Algorithmic aspects of negative and positive RNA design

Yann Ponty

LIX, CNRS/Ecole Polytechnique

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology (v2.0)

Fundamental dogma of molecular biology (v2.0)

RNA sequence and structure(s)

$$
\text { RNA }=\text { Linear Polymer }=\text { Sequence over }\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{U}\}^{\star}
$$

Primary Structure
Secondary Structure
Tertiary Structure

RNA sequence and structure(s)

$$
\text { RNA }=\text { Linear Polymer }=\text { Sequence over }\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{U}\}^{\star}
$$

Primary Structure
 Secondary Structure
 Tertiary Structure

5s rRNA 5s (PDBID: 1K73:B)
*Finally! [Bonnet/Rzążewski/Sikora, RECOMB'18]

Why we design RNAs

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality

Why we design RNAs

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters...
... including adoption of a single structure

Why we design RNAs

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters...
... including adoption of a single structure
- To test/push our understanding of how RNA folds

Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces

Why we design RNAs

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters...
...including adoption of a single structure
- To test/push our understanding of how RNA folds

Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces

- To help search for homologous sequences

Incomplete covariance models hindered by limited training sets
Design can be used to generalize existing alignments

Why we design RNAs

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters...
...including adoption of a single structure
- To test/push our understanding of how RNA folds

Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces

- To help search for homologous sequences Incomplete covariance models hindered by limited training sets Design can be used to generalize existing alignments
- To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters

Why we design RNAs

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters...
...including adoption of a single structure
- To test/push our understanding of how RNA folds

Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces

- To help search for homologous sequences

Incomplete covariance models hindered by limited training sets
Design can be used to generalize existing alignments

- To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters
- To perform controlled experiments

Design stories

The Nobel Prize in Physiology or Medicine 2006

Andrew Z. Fire
Photo: J.Mottern
Craig C. Mello
Prize share: $1 / 2$
Prize share: 1/2

Design stories

The Nobel Prize in Physiology or Medicine 2006

Andrew Z. Fire
Photo: J. Mottern
Craig C. Mello
Prize share: $1 / 2$
Prize share: $1 / 2$

FDA approval August 2018

Design stories

The Nobel Prize in Physiology or Medicine 2006

Photo: L. Cicero
Andrew Z. Fire
Prize share: $1 / 2$

Photo:. . Mottern
Craig C. Mello
Prize share: 1/2

FDA approval August 2018

Vex:

CRISPR: For better or worse...

Abstract goals and means of molecular design

But : To achieve a predefined biological function, as abstracted by a model.

Definition (Positive design)

To satisfy constraints induced by a model of function
In practice: To optimize affinity of interaction, to favor thermodynamic stability of a molecule, to respect sequence composition biases...

Definition (Negative design)

To avoid unwanted functions
In practice: To avoid off-target interactions, non-functional alternative foldings, kinetic traps. . . (inverse combinatorial problems)

In the context of RNA:

- Positive design: Seq/struct comparison, composition, +/- motifs, energie(s)
\rightarrow Random generation, CSP
- Negative design: Target structure \rightarrow Minimum Free-Energy + Boltzmann prob \nearrow \rightarrow Local search, exp algorithms, black magic (heuristics, $\star \mathrm{NN}$, crowdsourcing...)

Negative (Local) vs Positive (Global)

Negative (Local) vs Positive (Global)

Negative (Local) vs Positive (Global)

Part 1. Negative design

Existing approaches for negative design

Based on local search. . .
- RNAInverse - TBI Vienna
- Info-RNA - Backofen@Freiburg
- RNA-SSD - Condon@UBC
- (Inca)RNAFBinv - Barash@BGU
- NUPack - Pierce@Caltech
... bio-inspired algorithms. . .
- FRNAKenstein - Hein@Oxford
- AntaRNA - Backofen@Freiburg
- ERD - Ganjtabesh@Tehran
... exact approaches...
- RNAIFold - Clote@Boston College
- CO4 - Will@Leipzig

Typical issues:

- Naive initialization strategies
- Synthesized sequences do not necessarily fold properly (kinetics)
- Overly GC-rich sequences
- No negative results
\Rightarrow Combinatorial foundations!

Energy model

This talk: Restriction to valid base-pairs $=\{(\mathrm{A}, \mathrm{U}),(\mathrm{G}, \mathrm{C}),(\mathrm{G}, \mathrm{U})\}$

- RNA structure R: Set of base pairs (BPs)

Energy model

This talk: Restriction to valid base-pairs $=\{(\mathrm{A}, \mathrm{U}),(\mathrm{G}, \mathrm{C}),(\mathrm{G}, \mathrm{U})\}$

- RNA structure R: Set of base pairs (BPs)
- Motifs: Connected positions + content (e.g. Base Pairs,

Energy model

This talk: Restriction to valid base-pairs $=\{(\mathrm{A}, \mathrm{U}),(\mathrm{G}, \mathrm{C}),(\mathrm{G}, \mathrm{U})\}$

- RNA structure R: Set of base pairs (BPs)
- Motifs: Connected positions + content (e.g. Base Pairs, Stacking,

Energy model

This talk: Restriction to valid base-pairs $=\{(\mathrm{A}, \mathrm{U}),(\mathrm{G}, \mathrm{C}),(\mathrm{G}, \mathrm{U})\}$

- RNA structure R: Set of base pairs (BPs)
- Motifs: Connected positions + content (e.g. Base Pairs, Stacking, Loops...)

Energy model

This talk: Restriction to valid base-pairs $=\{(A, U),(G, C),(G, U)\}$

- RNA structure R: Set of base pairs (BPs)
- Motifs: Connected positions + content (e.g. Base Pairs, Stacking, Loops...)
- Energy model:

Motif \rightarrow Free-energy contribution $\Delta(m, a) \in \mathbb{R} \cup\{+\infty\}$, $m \subset[1, n], a \in \Sigma^{|m|}$ Free-energy $E(S, R)$: Sum of energies for motifs in R, given sequence S

$$
E_{R}=2 \cdot \Delta\binom{\text { © }}{\text { © }}+4 \cdot \Delta\binom{\text { © }}{\text { © }}+2 \cdot \Delta\binom{\text { © }}{\text { © }}
$$

Energy model

This talk: Restriction to valid base-pairs $=\{(A, U),(G, C),(G, U)\}$

- RNA structure R: Set of base pairs (BPs)
- Motifs: Connected positions + content (e.g. Base Pairs, Stacking, Loops...)
- Energy model:

Motif \rightarrow Free-energy contribution $\Delta(m, a) \in \mathbb{R} \cup\{+\infty\}, m \subset[1, n], a \in \Sigma^{|m|}$ Free-energy $E(S, R)$: Sum of energies for motifs in R, given sequence S

Energy model

This talk: Restriction to valid base-pairs $=\{(A, U),(G, C),(G, U)\}$

- RNA structure R: Set of base pairs (BPs)
- Motifs: Connected positions + content (e.g. Base Pairs, Stacking, Loops...)
- Energy model:

Motif \rightarrow Free-energy contribution $\Delta(m, a) \in \mathbb{R} \cup\{+\infty\}$, $m \subset[1, n], a \in \Sigma^{|m|}$ Free-energy $E(S, R)$: Sum of energies for motifs in R, given sequence S

RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

Input: Secondary structure $R+$ Energy distance $\Delta>0$. Output: RNA sequence $S \in \Sigma^{\star}$ such that:

$$
\forall R^{\prime} \in \mathcal{S}_{|S|} \backslash\{R\}: E\left(S, R^{\prime}\right) \geq E(S, R)+\Delta
$$

or \varnothing if no such sequence exists.

Difficult problem: Probably no obvious DP decomposition

- NP-hard problem [Bonnet et al, RECOMB'18]. . . after almost 30 years!
- Existing algorithms: Heuristics or Exponential-time
- Reason(s): Non locality, no theoretical framework, too many parameters...

Example

Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops $\leq 4 \quad(+\Theta(n)$ algo.)

Designability in simple BP-based energy models

Partial characterization of designable structures
[Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops $\leq 4 \quad(+\Theta(n)$ algo.)
- Designable \Rightarrow No multiloop of degree ≥ 5 (m_{5} motif), or degree ≥ 3 with ≥ 1 unpaired base(s) (m_{3} 。 motif).
Theorem: Similar motifs exist for any energy model and design criterion
Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB'19]

m_{5}

m_{3} 。

Designability in simple BP-based energy models

Partial characterization of designable structures
[Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops $\leq 4 \quad(+\Theta(n)$ algo.)
- Designable \Rightarrow No multiloop of degree ≥ 5 (m_{5} motif), or degree ≥ 3 with ≥ 1 unpaired base(s) (m_{3} 。 motif).
Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB'19]
- \exists Separated coloring for structure \Rightarrow Designable (+ $\Theta(n)$ algo.)
Base pairs $\rightarrow 3$ colors: $\quad \rightarrow \mathrm{G} \cdot \mathrm{C} ; \quad \mathrm{O} \rightarrow \mathrm{C} \cdot \mathrm{G} ; \quad \mathrm{O} \rightarrow \mathrm{A} \cdot \mathrm{U}$ or U.A.
Coloring rules: Within each loop, $\# \bullet \leq 1, \# \bigcirc \leq 1, \# \bigcirc \leq 2$ and $\# \bullet+\#<2$
Level of a base pair $=\#-\# \bigcirc$ on path to root.
Separated coloring $=\bigcirc$ and unpaired positions occur at different levels

Separated Coloring (example)

Base pairs $\rightarrow 3$ colors:

- \rightarrow G.C;
$\mathrm{O} \rightarrow \mathrm{C} \cdot \mathrm{G} ;$
$\rightarrow A \cdot U$ or $U \cdot A$.

Coloring rules: Within each loop, $\quad \# \bullet 1, \quad \# \bigcirc \leq 1, \quad \# \bigcirc \leq 2$ and $\# \bullet+\# O<2$

Separated Coloring (example)

Base pairs $\rightarrow 3$ colors:
$\rightarrow \mathrm{G} \cdot \mathrm{C}$;
$\bigcirc \rightarrow C \cdot G ;$
$\bigcirc \mathrm{A} \cdot \mathrm{U}$ or U. A .
Coloring rules: Within each loop, $\quad \# \bigcirc \leq 1, \quad \# \bigcirc \leq 1, \quad \# \bigcirc \leq 2$ and $\# \bigcirc+\# \bigcirc<2$

Separated Coloring (example)

Base pairs $\rightarrow 3$ colors:
$\rightarrow \mathrm{G} \cdot \mathrm{C}$;
$\bigcirc \rightarrow C \cdot G ;$
$\rightarrow A \cdot U$ or U.A.
Coloring rules: Within each loop, $\quad \# \bigcirc \leq 1, \quad \# \bigcirc \leq 1, \quad \# \bigcirc \leq 2$ and $\# \bigcirc+\# \bigcirc<2$

Separated Coloring (example)

Base pairs $\rightarrow 3$ colors: - $\rightarrow \mathrm{G} \cdot \mathrm{C}$;
$\mathrm{O} \rightarrow \mathrm{C} \cdot \mathrm{G} ;$
$\rightarrow A \cdot U$ or U.A.

Coloring rules: Within each loop, $\quad \# \bullet 1, \quad \# \bigcirc \leq 1, \quad \# \bigcirc \leq 2$ and $\# \bullet+\# O<2$

Levels of $\bigcirc:\{0,1\} \quad+$ Levels of unpaired/leaves: $\{2,4\} \quad \Rightarrow$ Coloring is separated

Separated Coloring (example)

Base pairs $\rightarrow 3$ colors: $\quad \rightarrow \mathrm{G} \cdot \mathrm{C} ; \quad \mathrm{O} \rightarrow \mathrm{C} \cdot \mathrm{G} ; \quad \mathrm{O} \rightarrow \mathrm{A} \cdot \mathrm{U}$ or U. A.

Coloring rules: Within each loop, $\quad \# \bullet 1, \quad \# \bigcirc \leq 1, \quad \# \bigcirc \leq 2$ and $\# \bullet+\# O<2$

Levels of $\bigcirc:\{0,1\} \quad+$ Levels of unpaired/leaves: $\{2,4\} \quad \Rightarrow$ Coloring is separated Design: GAAAAGUUGGUUUUUCCUUCUCAGGUUUUCCUGUUUC

Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops $\leq 4 \quad(+\Theta(n)$ algo.)
- Designable \Rightarrow No multiloop of degree ≥ 5 (m_{5} motif), or degree ≥ 3 with ≥ 1 unpaired base(s) (m_{3} 。 motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB'19]
$-\exists$ Separated coloring for structure \Rightarrow Designable
(+ $\Theta(n)$ algo.)

Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops $\leq 4 \quad(+\Theta(n)$ algo.)
- Designable \Rightarrow No multiloop of degree ≥ 5 (m_{5} motif), or degree ≥ 3 with ≥ 1 unpaired base(s) (m_{3} 。 motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB'19]

- \exists Separated coloring for structure \Rightarrow Designable
($+\Theta(n)$ algo.)
Corollary: Approximate design for any structure avoiding m_{5} and m_{3} 。in $\Theta(n)$ time Idea: Insert new BPs on helices to offset unpaired/leaves and \bigcirc

Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops $\leq 4 \quad(+\Theta(n)$ algo.)
- Designable \Rightarrow No multiloop of degree ≥ 5 (m_{5} motif), or degree ≥ 3 with ≥ 1 unpaired base(s) (m_{3} 。 motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB'19]

- \exists Separated coloring for structure \Rightarrow Designable
($+\Theta(n)$ algo. $)$
Corollary: Approximate design for any structure avoiding m_{5} and m_{3} 。in $\Theta(n)$ time Idea: Insert new BPs on helices to offset unpaired/leaves and \bigcirc

Open problems

- Algorithm/characterization of separated-colorable tree?

Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops $\leq 4 \quad(+\Theta(n)$ algo.)
- Designable \Rightarrow No multiloop of degree ≥ 5 (m_{5} motif), or degree ≥ 3 with ≥ 1 unpaired base(s) (m_{3} 。 motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB'19]

- \exists Separated coloring for structure \Rightarrow Designable
($+\Theta(n)$ algo.)
Corollary: Approximate design for any structure avoiding m_{5} and m_{3} 。in $\Theta(n)$ time Idea: Insert new BPs on helices to offset unpaired/leaves and \bigcirc

Open problems

- Algorithm/characterization of separated-colorable tree?
- Inserting min \#Base pairs: Complexity? Algorithm?

Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops $\leq 4 \quad(+\Theta(n)$ algo.)
- Designable \Rightarrow No multiloop of degree ≥ 5 (m_{5} motif), or degree ≥ 3 with ≥ 1 unpaired base(s) (m_{3} 。 motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB'19]

- \exists Separated coloring for structure \Rightarrow Designable
($+\Theta(n)$ algo. $)$
Corollary: Approximate design for any structure avoiding m_{5} and m_{3} in $\Theta(n)$ time Idea: Insert new BPs on helices to offset unpaired/leaves and \bigcirc

Open problems

- Algorithm/characterization of separated-colorable tree?
- Inserting min \#Base pairs: Complexity? Algorithm?
- Complex color sets for more realistic energy models?

Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops $\leq 4 \quad(+\Theta(n)$ algo.)
- Designable \Rightarrow No multiloop of degree ≥ 5 (m_{5} motif), or degree ≥ 3 with ≥ 1 unpaired base(s) (m_{3} 。 motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB'19]

- \exists Separated coloring for structure \Rightarrow Designable
($+\Theta(n)$ algo.)
Corollary: Approximate design for any structure avoiding m_{5} and m_{3} 。in $\Theta(n)$ time Idea: Insert new BPs on helices to offset unpaired/leaves and \bigcirc

Open problems

- Algorithm/characterization of separated-colorable tree?
- Inserting min \#Base pairs: Complexity? Algorithm?
- Complex color sets for more realistic energy models?
- FPT design for some (yet unknown) parameters?

Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops $\leq 4 \quad(+\Theta(n)$ algo.)
- Designable \Rightarrow No multiloop of degree ≥ 5 (m_{5} motif), or degree ≥ 3 with ≥ 1 unpaired base(s) (m_{3} 。 motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB'19]
$-\exists$ Separated coloring for structure \Rightarrow Designable
($+\Theta(n)$ algo.)
Corollary: Approximate design for any structure avoiding m_{5} and m_{3} 。in $\Theta(n)$ time Idea: Insert new BPs on helices to offset unpaired/leaves and \bigcirc

Open problems

- Algorithm/characterization of separated-colorable tree?
- Inserting min \#Base pairs: Complexity? Algorithm?
- Complex color sets for more realistic energy models?
- FPT design for some (yet unknown) parameters?
- In practice? Design (approximate) backbone + local search?

In real life...

In real life...

In real life...

In real life...

Part 2. Multiple positive design of RNA

Multiple RNA design: Motivation

Example: Riboswitch for translation control

Multiple RNA design: Motivation

Example: Riboswitch for translation control

Multiple target structures \rightarrow Multiple design of RNAs

> abcdefghijklmnopqrstuv $((((()) ..(((.))).))$. $(()).((\ldots)) .(((.))$. $\ldots .((((())).) \ldots)) \ldots$

Multiple RNA design: Motivation

Example: Riboswitch for translation control

Multiple target structures \rightarrow Multiple design of RNAs

$$
\begin{aligned}
& \text { abcdefghijklmnopqrstuv } \\
& (((((.)) .(((. .))) .))) \\
& ((.))((\ldots)) .(((. .))) \\
& \ldots .(((((.)))) \ldots)) \ldots
\end{aligned}
$$

Objective: To randomly generate RNA sequences under constraints
(1) Validity for targeted structures wrt base pairing nucleotides
(2) Stability (low free-energy, comparable across structures...) of target structures
(3) Constrained composition: (prescribed GC content), +/- motifs. . .

Stochastic backtrack: Pre-count and generate valid sequence (uniform distrib.) + Further refinements using local search

Our problem (simplified)

i) Input Structures

ii) Merged Base-Pairs

iii) Compatibility Graph

Question: How many valid sequences over $\Sigma^{n}:=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{U}\}^{n}$?

Problem (\#ValidSequences)

Input: Secondary structures $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ of length n Output: Num. of valid sequences
$\mid\left\{S \in \Sigma^{n} \mid \forall(i, j) \in R_{\ell},\left(S_{i}, S_{j}\right)\right.$ forms a valid base pair $\} \mid$

Valid base pairs

State of the art

Abfalter/Flamm/Stadler 2003:

- Ear decomposition [Whitney 1932]
- Peel input graph as paths A_{1}, \ldots, A_{k} such that only the ends of A_{i} are in $\cup_{j>i} A_{j}$

- Dynamic programming: Counting \#valid paths for each component, conditioned by nucleotide chosen for its anchors (black nodes);
- Careful combination of values yields \#valid sequences.

Complexity: $\Theta\left(n .4^{\Omega}\right)$ where $\Omega=$ Max \#anchors. Worst-case: $\Omega \in \Theta(n)$

Some comments:

- Is this optimal? Other algorithms/parameters?

State of the art

Abfalter/Flamm/Stadler 2003:

- Ear decomposition [Whitney 1932]
- Peel input graph as paths A_{1}, \ldots, A_{k} such that only the ends of A_{i} are in $\cup_{j>i} A_{j}$

- Dynamic programming: Counting \#valid paths for each component, conditioned by nucleotide chosen for its anchors (black nodes);
- Careful combination of values yields \#valid sequences.

Complexity: $\Theta\left(n .4^{\Omega}\right)$ where $\Omega=$ Max \#anchors. Worst-case: $\Omega \in \Theta(n)$

Some comments:

- Is this optimal? Other algorithms/parameters?
- Which extensions possible? (Multidim.) Boltzmann-Gibbs distrib.

State of the art

Abfalter/Flamm/Stadler 2003:

- Ear decomposition [Whitney 1932]
- Peel input graph as paths A_{1}, \ldots, A_{k} such that only the ends of A_{i} are in $\cup_{j>i} A_{j}$

- Dynamic programming: Counting \#valid paths for each component, conditioned by nucleotide chosen for its anchors (black nodes);
- Careful combination of values yields \#valid sequences.

Complexity: $\Theta\left(n .4^{\Omega}\right)$ where $\Omega=$ Max \#anchors. Worst-case: $\Omega \in \Theta(n)$

Some comments:

- Is this optimal? Other algorithms/parameters?
- Which extensions possible? (Multidim.) Boltzmann-Gibbs distrib.
- Is this exp. really necessary? Probably since counting \#P-hard

Counting valid sequences: WC/Wobble + single structure

$$
\begin{gathered}
A \frac{1}{1} U \\
G \frac{1}{1} C
\end{gathered}
$$

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?
Answer: 4\#Unpaired \times

Counting valid sequences: WC/Wobble + single structure

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?
Answer: 4 \#Unpaired $\times 6^{\# B P s} \rightarrow 6879707136$

Counting valid sequences: WC/Wobble + Two structures

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?
Answer: $\neq \varnothing$! (dep. graph and valid BPs both bipartite [Flamm et al, RNA 2001])

Counting valid sequences: WC/Wobble + Two structures

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?
Answer: $\neq \varnothing$! (dep. graph and valid BPs both bipartite [Flamm et al, RNA 2001])

Counting valid sequences: WC/Wobble + Two structures

Valid base pairs (BPs) = Including Wobble base pairs

Dependency graph:
Cycles + Paths
i m n r

$$
\begin{array}{ccc}
g=e-a=u & h & j=q \\
k= & d=b=t
\end{array}
$$

$$
f-1-0-v \quad c-s
$$

Question: How many valid sequences?
Answer: $\neq \varnothing!$ (dep. graph and valid BPs both bipartite [Flamm et al, RNA 2001])

Counting valid sequences: WC/Wobble + Two structures

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?
Answer: $\neq \varnothing$! (dep. graph and valid BPs both bipartite [Flamm et al, RNA 2001])

Counting valid sequences: WC/Wobble + Two structures

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?
Answer: $\neq \varnothing$! (dep. graph and valid BPs both bipartite [Flamm et al, RNA 2001]) \#Designs $(G)=\prod_{c \in C C(G)} \# \operatorname{Designs}(c c)$

Counting valid sequences for paths and cycles

$p(n)$: \#Valid sequences for path of length n.
$c(n)$: \#Valid sequences for cycle of length n.

Theorem (\#Valid sequences for paths and cycles)

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { et } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number.
For paths: A simple automaton. . .

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

Counting valid sequences for paths and cycles

$p(n)$: \#Valid sequences for path of length n. $c(n)$: \#Valid sequences for cycle of length n.

Theorem (\#Valid sequences for paths and cycles)

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { et } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number.
For paths: A simple automaton...

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

Counting valid sequences for paths and cycles

$p(n)$: \#Valid sequences for path of length n. $c(n)$: \#Valid sequences for cycle of length n.

Theorem (\#Valid sequences for paths and cycles)

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { et } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number.

For paths: A simple automaton. . .

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

$$
m_{\bullet}(n)=m_{0}(n-1)
$$

Counting valid sequences for paths and cycles

$p(n)$: \#Valid sequences for path of length n.
$c(n)$: \#Valid sequences for cycle of length n.

Theorem (\#Valid sequences for paths and cycles)

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { et } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number.

For paths: A simple automaton. . .

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

$$
\begin{aligned}
m_{\bullet}(n) & =m_{\bullet}(n-1) \\
m_{\bullet}(n) & =m_{\bullet}(n-1)+m_{\bullet}(n-1) \\
& =m_{\bullet}(n-1)+m_{\bullet}(n-2) \\
& =\mathcal{F}(n+2)
\end{aligned}
$$

Counting valid sequences for paths and cycles

$p(n)$: \#Valid sequences for path of length n. $c(n)$: \#Valid sequences for cycle of length n.

Theorem (\#Valid sequences for paths and cycles)

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { et } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number.

For paths: A simple automaton. . .

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

$$
\begin{aligned}
m_{\bullet}(n) & =m_{\bullet}(n-1) \\
m_{\circ}(n) & =m_{\bullet}(n-1)+m_{\bullet}(n-1) \\
& =m_{\bullet}(n-1)+m_{\circ}(n-2) \\
& =\mathcal{F}(n+2)
\end{aligned}
$$

(Since $m_{0}(0)=1$ and $\left.m_{0}(1)=2\right)$

Counting valid sequences for paths and cycles

$p(n)$: \#Valid sequences for path of length n. $c(n)$: \#Valid sequences for cycle of length n.

Theorem (\#Valid sequences for paths and cycles)

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { et } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number.

For paths: A simple automaton. . .

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

$$
\begin{aligned}
m_{\bullet}(n) & =m_{\bullet}(n-1) \\
m_{\circ}(n) & =m_{\circ}(n-1)+m_{\bullet}(n-1) \\
& =m_{\circ}(n-1)+m_{\circ}(n-2) \\
& =\mathcal{F}(n+2)
\end{aligned}
$$

(Since $m_{0}(0)=1$ and $\left.m_{0}(1)=2\right)$

$$
p(n):=m_{\varepsilon}(n)=2 m_{\bullet}(n-1)+2 m_{\bullet}(n-1)=2(\mathcal{F}(n)+\mathcal{F}(n+1))=2 \mathcal{F}(n+2)
$$

Counting valid sequences for paths and cycles

$p(n)$: \#Valid sequences for path of length n.
$c(n)$: \#Valid sequences for cycle of length n.

Theorem (\#Valid sequences for paths and cycles)

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { et } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number.
For cycles: A slightly more complex automaton...

Counting valid sequences for paths and cycles

$p(n)$ and $c(n)$: \#Valid sequences for paths and cycles of length n.

Theorem (\#Valid sequences for paths and cycles)

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { et } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number.
G : Dependency graph, merging the two structures (max degree ≤ 2).
G uniquely decomposed in $\mathcal{P}(G)$ paths and $\mathcal{C}(G)$ cycles.

Theorem (\#Valid sequences for 2-structures)

The number \#Designs (G) of valid sequences for G is

$$
\# \operatorname{Designs}(G)=\prod_{p \in \mathcal{P}(G)} 2 \mathcal{F}_{|p|+2} \times \prod_{c \in \mathcal{C}(G)}\left(2 \mathcal{F}_{|c|}+4 \mathcal{F}_{|c|-1}\right)
$$

Caterpilar tree: $\frac{(2+\sqrt{3}) \times(1+\sqrt{3})^{n}+(2-\sqrt{3}) \times(1-\sqrt{3})^{n}}{2}$ (n nodes)
Complete binary: $2 a_{k}$ (height k) $a_{k}=\left(a_{k-2}+1\right)^{4}+2\left(a_{k-1}+1\right)\left(a_{k-2}+1\right)^{2}+\left(a_{k-1}+1\right)^{2}-1$

Counting valid sequences: WC/Wobble + Two structures

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?
Answer $: \neq \varnothing!$ (both BP and dependency graphs bipartite) \#Designs $(G)=\prod_{c \in C C(G)}$ \#Designs $(c c)=2322432$

Counting valid sequences: WC/Wobble +>2 structures

Valid base pairs (BPs) = Including Wobble base pairs

Dependency graph: Cycles, Paths, Trees...

f - I — O — v
r i

Question: How many valid sequences?
Answer: Non-bipartite $\rightarrow \varnothing$; Bipartite \rightarrow ????

Counting valid sequences: WC/Wobble +>2 structures

Valid base pairs (BPs) = Including Wobble base pairs

Dependency graph:
Cycles, Paths, Trees. . .

$f-I-O-v$

Question: How many valid sequences?
Answer: Non-bipartite $\rightarrow \varnothing$; Bipartite \rightarrow ????

Independent sets \Leftrightarrow Valid sequences

Independent sets \Leftrightarrow Valid sequences

Independent sets \Leftrightarrow Valid sequences

Independent sets \Leftrightarrow Valid sequences

Independent sets \Leftrightarrow Valid sequences

Independent sets \Leftrightarrow Valid sequences

Independent sets \Leftrightarrow Valid sequences

Remark: Black circles non-adjacent in valid sequences
Up to trivial symmetry* (e.g. north-western position $\in\{U, C\}$):
Designs ${ }^{\star}(\mathrm{cc}) \subseteq \operatorname{IndSets}(\mathrm{cc})$

Independent sets \Leftrightarrow Valid sequences

Remark: Black circles non-adjacent in valid sequences
Up to trivial symmetry* (e.g. north-western position $\in\{U, C\}$):
Designs ${ }^{\star}(\mathrm{cc}) \subseteq \operatorname{IndSets}(\mathrm{cc})$
Independent Sets (black) $+\mathrm{NW} \in\{\mathrm{U}, \mathrm{C}\} \Rightarrow$ Valid sequence

Independent sets \Leftrightarrow Valid sequences

Remark: Black circles non-adjacent in valid sequences Up to trivial symmetry ${ }^{\star}$ (e.g. north-western position $\in\{U, C\}$):

$$
\text { Designs^ }(\mathrm{cc}) \subseteq \text { IndSets }(\mathrm{cc})
$$

Independent Sets (black) + NW $\in\{\mathrm{U}, \mathrm{C}\} \Rightarrow$ Valid sequence
\Rightarrow Bijection between Designs*(cc) and IndSets(cc).

Valid sequences and independent sets

Theorem (\#Designs and ind. sets in connected bipartite graphs)
Let G be a bipartite and connected dependency graph:

$$
\# \operatorname{Designs}(G)=2 \times \# \operatorname{Designs}^{\star}(G)=2 \times \# \operatorname{IndSets}(G)
$$

Valid sequences and independent sets

Theorem (\#Designs and ind. sets in connected bipartite graphs)
Let G be a bipartite and connected dependency graph:

$$
\text { \#Designs }(G)=2 \times \# \operatorname{Designs}^{\star}(G)=2 \times \# \operatorname{IndSets}(G)
$$

For bipartite dependency graph G, one has:

$$
\# \operatorname{Designs}(G)=\prod_{c c \in C C(G)} 2 \times \# \operatorname{IndSets}(c c)=2^{|C C(G)|} \times \# \operatorname{IndSets}(G)
$$

Valid sequences and independent sets

Theorem (\#Designs and ind. sets in connected bipartite graphs)

Let G be a bipartite and connected dependency graph:

$$
\text { \#Designs }(G)=2 \times \# \operatorname{Designs}^{\star}(G)=2 \times \# \operatorname{IndSets}(G)
$$

For bipartite dependency graph G, one has:

$$
\# \operatorname{Designs}(G)=\prod_{c c \in C C(G)} 2 \times \# \operatorname{IndSets}(c c)=2^{|C C(G)|} \times \# \operatorname{IndSets}(G)
$$

But \#IndSets (G) is \#P-hard on bipartite graphs (\#BIS) [Dyer \& Greenhill'00]
(+ Any graph G is the dependency graph of some structure family)
So \exists Poly-Time algorithm for \#Designs $(G) \rightarrow$ Poly-Time algorithm for \#BIS...

Valid sequences and independent sets

Theorem (\#Designs and ind. sets in connected bipartite graphs)

Let G be a bipartite and connected dependency graph:

$$
\# \operatorname{Designs}(\mathrm{G})=2 \times \# \operatorname{Designs}^{\star}(\mathrm{G})=2 \times \# \operatorname{IndSets}(\mathrm{G})
$$

For bipartite dependency graph G, one has:

$$
\# \operatorname{Designs}(G)=\prod_{c c \in C C(G)} 2 \times \# \operatorname{IndSets}(c c)=2^{|C C(G)|} \times \# \operatorname{IndSets}(G)
$$

But \#IndSets (G) is \#P-hard on bipartite graphs (\#BIS) [Dyer \& Greenhill'00]
(+ Any graph G is the dependency graph of some structure family)
So \exists Poly-Time algorithm for \#Designs $(G) \rightarrow$ Poly-Time algorithm for \#BIS. . .

Theorem

Counting \#Designs is \#P-hard.
No Poly-Time algorithm for \#Designs(G) unless \#P $=F P(\Rightarrow P=N P)$

Consequences

Corollary (\#Approximability for ≤ 5 structures) [Weitz06]

For ≤ 5 structures (crossings allowed), \#Design(G) can be approximated within any ratio in Poly-time (PTAS)

Consequences

Corollary (\#Approximability for ≤ 5 structures) [Weitz'06]

For ≤ 5 structures (crossings allowed), \#Design (G) can be approximated within any ratio in Poly-time (PTAS)

Corollary (\#BIS-hardness for > 5 structures) [Cai, Galanis et al'16]

For more than 5 structures (crossings allowed), \#Design is equally as hard to approximate as general \#BIS.

Why crossings/Pseudokots? Because any bipartite graph of max degree Δ can be decomposed in Δ matchings in Poly-Time (Vizing theorem).

Consequences

Corollary (\#Approximability for ≤ 5 structures) [Weitz'06]

For ≤ 5 structures (crossings allowed), \#Design (G) can be approximated within any ratio in Poly-time (PTAS)

Corollary (\#BIS-hardness for > 5 structures) [Cai, Galanis et al'16]

For more than 5 structures (crossings allowed), \#Design is equally as hard to approximate as general \#BIS.

Why crossings/Pseudokots? Because any bipartite graph of max degree Δ can be decomposed in Δ matchings in Poly-Time (Vizing theorem).

Connection between counting and sampling [Jerrum/Valiant/Vazirani'86].
Conjecture (\#BIS-hardness of multiple positive design)
Quasi-uniform generation as hard as approximation of general \#BIS
\Rightarrow Sampling \#P hard?

Tree decomposition and Boltzmann sampling of sequences

i) Input Structures

iv) Tree Decomposition

ii) Merged Base-Pairs

iii) Compatibility Graph

GCCGCGGUAGCUACAGCCGGCU UUGGGGUUGGGUAGACUCCGGU GCUGCAGCGGCUGUGGCUGGCC GGUUCUGGUUUGCUUAGGGCUA CGACGGCGGUGCCGGCAUUUGC

vi) Final Designs

Tree decomposition and width

Tree decomposition T for a graph $G=(V, E)$:
(1) Nodes of $T=$ Some subsets of V
(2) All vertices present: $\forall v \in V, \exists b \in B$ s.t. $v \in b$
(3) All edges present: $\forall\left(v, v^{\prime}\right) \in E, \exists b \in B$ s.t. $\left\{v, v^{\prime}\right\} \subseteq B$
(O Nodes having $v \in V$ form a connected subtreee

Target structures

Dependency graph

Tree decomposition

Tree decomposition and width

Tree decomposition T for a graph $G=(V, E)$:
(1) Nodes of $T=$ Some subsets of V
(2) All vertices present: $\forall v \in V, \exists b \in B$ s.t. $v \in b$
(3) All edges present: $\forall\left(v, v^{\prime}\right) \in E, \exists b \in B$ s.t. $\left\{v, v^{\prime}\right\} \subseteq B$
(- Nodes having $v \in V$ form a connected subtreee

Target structures

Dependency graph
$b=\left\{b_{1}, b_{2} \ldots\right\}$: node of D
T_{b} : subtree rooted at b

Tree decomposition
w : Width of tree decomposition $D\left(=\max _{b \in B}|b|-1\right)$

$$
z\left(T_{b} \mid b_{2} \leftarrow v_{2} \ldots\right)=\sum_{\substack{b_{1} \leftarrow v_{1} \\ v_{1} \in\{\mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{U}\}}} \prod_{c \text { fils de } b} z\left(T_{c} \mid b_{1} \leftarrow v_{1}, b_{2} \leftarrow v_{2} \ldots\right)
$$

Complexity: $\Theta\left(n m k+n k 2^{w}\right)$ for uniform generation of m sequences (k structs)

Counting valid sequences: WC/Wobble +>2 structures

Valid base pairs (BPs) = Including Wobble base pairs

Dependency graph: Cycles, Paths, Trees...

f - I — O — v
r i

Question: How many valid sequences?
Answer: Non-bipartite $\rightarrow \varnothing$; Bipartite $\rightarrow 496672$

Our problem for general free-energy models

Question: Which partition function for valid sequences

Problem (PFDesigns)

Input: Structures $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ of length $\underset{k}{n}+$ Weight $\left(x_{1}, \ldots, x_{k}\right)$
Output: Partition function

$$
z=\sum_{\substack{S \in \sum^{n} \\ S \text { valid for } \mathcal{R}}} \prod_{i=1}^{k} x_{i}^{E\left(S, R_{i}\right)}
$$

Counting/sampling, the Boltzmann-Gibbs way

Target Structures
$b=\left\{b_{1}, b_{2} \ldots\right\}:$ node of D
T_{b} : subtree rooted at b
w : Width of treedecomposition D

Tree Decomposition

$$
z\left(T_{b} \mid b_{2} \leftarrow v_{2} \ldots\right)=\sum_{\substack{b_{1} \leftarrow v_{1} \\ v_{1} \in\{\mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{U}\}}} \prod_{i=1}^{k} x_{i}^{\sum_{E \in b} E\left(b, v_{1}, \ldots\right)} \prod_{c \text { fils de } b} z\left(T_{c} \mid b_{1} \leftarrow v_{1}, \ldots\right)
$$

Complexity: $\Theta\left(n m k+n k 2^{w+\# C C}\right)$ for sampling in Boltzmann-Gibbs distrib.

Practical impact of Boltzmann-Gibbs sampling

Boltzmann probability of structure R, pour une séquence S :

$$
\mathbb{P}(R \mid S)=\frac{e^{-\frac{E(S, R)}{\beta T}}}{z_{S}} \quad z_{S}:=\sum_{R^{\prime}} e^{-\frac{E\left(S, R^{\prime}\right)}{\beta T}}
$$

Objectif classique du design négatif (\rightarrow spécificicié)

RNARedPrint: a flexible method for (positive) design

i) Input Structures

ii) Merged Base-Pairs

iii) Compatibility Graph

GCCGCGGUAGCUACAGCCGGCU UUGGGGUUGGGUAGACUCCGGU GCUGCAGCGGCUGUGGCUGGCC GGUUCUGGUUUGCUUAGGGCUA CGACGGCGGUGCCGGCAUUUGC

vi) Final Designs
[Hammer/P/Wang/Will, RECOMB'18 + BMC Bioinfo 2019]

- Fixed Parameter Tractable algorithm based on tree width
- Uniform or Boltzmann-Gibbs sampling, to favor diversity and stability
- Multidimensional Boltzmann sampling for controlling free-energy, GC\%...
https://github.com/yannponty/RNARedPrint

Multidimensional Boltzmann sampling

Multidimensional Boltzmann sampling [Bodini, P, DMTCS 2011]

Input: Targeted free-energies $\left(E_{\ell}^{\star}\right)_{\ell=1}^{k}$, weights $\left(x_{\ell}\right)_{\ell=1}^{k}$ such that $\mathbb{E}\left(E\left(w, S_{\ell}\right)\right)=E_{\ell}^{\star}, \forall \ell$:

$$
\mathbb{P}\left(w \mid x_{1} \cdots x_{k}\right) \sim \prod_{\ell=1}^{k} x_{\ell}^{E\left(w, S_{\ell}\right)}+\text { Efficient rejection } \rightarrow \mathcal{O}\left(n^{k / 2}\right) \text { exact/ } \mathcal{O}\left(\alpha^{k}\right) \text { approx. }
$$

Empirical efficiency for additive concentrated constraints (GC\%, dinucleotides ...)
\rightarrow Partial functions \rightarrow Hyper-edges, aka cliques ${ }^{1}$
General framework for integer-valued constraints; Concentration tests.

[^0]
Strangely enough, it actually works!

$\operatorname{MultiDefect~}\left(S, R_{1} \cdots R_{k}\right):=\frac{\sum_{\ell=1}^{k} E\left(S, R_{\ell}\right)-\operatorname{EFE}(S)}{k}+\frac{\sum_{i \leq \ll j \leq k}\left|E\left(S, R_{\ell}\right)-E\left(S, R_{j}\right)\right|}{2\binom{k}{2}}$
where $E F E=$ ensemble free-energy $E F E(S):=-\beta T \log z s$.

Conclusion

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);

Perspectives :

Conclusion

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven \#P hard;

Perspectives:

Conclusion

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven \#P hard;
- Uses efficient rejection scheme for practical control of complex constraints;

Perspectives:

Conclusion

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven \#P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
- Practical efficiency (reasonable tree width).

Perspectives :

Conclusion

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven \#P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
- Practical efficiency (reasonable tree width).

Perspectives:

Complexity of sequence generation for $k<5$ structures?

Conclusion

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven \#P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
- Practical efficiency (reasonable tree width).

Perspectives:

Complexity of sequence generation for $k<5$ structures?
How to deal with additional sequence constraints? (DFA "product")

Forbidden sequences

Conclusion

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven \#P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
- Practical efficiency (reasonable tree width).

Perspectives:

Complexity of sequence generation for $k<5$ structures?
How to deal with additional sequence constraints? (DFA "product")
How to locally navigate the space of valid sequences? (Local search)

Conclusion

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven \#P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
- Practical efficiency (reasonable tree width).

Perspectives:

Complexity of sequence generation for $k<5$ structures?
How to deal with additional sequence constraints? (DFA "product")
How to locally navigate the space of valid sequences? (Local search)
How to simplify dense graphs? (DCA potentials)

Largest vertex set given tree-width budget?

Merci - הדָỉn - Thank you

Collaborators:

(1) Ecole Polytechnique

- M. Régnier, A. Héliou, H.T. Yao
(*) Simon Fraser University
- J. Hales, J. Manuch, L. Stacho
- C. Chauve
(*) McGill University
- J. Waldispühl
(*) Université du Québec à Montréal
- V. Reinharz

University of Vienna

- S. Will, S. Hammer

E Ben Gurion University

- D. Barash, M. Drory Retwitzer, A. Churkin

Supported by:

[^0]: ${ }^{1}$ But tree width \nearrow

