cdots 7 \mid w_4, w_5, w_7) = \sum_{w_1 \in \Sigma} \mathcal{Z}(2 \cdots 7 \mid w_1, w_4, w_5, w_7) \times e^{-\beta \cdot h(w_1)}$$

$$\mathcal{Z}(2\cdots7 \mid w_1, w_4, w_5, w_7) = \sum_{w_2 \in \Sigma} \mathcal{Z}(3\cdots6 \mid w_2, w_4, w_5, w_7) \times e^{-\beta \binom{h(w_2) + e(w_1, w_2)}{+e(w_2, w_7)}}$$

$$\mathcal{Z}(3\cdots 6 \mid w_2, w_4, w_5, w_7) \to \mathcal{Z}(3\cdots 5 \mid w_2, w_4, w_5, w_6)$$

$$\mathcal{Z}(8 \cdots N \mid w_4, w_5, w_7) = \sum_{w_8 \in \Sigma} \mathcal{Z}(9 \cdots N \mid w_4, w_5, w_8) \times e^{-\beta(h(w_8) + e(w_7, w_8))}$$

$$\mathcal{Z}(9\cdots N \mid w_4, w_5, w_8) \to \mathcal{Z}(9\cdots 11 \mid w_4, w_5, w_8, w_N) \to \mathcal{Z}(10\cdots 11 \mid w_4, w_9, w_N)$$

Tree decomposition (TD)

Definition:

A tree decomposition for G = (V, E) is a tree T of bags $B_1, B_2, ..., B_i \subseteq V$, such that :

- Each vertex $v \in V$ is represented in some bag/node B of $T (v \in B)$
- Each edge $e = (v, v') \in E$ is represented in some bag/node B of $T (e \subseteq B)$
- Consistency: For all $v \in V$, the bags featuring v are connected in T

Tree decomposition (TD)

Definition:

A tree decomposition for G = (V, E) is a tree T of bags $B_1, B_2, ..., B_i \subseteq V$, such that :

- Each vertex $v \in V$ is represented in some bag/node B of T ($v \in B$)
- Each edge $e = (v, v') \in E$ is represented in some bag/node B of $T (e \subseteq B)$
- Consistency: For all $v \in V$, the bags featuring v are connected in T

Tree decomposition (TD)

Definition:

A tree decomposition for G = (V, E) is a tree T of bags $B_1, B_2, ..., B_i \subseteq V$, such that :

- Each vertex $v \in V$ is represented in some bag/node B of T ($v \in B$)
- Each edge $e = (v, v') \in E$ is represented in some bag/node B of $T (e \subseteq B)$
- Consistency: For all $v \in V$, the bags featuring v are connected in T

Tree decomposition (TD)

Definition:

A tree decomposition for G = (V, E) is a tree T of bags $B_1, B_2, ..., B_i \subseteq V$, such that :

- Each vertex $v \in V$ is represented in some bag/node B of T ($v \in B$)
- Each edge $e = (v, v') \in E$ is represented in some bag/node B of $T (e \subseteq B)$
- Consistency: For all $v \in V$, the bags featuring v are connected in T

Tree width tw of a tree decomposition = Size (#indices) of largest bag

Partition function computed in $\mathcal{O}(N|\Sigma|^{tw})$ time using dyn. prog.

[Boedlander 1992]

+ Computing an optimal (min tw) TD → NP-hard, but Fixed Parameter Tractable for tw

Meta algorithm – Partition function

Input. Trained generative model *M*

- Convert M to (hyper)graph instance G
- ullet Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G
- Precompute partition function (bottom-up dyn. prog.) through:

$$\mathcal{Z}(B \mid \mathbf{v}) = \sum_{w \in \Sigma} e^{-\beta \sum_{f \in F(B)} f(\mathbf{v} \cup \{w\})} \prod_{B' \in \text{children}(B)} \mathcal{Z}(B' \mid \mathbf{v} \cup \{w\})$$

 \mathbf{v} : Assignments to variables shared with parent; F(B): Functions assigned to bag

Output. Return $\mathcal{Z}(root)$ Complexity: $\mathcal{O}(N|\Sigma|^{tw})$ + Tree decomposer ($\mathcal{O}(N)$, exp. on tw)

Meta algorithm – Partition function

Input. Trained generative model *M*

- Convert M to (hyper)graph instance G
- Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G
- Precompute partition function (bottom-up dyn. prog.) through:

$$\mathcal{Z}(B \mid \mathbf{v}) = \sum_{w \in \Sigma} e^{-\beta \sum_{f \in F(B)} f(\mathbf{v} \cup \{w\})} \prod_{B' \in \text{children}(B)} \mathcal{Z}(B' \mid \mathbf{v} \cup \{w\})$$

 \mathbf{v} : Assignments to variables shared with parent; F(B): Functions assigned to bag

Output. Return $\mathcal{Z}(root)$ Complexity: $\mathcal{O}(N|\Sigma|^{tw})$ + Tree decomposer ($\mathcal{O}(N)$, exp. on tw)

+ Sampling: k i.i.d. sequences through Stochastic Backtrack, starting from root:

Choose $w \in \Sigma$ with probability ∞ contribution to \mathcal{Z} . Recurse until leaves.

Complexity: $O(k N |\Sigma|)$ (+ part. fun.) for sampling k *i.i.d.* sequences

Meta algorithm – Partition function

Input. Trained generative model *M*

- Convert M to (hyper)graph instance G
- Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G
- Precompute partition function (bottom-up dyn. prog.) through:

$$\mathcal{Z}(B \mid \mathbf{v}) = \sum_{w \in \Sigma} e^{-\beta \sum_{f \in F(B)} f(\mathbf{v} \cup \{w\})} \prod_{B' \in \text{children}(B)} \mathcal{Z}(B' \mid \mathbf{v} \cup \{w\})$$

 \mathbf{v} : Assignments to variables shared with parent; F(B): Functions assigned to bag

Output. Return $\mathcal{Z}(root)$ Complexity: $\mathcal{O}(N|\Sigma|^{tw})$ + Tree decomposer ($\mathcal{O}(N)$, exp. on tw)

- + Sampling: k i.i.d. sequences through Stochastic Backtrack, starting from root:
 - Choose $w \in \Sigma$ with probability ∞ contribution to \mathcal{Z} . Recurse until leaves.
- **Complexity:** $\mathcal{O}(k N |\Sigma|)$ (+ part. fun.) for sampling k *i.i.d.* sequences
- + OPT: Max. probability/min. energy sequence for free

InfraRed – A practical implementation

```
def single_target_design_model(target):
    n, bps = len(target), rna.parse(target)
    model = ir.Model(n, 4)
    model.add_constraints(rna.BPComp(i, j) for (i, j) in bps)
    model.add_functions([rna.GCCont(i) for i in range(n)], 'gc')
    model.add_functions([rna.BPEnergy(i, j, (i-1, j+1) not in bps)
    for (i,j) in bps], 'energy')
    model.set_feature_weight(-1.5, 'energy')
    return model
```

- Python/C++ declarative framework (constraints and pseudo-energies)
- Runs tree decomp.; Reports part. fun.; Samples Boltzmann distr.; Optimal sequence
- Bonus: Autolearns weights to target expected features (ΔG , GC%...)
- Use-cases:
 - RNA multiple design RNARedPrint [Hammer et al, RECOMB 2018; BMC Bioinfo 2019]
 - RNA inverse folding RNAPond [Yao et al, RECOMB 2021]

RNAPoND – Positive and Negative Design

[Yao et al, RECOMB 2021]

- Obeys positive constraints but learns disruptive BPs and cancels them
- Naïve infrared (tw < 10) implementation competitive with state of the art

Treewidths of actual RNAs (PDB)

Treewidth of generative models???

TreeDiet – Simplifying tree decompositions

[Marchand et al, BMC Bioinfo 2022]

Goal: Remove few (weighted) edges from treewidth tw input graph, to reach tw' < tw

Theory: FPT on tw; Practice: No reasonable tractable algorithm known

Idea: Start from tree decomposition, rephrase as coloring on tree (practically FPT on tw)

Correct induced error through rejection sampling, subopts or progressive filtering (search)

Treewidth can be reduced w/o much information loss

		-
	#Preserved BPs	
tw'	${\rm EteRNA22}$	EteRNA77
9	_	183
8	_	182
7	_	180
6	465	176
5	460	168
4	456	157
3	445	144
2	418	121
1	320	86

Treewidth can be reduced w/o much information loss

Conclusion

To a hammer, everything is a nail Build it and they will come

- Avenues to apply parameterized complexity to bio* generative models
- Purely declarative, exact sampling
- Low complexity post precomputation

Conclusion

To a hammer, everything is a nail Build it and they will come

- Avenues to apply parameterized complexity to bio* generative models
- Purely declarative, exact sampling
- Low complexity post precomputation

Additional assets:

[Saule et al, WABI 2011]

- Derivatives/moments/correlations exactly computable (same complexity)
- Genomic search for occurrences of gen model (Σ → [1,M], XP comp.)
 [Rinaudo et al, WABI 2012]

Conclusion

To a hammer, everything is a nail Build it and they will come

- Avenues to apply parameterized complexity to bio* generative models
- Purely declarative, exact sampling
- Low complexity post precomputation

Additional assets:

[Saule et al, WABI 2011]

- Derivatives/moments/correlations exactly computable (same complexity)
- Genomic search for occurrences of gen model (Σ → [1,M], XP comp.)

 [Rinaudo *et al*, WABI 2012]

Limitation (possibly):

- Assumes that tw << N
- Sparseness in generative models: structure prediction vs design

```
https://gitlab.inria.fr/amibio/Infrared/
```

Acknowledgements

Sarah Berkemer

Hua-Ting Yao

Stefan Hammer

Alain Denise

Bertrand Marchand

Laurent Bulteau

Philippe Rinaudo