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Generative models for RNA design/modeling
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* InfeRNAL is the workhorse underlying RFAM [Nawrocki et a/2009] [l
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* CMs can be used to search novel ncRNAs, but also as generative models



Modern physics-inspired generative models

Potts model (DCA)
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Modern physics-inspired generative models
Potts model (DCA) Restricted Boltzmann Machines
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Generative models as (hyper)graphs

* CS perspective: Weighted CSP ([W]CSP), aka graphical models

* (Hyper)Graph model G=(V,E): V - sequence positions
E - Informative pairs

+ Evaluation functions
fl,fz UEVUVZ - R
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Generative models: Algorithmic problems

Hypergraph model G=(V,H): V > sequence positions
H - Informative subsets

+ Evaluation functions
fl,fz .. VEV PR

Algorithmic questions/problems (fixed h for RBMs):

*OPT: Find most likely sequence (alt centroid sequence)
*Partition function: Compute 2z = ) e #FW

wenN
Sampling: Generate sequence from P(w) o e #-#(W)

*Searching: Given large sequence (genome), find ML match
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Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

OPT generalizes SAT, MIS... > decision NP—hard!\

Monte Carlo for the win! Partition function #P hard & APX!!

Markov Chain may be disconnected!!!
Mixing time could be exponential!!!!
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Generating from physics-inspired models

Ask a physicist Ask a Computer Scientist

OPT generalizes SAT, MIS... > decision NP—hard!\
[ Monte Carlo for the win! Partition function #P hard & APX!!
Markov Chain may be disconnected!!!
. {. J

Mixing time could be exponential!!!!
If you feel paranoid,
check stats for
convergence
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But wait a minute...
If hypergraph is
sparse/tree-like, why
not use exact FPT
Kdynamic programming?
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Goal: Compute PF Z = Z o~ B-E(W)
weXN

* Brute force © (|E\N)
* Product over connected components z =[] Z(co)
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* PF of path computable in linear time by dyn. prog.
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* Complexity dominated by largest card. hyperedge




Computing the partition function

( N

Goal: Compute PF Z = Z o~ B-E(W)
weXN

* Brute force © (|E\N)
* Product over connected components z =[] Z(co)

ceCV

* PF of path computable in linear time by dyn. prog.
Z(iy-rig) = Y Z(iz ik | wi,)
w;, €2
Z(ig- g | wy,) = Z e_ﬁ-ﬁfnﬂz(wn;w'az).Z(ig iy | we)
Wi, €2
* Cycles can be broken through variable elimination




Divide and conquer-ing the partition function

Rem: Given values for separator {4,5,7}, Left and Right contributions become independent
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Divide and conquer-ing the partition function
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Tree decomposition (TD)

(Definition :

* Each vertex v € Vis represented in some bag/node B of T (v € B)
* Each edge e =(v, V') € Eis represented in some bag/node B of T (e € B)
\_° Consistency: For all v € V, the bags featuring v are connected in T

~

A tree decomposition for G = (V, E) is a tree T of bags B,, B, ..., B, € V, such that :
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Tree width tw of a tree decomposition = Size (#indices) of largest bag

Partition function computed in O(N |X|") time using dyn. prog. Boedlander 1992]

+ Computing an optimal (min tw) TD » NP-hard, but Fixed Parameter Tractable for tw



Meta algorithm — Partition function

4 N

Input. Trained generative model M

* Convert M to (hyper)graph instance G
* Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G
* Precompute partition function (bottom-up dyn. prog.) through:

Z(B | V) — Z e_/5 ZfeF(B) f(VU{’w}) H Z(Bf | v U {’U}})
we B’ € children( B)
v: Assignments to variables shared with parent; F(B): Functions assigned to bag

Output. Return Z(root) Complexity: O(N |X|*™) + Tree decomposer (O(N), exp. on tw )

S
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+ Sampling: k i.i.d. sequences through Stochastic Backtrack, starting from root:
Choose w € Y. with probability OC contribution to Z. Recurse until leaves.
Complexity: O(k N |X|) (+ part. fun.) for sampling k i.i.d. sequences
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4 N

Input. Trained generative model M

* Convert M to (hyper)graph instance G
* Run external algorithm to get (approx.) optimal TD, having treewidth tw, for G
* Precompute partition function (bottom-up dyn. prog.) through:
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+ Sampling: k i.i.d. sequences through Stochastic Backtrack, starting from root:
Choose w € >, with probability OC contribution to Z. Recurse until leaves.
Complexity: O(k N X)) (+ part. fun.) for sampling ki.i.d. sequences

+ OPT: Max. probability/min. energy sequence for free



InfraRed — A practical implementation

https //gitlab.inria. fr/amlblo/Infrared/

def single_target_design_model(target):
n, bps = len(target), rna.parse(target)
model = ir_Model(n, 4)
model . add_constraints(rna.BPComp(i, j) for (i, j) in bps)
model . add_functions([rna.GCCont(i) for i in range(n)], 'gc')
model . add_functions([rna.BPEnerqgy(i, j, (i-1, j+1) not in bps)
for (i,j) in bps], 'energy')
model . set_feature_weight(-1.5, ‘energy’)
return model

Python/C++ declarative framework (constraints and pseudo-energies)
Runs tree decomp.; Reports part. fun.; Samples Boltzmann distr.; Optimal sequence
Bonus: Autolearns weights to target expected features (AG, GC%...)

Use-cases:
 RNA multiple design - RNARedPrint [Hammer et a/, RECOMB 2018; BMC Bioinfo 2019]
* RNA inverse folding - RNAPond [Yao et al, RECOMB 2021]



RNAPoND — Positive and Negative Design

[Yao et al, RECOMB 2021]
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* Obeys positive constraints but learns disruptive BPs and cancels them
* Naive 1nfrared (tw < 10) implementation competitive with state of the art



Treewidths of actual RNAs (PDB

number of PDB structures (RNA only)

Treewidth of all RNA-only PDB stuctures
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TreeDiet — Simplitying tree decompositions

[Marchand et al, BMC Bioinfo 2022]

&

FPT/XP algorithm
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Goal: Remove few (weighted) edges from treewidth tw input graph, to reach tw’ < tw
Theory: FPT on tw; Practice: No reasonable tractable algorithm known

Idea: Start from tree decomposition, rephrase as coloring on tree (practically FPT on tw)

Correct induced error through rejection sampling, subopts or progressive filtering (search)



Treewidth can be reduced w/o much information loss

#Preserved BPs
tw’ EteRNA22 EteRNAT7

9 ~ 183
8 - 182
7 — 180
6 465 176
' 5 460 168
. 4 456 157
6 3 445 144
5 2 418 121
4 1 320 86
Width
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Corrected alignment score (SPS)

Treewidth can be reduced w/o much information loss
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To a hammer, everything is a nail

CO NC | UsS | on Build it and they will come

* Avenues to apply parameterized complexity to bio* generative models

* Purely declarative, exact sampling

* Low complexity post precomputation

https://gitlab.inria.fr/amibio/Infrared/
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Build it and they will come
* Avenues to apply parameterized complexity to bio* generative models
* Purely declarative, exact sampling
* Low complexity post precomputation
Additional assets: [Saule et al, WABI 2011]
 Derivatives/moments/correlations exactly computable (same complexity)

e Genomic search for occurrences of gen model (2 » [1,M], XP comp.)
[Rinaudo et al, WABI 2012]

https://gitlab.inria.fr/amibio/Infrared/



" To a hammer, everything is a nail
Conclusion ything

Build it and they will come
* Avenues to apply parameterized complexity to bio* generative models
* Purely declarative, exact sampling
* Low complexity post precomputation
Additional assets: [Saule et al, WABI 2011]
 Derivatives/moments/correlations exactly computable (same complexity)
e Genomic search for occurrences of gen model (2 » [1,M], XP comp.)
Limitation (possibly): [Rinaudo et al, WABI 2012]
* Assumes that tw K N
e Sparseness in generative models: structure prediction vs design

https://gitlab.inria.fr/amibio/Infrared/
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