

Algorithmic aspects of negative and positive RNA design

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology (v2.0)

Fundamental dogma of molecular biology (v2.0)

RNA sequence and structure(s)

Primary Structure

Secondary Structure

Tertiary Structure

5s rRNA 5s (PDBID: 1K73:B)

RNA sequence and structure(s)

Primary Structure Secondary Structure Tertiary Structure

5s rRNA 5s (PDBID: 1K73:B)

*Finally! [Bonnet/Rzążewski/Sikora, RECOMB'18]

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters... ...including adoption of a single structure
- To test/push our understanding of how RNA folds
 Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces
- To help search for homologous sequences Incomplete covariance models hindered by limited training sets Design can be used to generalize existing alignments
- To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters
- To perform controlled experiments

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters... ... including adoption of a single structure
- To test/push our understanding of how RNA folds
 Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces
- To help search for homologous sequences Incomplete covariance models hindered by limited training sets Design can be used to generalize existing alignments
- To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters
- To perform controlled experiments

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters... ... including adoption of a single structure
- To test/push our understanding of how RNA folds Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces
- To help search for homologous sequences Incomplete covariance models hindered by limited training sets Design can be used to generalize existing alignments
- To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters
- ► To perform controlled experiments

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters... ... including adoption of a single structure
- To test/push our understanding of how RNA folds Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces
- To help search for homologous sequences Incomplete covariance models hindered by limited training sets Design can be used to generalize existing alignments

 To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters

To perform controlled experiments

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters... ... including adoption of a single structure
- To test/push our understanding of how RNA folds Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces
- To help search for homologous sequences Incomplete covariance models hindered by limited training sets Design can be used to generalize existing alignments
- To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters

To perform controlled experiments

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters... ... including adoption of a single structure
- To test/push our understanding of how RNA folds Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces
- To help search for homologous sequences Incomplete covariance models hindered by limited training sets Design can be used to generalize existing alignments
- To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters
- To perform controlled experiments

Design stories

The Nobel Prize in Physiology or Medicine 2006

Photo: L. Cicero Andrew Z. Fire Prize share: 1/2

Photo: J. Mottern Craig C. Mello Prize share: 1/2

Design stories

The Nobel Prize in Physiology or Medicine 2006

Photo: L. Cicero Andrew Z. Fire Prize share: 1/2

Photo: J. Mottern Craig C. Mello Prize share: 1/2

FDA approval August 2018

Design stories

The Nobel Prize in Physiology or Medicine 2006

Photo: L. Cicero Andrew Z. Fire Prize share: 1/2

FDA approval August 2018

CRISPR: For better or worse...

Abstract goals and means of molecular design

But : To achieve a predefined biological function, as abstracted by a model.

Definition (Positive design)

To satisfy constraints induced by a model of function

In practice: To optimize affinity of interaction, to favor thermodynamic stability of a molecule, to respect sequence composition biases...

Definition (Negative design)

To avoid unwanted functions

In practice: To avoid off-target interactions, non-functional alternative foldings, kinetic traps... (inverse combinatorial problems)

In the context of RNA:

- Positive design: Seq/struct comparison, composition, +/- motifs, energie(s)
 - \rightarrow Random generation, CSP

► Negative design: Target structure → Minimum Free-Energy + Boltzmann prob → Local search, exp algorithms, black magic (heuristics, *NN, crowdsourcing...)

Negative (Local) vs Positive (Global)

Negative (Local) vs Positive (Global)

Negative (Local) vs Positive (Global)

Part 1. Negative design

Existing approaches for negative design

Based on local search...

- RNAInverse TBI Vienna
- Info-RNA Backofen@Freiburg
- RNA-SSD Condon@UBC
- (Inca)RNAFBinv Barash@BGU
- NUPack Pierce@Caltech

- ... bio-inspired algorithms...
- FRNAKenstein Hein@Oxford
- AntaRNA Backofen@Freiburg
- ERD Ganjtabesh@Tehran
- ... exact approaches...
- RNAIFold Clote@Boston College
- CO4 Will@Leipzig

Typical issues:

- Naive initialization strategies
- Synthesized sequences do not necessarily fold properly (kinetics)
- Overly GC-rich sequences
- No negative results

⇒ Combinatorial foundations!

This talk: Restriction to valid base-pairs = {(A, U), (G, C), (G, U)}

RNA structure R: Set of base pairs (BPs)

Motifs: Connected positions + content (e.g. Base Pairs, Stacking, Loops...)

Energy model:

This talk: Restriction to valid base-pairs = {(A, U), (G, C), (G, U)}

- RNA structure R: Set of base pairs (BPs)
- Motifs: Connected positions + content (e.g. Base Pairs, Stacking, Loops...)

Energy model:
 Motif → Free-energy contribution Δ(m, a) ∈ ℝ ∪ {+∞}, m ⊂ [1, n], a ∈ Σ^[m]
 Free-energy E(S, R): Sum of energies for motifs in R, given sequence S

This talk: Restriction to valid base-pairs = {(A, U), (G, C), (G, U)}

- RNA structure R: Set of base pairs (BPs)
- ▶ Motifs: Connected positions + content (e.g. Base Pairs, Stacking, Loops...)

Energy model: Motif → Free-energy contribution Δ(m, a) ∈ ℝ ∪ {+∞}, m ⊂ [1, n], a ∈ Σ^[m] Free-energy E(S, R): Sum of energies for motifs in R, given sequence S

This talk: Restriction to valid base-pairs = {(A, U), (G, C), (G, U)}

- RNA structure R: Set of base pairs (BPs)
- Motifs: Connected positions + content (e.g. Base Pairs, Stacking, Loops...)

Energy model: Motif → Free-energy contribution Δ(m, a) ∈ ℝ ∪ {+∞}, m ⊂ [1, n], a ∈ Σ^[m] Free-energy E(S, R): Sum of energies for motifs in R, given sequence S

This talk: Restriction to valid base-pairs = {(A, U), (G, C), (G, U)}

- RNA structure R: Set of base pairs (BPs)
- Motifs: Connected positions + content (e.g. Base Pairs, Stacking, Loops...)

Energy model:

$$E_R = 2 \cdot \Delta \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + 4 \cdot \Delta \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix} + 2 \cdot \Delta \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

This talk: Restriction to valid base-pairs = {(A, U), (G, C), (G, U)}

- RNA structure R: Set of base pairs (BPs)
- Motifs: Connected positions + content (e.g. Base Pairs, Stacking, Loops...)

Energy model:

$$E_{R} = \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

This talk: Restriction to valid base-pairs = {(A, U), (G, C), (G, U)}

- RNA structure R: Set of base pairs (BPs)
- Motifs: Connected positions + content (e.g. Base Pairs, Stacking, Loops...)
- Energy model:

$$\begin{aligned} E_{R} &= \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \end{aligned}$$

RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

Input: Secondary structure R + Energy distance $\Delta > 0$. **Output:** RNA sequence $S \in \Sigma^*$ such that:

```
\forall R' \in \mathbb{S}_{|S|} \setminus \{R\} : E(S, R') \ge E(S, R) + \Delta
```

or \varnothing if no such sequence exists.

Difficult problem: Probably no obvious DP decomposition

- NP-hard problem [Bonnet et al, RECOMB'18]... after almost 30 years!
- Existing algorithms: Heuristics or Exponential-time
- Reason(s): Non locality, no theoretical framework, too many parameters...

Example

Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops ≤ 4 (+ $\Theta(n)$ algo.)
- Designable ⇒ No multiloop of *degree* ≥ 5 (m₅ motif), or *degree* ≥ 3 with ≥ 1 unpaired base(s) (m₃, motif).

Corollary: Only an exponentially small (on *n*) fraction of structs is designable [Yao et al, ACM-BCB'19]

Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops ≤ 4 (+ $\Theta(n)$ algo.)
- Designable ⇒ No multiloop of *degree* ≥ 5 (m₅ motif), or *degree* ≥ 3 with ≥ 1 unpaired base(s) (m₃ ∘ motif).

Theorem: Similar motifs exist for any **energy model** and **design criterion Corollary:** Only an **exponentially small** (on *n*) fraction of structs is designable

[Yao et al, ACM-BCB'19]

Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops ≤ 4 (+ $\Theta(n)$ algo.)
- Designable ⇒ No multiloop of *degree* ≥ 5 (m₅ motif), or *degree* ≥ 3 with ≥ 1 unpaired base(s) (m₃ ∘ motif).

Corollary: Only an exponentially small (on *n*) fraction of structs is designable
[Yao et al, ACM-BCB'19]

```
► ∃ Separated coloring for structure ⇒ Designable (+ \Theta(n) \text{ algo.})
Base pairs → 3 colors: \bullet \to G \cdot C; \bigcirc \to C \cdot G; \bullet \to A \cdot U \text{ or } U \cdot A.
Coloring rules: Within each loop, #\bullet \le 1, #\bigcirc \le 1, #\bullet \le 2 and #\bullet + #\bigcirc < 2
Level of a base pair = #\bullet - #\bigcirc on path to root.
Separated coloring = •\bullet and unpaired positions occur at different levels
```


Levels of \bigcirc : {0, 1} + Levels of unpaired/leaves: {2, 4} \Rightarrow Coloring is separated
Separated Coloring (example)

Levels of \bigcirc : {0, 1} + Levels of unpaired/leaves: {2, 4} \Rightarrow Coloring is separated Design: GAAAAGUUGGUUUUCCUUCUCAGGUUUUCCUGUUUC

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops ≤ 4 (+ $\Theta(n)$ algo.)
- Designable ⇒ No multiloop of *degree* ≥ 5 (m₅ motif), or *degree* ≥ 3 with ≥ 1 unpaired base(s) (m₃ ∘ motif).

Corollary: Only an **exponentially small** (on *n*) fraction of structs is designable

Separated coloring for structure => Designable

 $(+ \Theta(n) \text{ algo.})$

[Yao et al, ACM-BCB'19]

Corollary: Approximate design for any structure avoiding m_5 and m_3 in $\Theta(n)$ time **Idea**: Insert new BPs on helices to **offset** unpaired/leaves and \bigcirc

- Algorithm/characterization of separated-colorable tree?
- Inserting min #Base pairs: Complexity? Algorithm?
- Complex color sets for more realistic energy models?
- » FPT design for some (yet unknown) parameters?
- In practice? Design (approximate) backbone + local search?

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops ≤ 4 (+ $\Theta(n)$ algo.)
- Designable ⇒ No multiloop of *degree* ≥ 5 (m₅ motif), or *degree* ≥ 3 with ≥ 1 unpaired base(s) (m₃ ∘ motif).

Corollary: Only an exponentially small (on *n*) fraction of structs is designable
[Yao et al, ACM-BCB'19]

► ∃ Separated coloring for structure \Rightarrow Designable (+ $\Theta(n)$ algo.) Corollary: Approximate design for any structure avoiding m_5 and m_3 in $\Theta(n)$ time Idea: Insert new BPs on helices to offset unpaired/leaves and

- Algorithm/characterization of separated-colorable tree?
- Inserting min #Base pairs: Complexity? Algorithm?
- Complex color sets for more realistic energy models?
- » FPT design for some (yet unknown) parameters?
- In practice? Design (approximate) backbone + local search?

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops ≤ 4 (+ $\Theta(n)$ algo.)
- Designable ⇒ No multiloop of *degree* ≥ 5 (m₅ motif), or *degree* ≥ 3 with ≥ 1 unpaired base(s) (m₃ ∘ motif).

Corollary: Only an exponentially small (on *n*) fraction of structs is designable
[Yao et al, ACM-BCB'19]

Separated coloring for structure ⇒ Designable (+ Θ(n) algo.)
Corollary: Approximate design for any structure avoiding m₅ and m₃₀ in Θ(n) time
Idea: Insert new BPs on helices to offset unpaired/leaves and ●

- Algorithm/characterization of separated-colorable tree?
 - Inserting min #Base pairs: Complexity? Algorithm?
- Complex color sets for more realistic energy models?
- FPT design for some (yet unknown) parameters?
- In practice? Design (approximate) backbone + local search?

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops ≤ 4 (+ $\Theta(n)$ algo.)
- Designable ⇒ No multiloop of *degree* ≥ 5 (m₅ motif), or *degree* ≥ 3 with ≥ 1 unpaired base(s) (m₃ ∘ motif).

Corollary: Only an exponentially small (on *n*) fraction of structs is designable
[Yao et al, ACM-BCB'19]

► ∃ Separated coloring for structure ⇒ Designable (+ Θ(n) algo.)
Corollary: Approximate design for any structure avoiding m₅ and m₃₀ in Θ(n) time
Idea: Insert new BPs on helices to offset unpaired/leaves and ●

- Algorithm/characterization of separated-colorable tree?
- Inserting min #Base pairs: Complexity? Algorithm?
- Complex color sets for more realistic energy models?
- FPT design for some (yet unknown) parameters?
- In practice? Design (approximate) backbone + local search?

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops ≤ 4 (+ $\Theta(n)$ algo.)
- Designable ⇒ No multiloop of *degree* ≥ 5 (m₅ motif), or *degree* ≥ 3 with ≥ 1 unpaired base(s) (m₃ ∘ motif).

Corollary: Only an exponentially small (on *n*) fraction of structs is designable
[Yao et al, ACM-BCB'19]

► ∃ Separated coloring for structure ⇒ Designable (+ Θ(n) algo.)
Corollary: Approximate design for any structure avoiding m₅ and m₃₀ in Θ(n) time
Idea: Insert new BPs on helices to offset unpaired/leaves and ●

Open problems

- Algorithm/characterization of separated-colorable tree?
- Inserting min #Base pairs: Complexity? Algorithm?
- Complex color sets for more realistic energy models?

FPT design for some (yet unknown) parameters?

In practice? Design (approximate) backbone + local search?

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops ≤ 4 (+ $\Theta(n)$ algo.)
- Designable ⇒ No multiloop of *degree* ≥ 5 (m₅ motif), or *degree* ≥ 3 with ≥ 1 unpaired base(s) (m₃ ∘ motif).

Corollary: Only an exponentially small (on *n*) fraction of structs is designable
[Yao et al, ACM-BCB'19]

► ∃ Separated coloring for structure ⇒ Designable (+ Θ(n) algo.)
Corollary: Approximate design for any structure avoiding m₅ and m₃₀ in Θ(n) time
Idea: Insert new BPs on helices to offset unpaired/leaves and ●

Open problems

- Algorithm/characterization of separated-colorable tree?
- Inserting min #Base pairs: Complexity? Algorithm?
- Complex color sets for more realistic energy models?
- FPT design for some (yet unknown) parameters?

In practice? Design (approximate) backbone + local search?

Partial characterization of designable structures [Hales et al, CPM'15+Algorithmica'17]

- Saturated structures: Designable \Leftrightarrow Degree of multiloops ≤ 4 (+ $\Theta(n)$ algo.)
- Designable ⇒ No multiloop of *degree* ≥ 5 (m₅ motif), or *degree* ≥ 3 with ≥ 1 unpaired base(s) (m₃ ∘ motif).

Corollary: Only an exponentially small (on *n*) fraction of structs is designable
[Yao et al, ACM-BCB'19]

► ∃ Separated coloring for structure ⇒ Designable (+ Θ(n) algo.) Corollary: Approximate design for any structure avoiding m₅ and m₃₀ in Θ(n) time Idea: Insert new BPs on helices to offset unpaired/leaves and ●

- Algorithm/characterization of separated-colorable tree?
- Inserting min #Base pairs: Complexity? Algorithm?
- Complex color sets for more realistic energy models?
- FPT design for some (yet unknown) parameters?
- In practice? Design (approximate) backbone + local search?

Part 2. Multiple positive design of RNA

Multiple RNA design: Motivation

Multiple target structures ightarrow Multiple design of RNAs

Objective: To randomly generate RNA sequences under constraints

- Validity for targeted structures wrt base pairing nucleotides
- 3 Stability (low free-energy, comparable across structures...) of target structures
- Constrained composition: (prescribed GC content), +/- motifs...

Stochastic backtrack: Pre-count and generate valid sequence (uniform distrib.) + Further refinements using local search

Multiple RNA design: Motivation

Multiple target structures \rightarrow Multiple design of RNAs

Objective: To randomly generate RNA sequences under constraints

- Validity for targeted structures wrt base pairing nucleotides
- 3 Stability (low free-energy, comparable across structures...) of target structures
- Onstrained composition: (prescribed GC content), +/- motifs...

Stochastic backtrack: Pre-count and generate valid sequence (uniform distrib.) + Further refinements using local search

Multiple RNA design: Motivation

Multiple target structures \rightarrow Multiple design of RNAs

abcdefghijklmnopqrstuv
(((((.)).(((.))).))).
((.))((...))..(((..)))
....(((((..)))...))...

Objective: To randomly generate RNA sequences under constraints

- Validity for targeted structures wrt base pairing nucleotides
- **Stability** (low free-energy, comparable across structures...) of target structures
- Constrained composition: (prescribed GC content), +/- motifs...

Stochastic backtrack: Pre-count and generate valid sequence (uniform distrib.) + Further refinements using local search

Our problem (simplified)

Question: How many valid sequences over $\Sigma^n := {A, C, G, U}^n$?

Problem (#ValidSequences)

Input: Secondary structures $\Re = \{R_1, ..., R_k\}$ of length *n* **Output:** Num. of valid sequences

 $|\{S \in \Sigma^n \mid \forall (i, j) \in R_{\ell}, (S_i, S_j) \text{ forms a valid base pair}\}|$

$$A \downarrow U$$

 $G \downarrow C$

Valid base pairs

State of the art

Abfalter/Flamm/Stadler 2003:

- Ear decomposition [Whitney 1932]
- Peel input graph as paths A₁, ..., A_k such that only the ends of A_i are in ∪_{i>i}A_i

- Dynamic programming: Counting #valid paths for each component, conditioned by nucleotide chosen for its anchors (black nodes);
- Careful combination of values yields #valid sequences.

Complexity: $\Theta(n.4^{\Omega})$ where $\Omega = Max$ #anchors. Worst-case: $\Omega \in \Theta(n)$

Some comments:

- Is this optimal? Other algorithms/parameters?
- Which extensions possible? (Multidim.) Boltzmann-Gibbs distrib.
- Is this exp. really necessary? Probably since counting #P-hard

State of the art

Abfalter/Flamm/Stadler 2003:

- Ear decomposition [Whitney 1932]
- Peel input graph as paths A₁, ..., A_k such that only the ends of A_i are in ∪_{i>i}A_i

- Dynamic programming: Counting #valid paths for each component, conditioned by nucleotide chosen for its anchors (black nodes);
- Careful combination of values yields #valid sequences.

Complexity: $\Theta(n.4^{\Omega})$ where $\Omega = Max$ #anchors. Worst-case: $\Omega \in \Theta(n)$

Some comments:

- Is this optimal? Other algorithms/parameters?
- Which extensions possible? (Multidim.) Boltzmann-Gibbs distrib.
- Is this exp. really necessary? Probably since counting #P-hard

State of the art

Abfalter/Flamm/Stadler 2003:

- Ear decomposition [Whitney 1932]
- Peel input graph as paths A₁, ..., A_k such that only the ends of A_i are in ∪_{i>i}A_i

- Dynamic programming: Counting #valid paths for each component, conditioned by nucleotide chosen for its anchors (black nodes);
- Careful combination of values yields #valid sequences.

Complexity: $\Theta(n.4^{\Omega})$ where $\Omega = Max$ #anchors. Worst-case: $\Omega \in \Theta(n)$

Some comments:

- Is this optimal? Other algorithms/parameters?
- Which extensions possible? (Multidim.) Boltzmann-Gibbs distrib.
- Is this exp. really necessary? Probably since counting #P-hard

Question: How many valid sequences? Answer: 4^{#Unpaired} × 6^{#BPs} → 6879707136

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences? Answer: $4^{\#Unpaired} \times 6^{\#BPs} \rightarrow 6\,879\,707\,136$

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?

Answer: $\neq \emptyset$! (dep. graph and valid BPs both bipartite [Flamm *et al*, RNA 2001]) #Designs(G) = $\prod_{c \in CC(G)}$ #Designs(*cc*)

- p(n) : #Valid sequences for **path** of length *n*.
- c(n) : #Valid sequences for cycle of length *n*.

Theorem (#Valid sequences for paths and cycles)

$$p(n) = 2 \mathcal{F}_{n+2}$$
 et

where \mathcal{F}_n is the *n*-th Fibonacci number.

For paths: A simple automaton...

Remark: A \leftrightarrow C/G \leftrightarrow U symmetry

- p(n): #Valid sequences for **path** of length *n*.
- c(n) : #Valid sequences for cycle of length *n*.

Theorem (#Valid sequences for paths and cycles)

$$p(n) = 2 \mathcal{F}_{n+2}$$
 et

where \mathcal{F}_n is the *n*-th Fibonacci number.

For paths: A simple automaton...

Remark: A \leftrightarrow C/G \leftrightarrow U symmetry

- p(n): #Valid sequences for **path** of length *n*.
- c(n) : #Valid sequences for cycle of length *n*.

Theorem (#Valid sequences for paths and cycles)

$$p(n) = 2 \mathcal{F}_{n+2}$$
 et

where \mathcal{F}_n is the *n*-th Fibonacci number.

For paths: A simple automaton...

Remark: A \leftrightarrow C/G \leftrightarrow U symmetry

$$m_{\bullet}(n) = m_{\circ}(n-1)$$

- p(n): #Valid sequences for **path** of length *n*.
- c(n) : #Valid sequences for cycle of length *n*.

Theorem (#Valid sequences for paths and cycles)

$$p(n) = 2 \mathcal{F}_{n+2}$$
 et

where \mathcal{F}_n is the *n*-th Fibonacci number.

For paths: A simple automaton...

Remark: A \leftrightarrow C/G \leftrightarrow U symmetry

$$m_{\bullet}(n) = m_{\circ}(n-1)$$

$$m_{\circ}(n) = m_{\circ}(n-1) + m_{\bullet}(n-1)$$

$$= m_{\circ}(n-1) + m_{\circ}(n-2)$$

$$= \mathcal{F}(n+2)$$

- p(n) : #Valid sequences for **path** of length *n*.
- c(n) : #Valid sequences for cycle of length *n*.

Theorem (#Valid sequences for paths and cycles)

$$p(n) = 2 \mathcal{F}_{n+2}$$
 et

where \mathcal{F}_n is the *n*-th Fibonacci number.

For paths: A simple automaton...

Remark: $A \leftrightarrow C/G \leftrightarrow U$ symmetry

 $c(n) = 2 \mathcal{F}_n + 4 \mathcal{F}_{n-1}$

$$m_{\bullet}(n) = m_{\circ}(n-1)$$

$$m_{\circ}(n) = m_{\circ}(n-1) + m_{\bullet}(n-1)$$

$$= m_{\circ}(n-1) + m_{\circ}(n-2)$$

$$= \mathcal{F}(n+2)$$

(Since $m_{\circ}(0) = 1$ and $m_{\circ}(1) = 2$)

- p(n) : #Valid sequences for **path** of length *n*.
- c(n) : #Valid sequences for cycle of length *n*.

Theorem (#Valid sequences for paths and cycles)

$$p(n) = 2 \mathcal{F}_{n+2}$$
 et

where \mathcal{F}_n is the *n*-th Fibonacci number.

For paths: A simple automaton...

$$\boldsymbol{c}(\boldsymbol{n}) = 2\,\mathcal{F}_n + 4\,\mathcal{F}_{n-1}$$

Remark: A \leftrightarrow C/G \leftrightarrow U symmetry

$$m_{\bullet}(n) = m_{\circ}(n-1)$$

$$m_{\circ}(n) = m_{\circ}(n-1) + m_{\bullet}(n-1)$$

$$= m_{\circ}(n-1) + m_{\circ}(n-2)$$

$$= \mathcal{F}(n+2)$$

(Since $m_{\circ}(0) = 1$ and $m_{\circ}(1) = 2$)

 $p(n) := m_{\varepsilon}(n) = 2 m_{\bullet}(n-1) + 2 m_{\circ}(n-1) = 2(\mathfrak{F}(n) + \mathfrak{F}(n+1)) = 2\mathfrak{F}(n+2)$

- p(n) : #Valid sequences for **path** of length *n*.
- c(n) : #Valid sequences for cycle of length *n*.

Theorem (#Valid sequences for paths and cycles)

$$p(n) = 2 \mathcal{F}_{n+2}$$
 et

where \mathcal{F}_n is the *n*-th Fibonacci number.

For cycles: A slightly more complex automaton...

p(n) and c(n): #Valid sequences for **paths** and cycles of length *n*.

Theorem (#Valid sequences for paths and cycles)

$$p(n) = 2 \mathcal{F}_{n+2}$$
 et

where \mathcal{F}_n is the *n*-th Fibonacci number.

G: Dependency graph, merging the two structures (max degree \leq 2). *G* uniquely decomposed in $\mathcal{P}(G)$ paths and $\mathcal{C}(G)$ cycles.

Theorem (#Valid sequences for 2-structures)

The number #Designs(G) of valid sequences for G is

$$\#\mathsf{Designs}(G) = \prod_{\pmb{\rho} \in \mathfrak{P}(G)} 2\,\mathfrak{F}_{|\pmb{\rho}|+2} \times \prod_{\pmb{c} \in \mathfrak{C}(G)} \left(2\,\mathfrak{F}_{|\pmb{c}|} + 4\,\mathfrak{F}_{|\pmb{c}|-1}\right)$$

 $c(n) = 2 \mathcal{F}_n + 4 \mathcal{F}_{n-1}$

Caterpilar tree: $\frac{(2+\sqrt{3})\times(1+\sqrt{3})^n+(2-\sqrt{3})\times(1-\sqrt{3})^n}{2}$ (*n* nodes) Complete binary: 2 *a*_k (height *k*) *a*_k = (*a*_{k-2} + 1)⁴ + 2(*a*_{k-1} + 1)(*a*_{k-2} + 1)² + (*a*_{k-1} + 1)² - 1

Valid base pairs (BPs) = Including Wobble base pairs

Question: How many valid sequences?

Answer : $\neq \emptyset$! (both BP and dependency graphs bipartite) #Designs(G) = $\prod_{c \in CC(G)}$ #Designs(cc) = 2322432
Counting valid sequences: WC/Wobble + > 2 structures

Question: How many valid sequences? Answer: Non-bipartite $\rightarrow \emptyset$; Bipartite $\rightarrow ????$

Counting valid sequences: WC/Wobble + > 2 structures

Question: How many valid sequences? Answer: Non-bipartite $\rightarrow \emptyset$; Bipartite \rightarrow ????

Remark: Black circles non-adjacent in valid sequences

Up to trivial symmetry^{*} (*e.g.* north-western position $\in \{U, C\}$):

 $\mathsf{Designs}^\star(\mathsf{cc}) \subseteq \mathsf{IndSets}(\mathsf{cc})$

Independent sets Solution Sequences

Remark: Black circles non-adjacent in valid sequences Up to trivial symmetry* (*e.g.* north-western position $\in \{U, C\}$): Designs*(cc) \subseteq IndSets(cc)

Independent Sets (black) + NW $\in \{U,C\} \Rightarrow$ Valid sequence

Independent sets Solution Sequences

Remark: Black circles non-adjacent in valid sequences Up to trivial symmetry* (*e.g.* north-western position $\in \{U, C\}$):

 $Designs^*(cc) \subseteq IndSets(cc)$

Independent Sets (black) + NW $\in \{U, C\} \Rightarrow$ Valid sequence

 \Rightarrow Bijection between Designs^{*}(cc) and IndSets(cc).

Theorem (#Designs and ind. sets in connected bipartite graphs)

Let G be a bipartite and connected dependency graph:

 $\#Designs(G) = 2 \times \#Designs^{*}(G) = 2 \times \#IndSets(G)$

For **bipartite** dependency graph *G*, one has:

 $\# Designs(G) = \prod_{cc \in CC(G)} 2 \times \# IndSets(cc) = 2^{|CC(G)|} \times \# IndSets(G)$

But #IndSets(G) is #P-hard on bipartite graphs (#BIS) [Dyer & Greenhill'00] (+ Any graph G is the dependency graph of some structure

So \exists Poly-Time algorithm for $\#Designs(G) \rightarrow$ Poly-Time algorithm for #BIS...

Theorem

Counting #Designs is #P-hard.

No Poly-Time algorithm for #Designs(G) **unless** $#P = FP (\Rightarrow P = NP)$

Theorem (#Designs and ind. sets in connected bipartite graphs)

Let G be a bipartite and connected dependency graph:

#Designs(G) = 2 × #Designs^{*}(G) = 2 × #IndSets(G)

For **bipartite** dependency graph *G*, one has:

$$\# Designs(G) = \prod_{cc \in CC(G)} 2 \times \# IndSets(cc) = 2^{|CC(G)|} \times \# IndSets(G)$$

But #IndSets(G) is #P-hard on bipartite graphs (#BIS) [Dyer & Greenhill'00] (+ Any graph G is the dependency graph of some structure fa

So \exists Poly-Time algorithm for $\#Designs(G) \rightarrow$ Poly-Time algorithm for #BIS...

Theorem

Counting #Designs is #P-hard.

No Poly-Time algorithm for #Designs(G) unless $\#P = FP (\Rightarrow P = NP)$

Theorem (#Designs and ind. sets in connected bipartite graphs)

Let G be a bipartite and connected dependency graph:

#Designs(G) = 2 × #Designs^{*}(G) = 2 × #IndSets(G)

For **bipartite** dependency graph *G*, one has:

$$\#Designs(G) = \prod_{cc \in CC(G)} 2 \times \#IndSets(cc) = 2^{|CC(G)|} \times \#IndSets(G)$$

But #IndSets(G) is #P-hard on bipartite graphs (#BIS) [Dyer & Greenhill'00] (+ Any graph G is the dependency graph of some structure family)

So \exists Poly-Time algorithm for $\#Designs(G) \rightarrow$ Poly-Time algorithm for #BIS...

Theorem Counting #Designs is #P-hard.

No Poly-Time algorithm for #Designs(G) unless $\#P = FP (\Rightarrow P = NP)$

Theorem (#Designs and ind. sets in connected bipartite graphs)

Let G be a bipartite and connected dependency graph:

#Designs(G) = 2 × #Designs^{*}(G) = 2 × #IndSets(G)

For **bipartite** dependency graph *G*, one has:

$$\#Designs(G) = \prod_{cc \in CC(G)} 2 \times \#IndSets(cc) = 2^{|CC(G)|} \times \#IndSets(G)$$

But #*IndSets*(*G*) is #**P-hard** on bipartite graphs (#*BIS*) [Dyer & Greenhill'00]

(+ Any graph *G* is the dependency graph of some structure family)

So \exists Poly-Time algorithm for $\#Designs(G) \rightarrow$ Poly-Time algorithm for #BIS...

No Poly-Time algorithm for #Designs(G) unless $\#P = FP (\Rightarrow P = NP)$

Consequences

Corollary (#Approximability for ≤ 5 structures) [Weitz'06]

For \leq 5 structures (crossings allowed), #Design(*G*) can be approximated within any ratio in Poly-time (PTAS)

Corollary (#BIS-hardness for > 5 structures) [Cai, Galanis et al 16]

For more than 5 structures (crossings allowed), #Design is **equally as hard** to approximate as general #BIS.

Why crossings/Pseudokots? Because any bipartite graph of max degree \triangle can be decomposed in \triangle matchings in Poly-Time (Vizing theorem).

Connection between counting and sampling [Jerrum/Valiant/Vazirani'86].

Conjecture (#BIS-hardness of multiple positive design)

Quasi-uniform generation as hard as approximation of general #BIS

⇒ Sampling #P hard?

Consequences

Corollary (#Approximability for ≤ 5 structures) [Weitz'06]

For \leq 5 structures (crossings allowed), #Design(*G*) can be approximated within any ratio in Poly-time (PTAS)

Corollary (#BIS-hardness for > 5 structures) [Cai, Galanis et al 16]

For more than 5 structures (crossings allowed), #Design is equally as hard to approximate as general #BIS.

Why crossings/Pseudokots? Because any bipartite graph of max degree Δ can be decomposed in Δ matchings in Poly-Time (Vizing theorem).

Connection between counting and sampling [Jerrum/Valiant/Vazirani'86].

Conjecture (#BIS-hardness of multiple positive design)

Quasi-uniform generation as hard as approximation of general #BIS

⇒ Sampling #P hard?

Consequences

Corollary (#Approximability for ≤ 5 structures) [Weitz'06]

For \leq 5 structures (crossings allowed), #Design(*G*) can be approximated within any ratio in Poly-time (PTAS)

Corollary (#BIS-hardness for > 5 structures) [Cai, Galanis et al 16]

For more than 5 structures (crossings allowed), #Design is equally as hard to approximate as general #BIS.

Why crossings/Pseudokots? Because any bipartite graph of max degree Δ can be decomposed in Δ matchings in Poly-Time (Vizing theorem).

Connection between counting and sampling [Jerrum/Valiant/Vazirani'86].

Conjecture (#BIS-hardness of multiple positive design)

Quasi-uniform generation as hard as approximation of general #BIS

⇒ Sampling #P hard?

Tree decomposition and Boltzmann sampling of sequences

Tree decomposition and width

Tree decomposition *T* for a graph G = (V, E):

- Nodes of T = Some subsets of V
- **All vertices present:** $\forall v \in V, \exists b \in B \text{ s.t. } v \in b$
- **3** All edges present: $\forall (v, v') \in E, \exists b \in B \text{ s.t. } \{v, v'\} \subseteq B$
- **(4)** Nodes having $v \in V$ form a **connected** subtreee

a	b	с	d	е
((((()))))

Target structures

Dependency graph

Tree decomposition

 $\mathcal{Z}(T_b \mid b_2 \leftarrow v_2 \dots) = \sum_{\substack{b_1 \leftarrow v_1 \\ v_1 \in \{A, C, G, U\}}} \prod_{\substack{c \text{ fils de } b}} \mathcal{Z}(T_c \mid b_1 \leftarrow v_1, b_2 \leftarrow v_2 \dots)$

Complexity: $\Theta(n m k + n k 2^{w})$ for **uniform generation** of *m* sequences (*k* structs)

Tree decomposition and width

Tree decomposition *T* for a graph G = (V, E):

- Nodes of T = Some subsets of V
- **All vertices present:** $\forall v \in V, \exists b \in B \text{ s.t. } v \in b$
- **3** All edges present: $\forall (v, v') \in E, \exists b \in B \text{ s.t. } \{v, v'\} \subseteq B$
- **Output** Nodes having $v \in V$ form a **connected** subtreee

a	b	с	d	е
()	
	(())
(())

Target structures

Dependency graph

 $b = \{b_1, b_2 \dots\}$: node of D T_b : subtree rooted at b

w: Width of tree decomposition D (=max_{b∈B} |b| - 1)

$$\mathcal{Z}(T_b \mid b_2 \leftarrow v_2 \ldots) = \sum_{\substack{b_1 \leftarrow v_1 \\ v_1 \in \{A, C, G, U\}}} \prod_{\substack{c \text{ fils de } b}} \mathcal{Z}(T_c \mid b_1 \leftarrow v_1, b_2 \leftarrow v_2 \ldots)$$

Complexity: $\Theta(nmk + nk2^{w})$ for **uniform generation** of *m* sequences (*k* structs)

Tree decomposition

Counting valid sequences: WC/Wobble + > 2 structures

Question: How many valid sequences? Answer: Non-bipartite $\rightarrow \emptyset$; Bipartite $\rightarrow 496\,672$

Our problem for general free-energy models

Question: Which partition function for valid sequences

Problem (PFDesigns)

Input: Structures $\mathcal{R} = \{R_1, ..., R_k\}$ of length n_k + Weight $(x_1, ..., x_k)$ Output: Partition function $\mathcal{Z} = \sum_{\substack{S \in \Sigma^n \\ S \text{ valid for } \mathcal{R}}} \prod_{i=1}^{k} x_i^{E(S, R_i)}$

Counting/sampling, the Boltzmann-Gibbs way

 $b = \{b_1, b_2 \dots\}$: node of D T_b : subtree rooted at bw: Width of treedecomposition D

Tree Decomposition

$$\mathcal{Z}(T_b \mid b_2 \leftarrow v_2 \dots) = \sum_{\substack{b_1 \leftarrow v_1 \\ v_1 \in \{A, C, G, U\}}} \prod_{i=1}^k x_i^{\sum_{E \in b} E(b, v_1, \dots)} \prod_{c \text{ fils de } b} \mathcal{Z}(T_c \mid b_1 \leftarrow v_1, \dots)$$

Complexity: $\Theta(nmk + nk2^{w+\#CC})$ for sampling in Boltzmann-Gibbs distrib.

Practical impact of Boltzmann-Gibbs sampling

Boltzmann probability of structure R, pour une séquence S:

$$\mathbb{P}(R \mid S) = \frac{e^{-\frac{E(S,R)}{\beta T}}}{\mathbb{Z}_S} \quad \mathbb{Z}_S := \sum_R e^{-\frac{E(S,R')}{\beta T}}$$

Objectif classique du design négatif (-> spécificité)

RNARedPrint: a flexible method for (positive) design

[Hammer/P/Wang/Will, RECOMB'18 + BMC Bioinfo 2019]

- Fixed Parameter Tractable algorithm based on tree width
- Uniform or Boltzmann-Gibbs sampling, to favor diversity and stability
- Multidimensional Boltzmann sampling for controlling free-energy, GC%...

https://github.com/yannponty/RNARedPrint

Multidimensional Boltzmann sampling

Multidimensional Boltzmann sampling [Bodini, P, DMTCS 2011]

Input: Targeted free-energies $(E_{\ell}^{\star})_{\ell=1}^{k}$, weights $(x_{\ell})_{\ell=1}^{k}$ such that $\mathbb{E}(E(w, S_{\ell})) = E_{\ell}^{\star}, \forall \ell$:

$$\mathbb{P}(w \mid x_1 \cdots x_k) \sim \prod_{\ell=1}^k x_\ell^{E(w,S_\ell)} + \text{Efficient rejection} \to \mathbb{O}(n^{k/2}) \text{ exact}/\mathbb{O}(\alpha^k) \text{ approx.}$$

Empirical efficiency for additive *concentrated* constraints (GC%, dinucleotides ...)
 → Partial functions → Hyper-edges, *aka* cliques¹
 General framework for integer-valued constraints; Concentration tests.

¹But tree width *∧*

Strangely enough, it actually works!

where *EFE* = ensemble free-energy *EFE*(*S*) := $-\beta T \log \mathbb{Z}_S$.

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven #P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
- Practical efficiency (reasonable tree width).

Perspectives :

- Complexity of sequence generation for k < 5 structures?
- How to deal with additional sequence constraints? (DFA "product")
- How to locally navigate the space of valid sequences? (Local search)

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven #P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
 Practical efficiency (reasonable tree width).

Perspectives :

- Complexity of sequence generation for k < 5 structures?
- How to deal with additional sequence constraints? (DFA "product")
- How to locally navigate the space of valid sequences? (Local search)

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven #P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
- Practical efficiency (reasonable tree width).

Perspectives :

- Complexity of sequence generation for k < 5 structures?
- How to deal with additional sequence constraints? (DFA "product")
- How to locally navigate the space of valid sequences? (Local search)

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven #P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
- Practical efficiency (reasonable tree width).

Perspectives :

- Complexity of sequence generation for k < 5 structures?
- How to deal with additional sequence constraints? (DFA "product")
- How to locally navigate the space of valid sequences? (Local search)

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven #P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
- Practical efficiency (reasonable tree width).

Perspectives :

- Complexity of sequence generation for k < 5 structures?
- How to deal with additional sequence constraints? (DFA "product")

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven #P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
- Practical efficiency (reasonable tree width).

Perspectives :

How to deal with additional sequence constraints? (DFA "product")

ow to locally navigate the space of valid sequences? (Local search)

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven #P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
- Practical efficiency (reasonable tree width).

Perspectives :

- Complexity of sequence generation for k < 5 structures?
- How to deal with additional sequence constraints? (DFA "product")
- How to locally navigate the space of valid sequences? (Local search)

Our contribution :

- General framework for generating constrained sequences Ideas similar to/generalized from CTE framework (R. Dechter);
- Application to multiple RNA design, proven #P hard;
- Uses efficient rejection scheme for practical control of complex constraints;
- Practical efficiency (reasonable tree width).

Perspectives :

- Complexity of sequence generation for k < 5 structures?
- How to deal with additional sequence constraints? (DFA "product")
- How to locally navigate the space of valid sequences? (Local search)
- How to simplify dense graphs? (DCA potentials)

Largest vertex set given tree-width budget?

Merci – תּוֹדָה – Thank you

Collaborators:

Ecole Polytechnique M. Régnier, A. Héliou, H.T. Yao

- Simon Fraser University
 - J. Hales, J. Manuch, L. Stacho

Agence Nationale de la Recherche

- C. Chauve
- McGill University
 - J. Waldispühl

Supported by:

CN

🔶 Ur

- Université du Québec à Montréal
- University of Vienna S. Will, S. Hammer
- \$

ШF

- Ben Gurion University
 - D. Barash, M. Drory Retwitzer, A. Churkin

משרד המדע, הטכנולוגיה והחלל

Ministry of Science, Technology & Space