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Fundamental dogma of molecular biology (v2.0)

#RNA Functional Families (RFAM DB)




RNA sequence and structure(s)

RNA = Linear Polymer = Sequence over {A,C, G, U}*

UUAGGCGGCCATHS

GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG
CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA

Energy minimisation:

cC

Primary Structure  Secondary Structure  Tertiary Structure

5s rRNA 5s (PDBID: 1K73:B)



RNA sequence and structure(s)

RNA = Linear Polymer = Sequence over {A,C, G, U}*

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC

cC

Primary Structure  Secondary Structure  Tertiary Structure

5s rRNA 5s (PDBID: 1K73:B)

*Finally! [Bonnet/Rzazewski/Sikora, RECOMB’18]



Why we design RNAs

» To create building blocks for synthetic systems
Rationally-designed RNAs increase orthogonality



Why we design RNAs

» To create building blocks for synthetic systems
Rationally-designed RNAs increase orthogonality

» To assess the significance of observed phenomenon
Random models should include every established characters. ..
...including adoption of a single structure



Why we design RNAs

» To create building blocks for synthetic systems
Rationally-designed RNAs increase orthogonality

» To assess the significance of observed phenomenon
Random models should include every established characters. ..
...including adoption of a single structure

» To test/push our understanding of how RNA folds
Misfolding RNAs reveal gaps in our energy models and descriptors for the
conformational spaces



Why we design RNAs

» To create building blocks for synthetic systems
Rationally-designed RNAs increase orthogonality

» To assess the significance of observed phenomenon
Random models should include every established characters. ..
...including adoption of a single structure

» To test/push our understanding of how RNA folds
Misfolding RNAs reveal gaps in our energy models and descriptors for the
conformational spaces

» To help search for homologous sequences
Incomplete covariance models hindered by limited training sets
Design can be used to generalize existing alignments



Why we design RNAs

» To create building blocks for synthetic systems
Rationally-designed RNAs increase orthogonality

» To assess the significance of observed phenomenon
Random models should include every established characters. ..
...including adoption of a single structure

» To test/push our understanding of how RNA folds
Misfolding RNAs reveal gaps in our energy models and descriptors for the
conformational spaces

» To help search for homologous sequences
Incomplete covariance models hindered by limited training sets
Design can be used to generalize existing alignments

» To fuel RNA-based therapeutics
Sequence-based (siRNA, synthetic genes), but structure matters



Why we design RNAs

» To create building blocks for synthetic systems
Rationally-designed RNAs increase orthogonality

» To assess the significance of observed phenomenon
Random models should include every established characters. ..
...including adoption of a single structure

» To test/push our understanding of how RNA folds
Misfolding RNAs reveal gaps in our energy models and descriptors for the
conformational spaces

» To help search for homologous sequences
Incomplete covariance models hindered by limited training sets
Design can be used to generalize existing alignments

» To fuel RNA-based therapeutics
Sequence-based (siRNA, synthetic genes), but structure matters

» To perform controlled experiments
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Design stories

The Nobel Prize in Physiology or
Medicine 2006

Guide RNA
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Abstract goals and means of molecular design

But : To achieve a predefined biological function, as abstracted by a model.

Definition (Positive design)

To satisfy constraints induced by a model of function

In practice: To optimize affinity of interaction, to favor thermodynamic stability of a
molecule, to respect sequence composition biases. . .

Definition (Negative design)
To avoid unwanted functions

In practice: To avoid off-target interactions, non-functional alternative foldings, kinetic
traps. .. (inverse combinatorial problems)

In the context of RNA:

» Positive design: Seqg/struct comparison, composition, +/- motifs, energie(s)
— Random generation, CSP

» Negative design: Target structure — Minimum Free-Energy + Boltzmann prob *
— Local search, exp algorithms, black magic (heuristics, NN, crowdsourcing. . .)
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Existing approaches for negative design

Based on local search. .. ... bio-inspired algorithms. ..

» RNAlInverse - TBI Vienna » FRNAKenstein - Hein@Oxford

» Info-RNA - Backofen@Freiburg » AntaRNA - Backofen@Freiburg

» RNA-SSD - Condon@UBC » ERD - Ganjtabesh@Tehran

» (Inca)RNAFBInv - Barash@BGU ...exact approaches. ..

» NUPack - Pierce@Caltech » RNAIFold - Clote@Boston College

> CO4 - will@Leipzig

Typical issues:
> Naive initialization strategies
» Synthesized sequences do not necessarily fold properly (kinetics)
» Overly GC-rich sequences
» No negative results

= Combinatorial foundations!
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RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

Input: Secondary structure R + Energy distance A > 0.
Output: RNA sequence S € X* such that:

VR €85\ {R}: E(S.R) > E(S,R)+ A

or & if no such sequence exists.

Difficult problem: Probably no obvious DP decomposition
» NP-hard problem [Bonnet et al, RECOMB’18]. . . after almost 30 years!
» Existing algorithms: Heuristics or Exponential-time
» Reason(s): Non locality, no theoretical framework, too many parameters. . .

Example
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» I Separated coloring for structure = Designable (+ ©(n) algo.)
Base pairs — 3 colors: ®-G-C; O—-cC-G; @A -UorU-A.
Coloring rules: Within each loop, #@ <1, #0O <1, #@<2 and #@+#0O<2
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Separated coloring = @ and unpaired positions occur at different levels
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Separated Coloring (example)

Base pairs — 3 colors:
Coloring rules: Within eachloop, #@ <1, #0O<1, #@<2 and #@+#0<2

Levels of @: {0, 1}

+
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Separated Coloring (example)

Base pairs — 3 colors: ® -G C O-cC-G; @A -UorU-A.
Coloring rules: Within eachloop, #@ <1, #0O<1, #@<2 and #@+#0<2

Levelsof @: {0,1} + Levels of unpaired/leaves: {2,4} = Coloring is separated

Design: GAAAAGUUGGUUUUUCCUUCUCAGGUUUUCCUGUUUC
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Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM’15+Algorithmica’17]
> Saturated structures: Designable < Degree of multiloops < 4 (+ ©(n) algo.)

» Designable = No multiloop of degree > 5 (ms motif), or degree > 3 with > 1
unpaired base(s) (ms . motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB’19]

» 3 Separated coloring for structure = Designable (+ ©(n) algo.)
Corollary: Approximate design for any structure avoiding ms and ms, in ©(n) time
Idea: Insert new BPs on helices to offset unpaired/leaves and @

Open problems

» Algorithm/characterization of separated-colorable tree?
> Inserting min #Base pairs: Complexity? Algorithm?

» Complex color sets for more realistic energy models?
» FPT design for some (yet unknown) parameters?

» In practice? Design (approximate) backbone + local search?
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Part 2. Multiple positive design of RNA



Multiple RNA design: Motivation
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Multiple RNA design: Motivation

Example: Riboswitch for translation control
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Multiple target structures — Multiple design of RNAs
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Objective: To randomly generate RNA sequences under constraints
@ Validity for targeted structures wrt base pairing nucleotides
© Stability (low free-energy, comparable across structures. . .) of target structures
© Constrained composition: (prescribed GC content), +/- motifs. . .

Stochastic backtrack: Pre-count and generate valid sequence (uniform distrib.)
+ Further refinements using local search



Our problem (simplified)
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i) Input Structures ii) Merged Base-Pairs iii) Compatibility Graph

Question: How many valid sequences over X" := {A,C, G, U}" ?

Problem (#ValidSequences) A T
Input: Secondary structures R = {R;, ..., Ry} of length n 4
G [

Output: Num. of valid sequences
{S € x"|V(i.j) € R, (S Sj) forms a valid base pair}|
Valid base pairs




State of the art

Abfalter/Flamm/Stadler 2003:
» Ear decomposition [Whitney 1932]
» Peel input graph as paths Ay, .. ., Ax
such that only the ends of A; are in Uy, A;

» Dynamic programming: Counting #valid paths for each component, conditioned
by nucleotide chosen for its anchors (black nodes);

» Careful combination of values yields #valid sequences.
Complexity: ©(n.4%) where Q = Max #anchors. Worst-case: Q € 9(n)

Some comments:
» |s this optimal? Other algorithms/parameters?
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» Dynamic programming: Counting #valid paths for each component, conditioned
by nucleotide chosen for its anchors (black nodes);

» Careful combination of values yields #valid sequences.
Complexity: ©(n.4%) where Q = Max #anchors. Worst-case: Q € 9(n)

Some comments:
» |s this optimal? Other algorithms/parameters?
» Which extensions possible? (Multidim.) Boltzmann-Gibbs distrib.
> Is this exp. really necessary? Probably since counting #P-hard



Counting valid sequences: WC/Wobble + single structure

A + U
G + C
Valid base pairs (BPs) = Including Wobble base pairs
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Counting valid sequences: WC/Wobble + single structure

A + u
A
G
Valid base pairs (BPs) = Including Wobble base pairs
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Question: How many valid sequences?
Answer: 4#Unpaired  5#BPs _, 5879707136



Counting valid sequences: WC/Wobble + Two structures

A
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Valid base pairs (BPs) = Including Wobble base pairs
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Question: How many valid sequences?

Answer: # ! (dep. graph and valid BPs both bipartite [Flamm et al, RNA 2001])
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Counting valid sequences: WC/Wobble + Two structures

A
7

G—+C

Valid base pairs (BPs) = Including Wobble base pairs
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Question: How many valid sequences?

Answer: # ! (dep. graph and valid BPs both bipartite [Flamm et al, RNA 2001])
#Designs(G) = | #Designs(cc)

ceCC(G)




Counting valid sequences for paths and cycles

p(n) : #Valid sequences for path of length n.
c(n) : #Valid sequences for cycle of length n.

Theorem (#Valid sequences for paths and cycles)

p(n)=2Fp0 et c(n)=2F,+4F,_4

where F, is the n-th Fibonacci number.

For paths: A simple automaton. ..

U Remark: A < C/G < U symmetry
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p(n) : #Valid sequences for path of length n.
c(n) : #Valid sequences for cycle of length n.

Theorem (#Valid sequences for paths and cycles)

p(n) =2Fp0 et c(n)=2F,+4F,_4

where F), is the n-th Fibonacci number.

For paths: A simple automaton. ..
Remark: A < C/G < U symmetry

m.(n) = ms(n—1)

me(n) = me(n—1)+ me(n—1)
=m.(n—1)+m.(n—2)
=F(n+2)

(Since m,(0) =1 and m.(1) = 2)

p(n):=me(n)=2mi(n—1)+2m.(n—1) =2(F(n) + F(n+1)) =2F(n+2)



Counting valid sequences for paths and cycles

p(n) : #Valid sequences for path of length n.
c(n) : #Valid sequences for cycle of length n.

Theorem (#Valid sequences for paths and cycles)

p(n)=2Fp0 et c(n)=2F,+4F,_4

where F, is the n-th Fibonacci number.

For cycles: A slightly more complex automaton. ..

start




Counting valid sequences for paths and cycles

p(n) and c(n): #Valid sequences for paths and cycles of length n.

Theorem (#Valid sequences for paths and cycles)

p(n):2?n+2 et C(n):2?n+4g'~nf1

where F, is the n-th Fibonacci number.

G: Dependency graph, merging the two structures (max degree < 2).
G uniquely decomposed in P(G) paths and C(G) cycles.

Theorem (#Valid sequences for 2-structures)
The number #Designs(G) of valid sequences for G is

#Designs(G) = [[ 2Fppex [ (2F o +4F 1)
pEP(G) ce€(G)

Caterpilar tree: EYAX0VAHR-VII—VI" (5 nodes)
Complete binary: 2 ax (height k) ax = (ak—2 +1)* +2(ak—1 + 1)(ak-2 + 1) + (ak-1 +1)2 =1



Counting valid sequences: WC/Wobble + Two structures

A
A

G—+C

Valid base pairs (BPs) = Including Wobble base pairs

W)

defohi gl mnopg r®towv

— Y

b

[

(

Dependency graph:
Cycles + Paths

i m n r
gme=a=u h j—(q
| I | I
Km0 d=—Db—t
f—|=—0—vVv Cc—s

Question: How many valid sequences?

Answer :#£ & (both BP and dependency graphs bipartite)
#Designs(G) = [ #Designs(cc) = 2322432

ceCC(G)




Counting valid sequences: WC/Wobble + > 2 structures

AT
al

G—C

Valid base pairs (BPs) = Including Wobble base pairs

N TN

abcdefghijklImnopgrstuyv
—/

Dependency graph:
Cycles, Paths, Trees. ..
n s—c m
|/ ,
T
k p d—b—1

fe—1-—0-—vVv

r i

Question: How many valid sequences?

Answer: Non-bipartite — @; Bipartite — 77?7




Counting valid sequences: WC/Wobble + > 2 structures

A —
ye
G + C
Valid base pairs (BPs) = Including Wobble base pairs

Dependency graph:
Cycles, Paths, Trees. ..

rlls—c m
gmem=a=u h j—4a
N (T AN
ab©@d@f@hi KI mhopqgr®tOyv k=====p d—b—1t
—/
f—Il—o0—v

Question: How many valid sequences?

Answer: Non-bipartite — @; Bipartite — ?77?7?
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Independent sets < Valid sequences
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Independent sets < Valid sequences
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Independent sets < Valid sequences

O 0—V
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Independent sets < Valid sequences

O O
®-O-O-@
O O

Remark: Black circles non-adjacent in valid sequences

©
®

N\

A
©

Up to trivial symmetry* (e.g. north-western position € {U, C}):

Designs*(cc) C IndSets(cc)



Independent sets < Valid sequences

O O
®-O-O-@
O O

Remark: Black circles non-adjacent in valid sequences

©
®

N\

A
©

Up to trivial symmetry* (e.g. north-western position € {U, C}):
Designs*(cc) C IndSets(cc)

Independent Sets (black) + NW € {U, C} = Valid sequence



Independent sets < Valid sequences

O 0—V
QO-O-©-0
© ©

Remark: Black circles non-adjacent in valid sequences

©
®

N\

A
©

Up to trivial symmetry* (e.g. north-western position € {U, C}):
Designs™(cc) C IndSets(cc)
Independent Sets (black) + NW € {U, C} = Valid sequence

= Bijection between Designs*(cc) and IndSets(cc).



Valid sequences and independent sets

Theorem (#Designs and ind. sets in connected bipartite graphs)

Let G be a bipartite and connected dependency graph:

#Designs(G) = 2 x #Designs”(G) = 2 x #IndSets(G)
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Valid sequences and independent sets

Theorem (#Designs and ind. sets in connected bipartite graphs)

Let G be a bipartite and connected dependency graph:

#Designs(G) = 2 x #Designs”(G) = 2 x #IndSets(G)

For bipartite dependency graph G, one has:

#Designs(G) = [] 2 x #IndSets(cc) = 21°“9! x #IndSets(G)
cceCC(G)

But #IndSets(G) is #P-hard on bipartite graphs (#BIS) [Dyer & Greenhill’00]
(+ Any graph G is the dependency graph of some structure family)

So 3 Poly-Time algorithm for # Designs(G) — Poly-Time algorithm for #BIS. ..



Valid sequences and independent sets

Theorem (#Designs and ind. sets in connected bipartite graphs)

Let G be a bipartite and connected dependency graph:

#Designs(G) = 2 x #Designs”(G) = 2 x #IndSets(G)

For bipartite dependency graph G, one has:

#Designs(G) = [] 2 x #IndSets(cc) = 21°“9! x #IndSets(G)
cceCC(G)

But #IndSets(G) is #P-hard on bipartite graphs (#BIS) [Dyer & Greenhill’00]
(+ Any graph G is the dependency graph of some structure family)

So 3 Poly-Time algorithm for # Designs(G) — Poly-Time algorithm for #BIS. ..

Counting #Designs is #P-hard. I

No Poly-Time algorithm for #Designs(G) unless #P = FP (= P = NP)




Consequences

Corollary (#Approximability for < 5 structures) [Weitz’06]

For < 5 structures (crossings allowed), #Design(G) can be approximated within any
ratio in Poly-time (PTAS)
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Corollary (#Approximability for < 5 structures) [Weitz’06]

For < 5 structures (crossings allowed), #Design(G) can be approximated within any
ratio in Poly-time (PTAS)

Corollary (#BIS-hardness for > 5 structures) [Cai, Galanis et ar16]

For more than 5 structures (crossings allowed), #Design is equally as hard to
approximate as general #BIS.

Why crossings/Pseudokots? Because any bipartite graph of max degree A can be
decomposed in A matchings in Poly-Time (Vizing theorem).



Consequences

Corollary (#Approximability for < 5 structures) [Weitz’06]

For < 5 structures (crossings allowed), #Design(G) can be approximated within any
ratio in Poly-time (PTAS)

Corollary (#BIS-hardness for > 5 structures) [Cai, Galanis et ar16]

For more than 5 structures (crossings allowed), #Design is equally as hard to
approximate as general #BIS.

Why crossings/Pseudokots? Because any bipartite graph of max degree A can be
decomposed in A matchings in Poly-Time (Vizing theorem).

Connection between counting and sampling [Jerrum/Valiant/Vazirani’86].

Conjecture (#BIS-hardness of multiple positive design)

Quasi-uniform generation as hard as approximation of general #BIS

= Sampling #P hard?



Tree decomposition and Boltzmann sampling of sequences

RNARedPrint

Partition Function
Stochastic Bac]

/].v
AT

iv) Tree Decomposition

d

="

r|1 T—c d=—=h=—m
N g—e—a b—t—q
efghijkImnopgrstuv | l
k==p=—u i J

ii) Merged Base-Pairs iii) Compatibility Graph

v) Weight Optimization (Adaptive Sampling)

( GCCGCGGUAGCUACAGCCGGCU
o B UUGGGGUUGGGUAGACUCCGGU
oSy £1 GCUGCAGCGGCUGUGGCUGGCT
e GGUUCUGGUUUGCUUAGGGCUA
GRS GG GGy e CGACGGCGGUGCCGGCAUUUGE
GesSEatseti cal.mol e
WASAGG6CC !
e OURCEEE
SOUGUSRET E, E
Ey
kalmol =5 0 E
kealmol ! I
GC% E.
3 GC%
0 50 100 kalmol ! 5 0
~ 0 50 100

vi) Final Designs



Tree decomposition and width

Tree decomposition T for a graph G = (V, E):
@ Nodes of T = Some subsets of V b
©Q All vertices present: Vv e V,3be Bst. veb
@ All edges present: V(v,v') € E,3be Bs.t. {v,v'} CB

@ Nodes having v € V form a connected subtreee elb z@je
ACGU

A2?27?

crete QM
G?7?2?

( . . ) . " Za|de) uU:2??77?
( ( ) ) ACGU

S A1000 Al
C:0100 o1
G:1020 g

Target structures Dependency graph U:0102

Tree decomposition



Tree decomposition and width

Tree decomposition T for a graph G = (V, E):
@ Nodes of T = Some subsets of V b
©Q All vertices present: Vv e V,3be Bst. veb
@ All edges present: V(v,v') € E,3be Bs.t. {v,v'} CB

@ Nodes having v € V form a connected subtreee elb z@je
ACGU

A?277

a b ¢ d e ° ° ° dl o279
6?7772

G B .‘ . U777
( ( ) ) ACGU

S A1000 Al
C:0100 o
G:1020 g

Target structures Dependency graph U:0102

b= {by, by ...} :node of D
Ty : subtree rooted at b Tree decomposition
w : Width of tree decomposition D (=maxpep |b] — 1)

WTp oo )= > [T 2(Telbi e vibo+v2..)

by vy cfils de b
v1€{A.C.G,U}

Complexity: © (nmk + nk2") for uniform generation of m sequences (k structs)



Counting valid sequences: WC/Wobble + > 2 structures

AT
al

G—C

Valid base pairs (BPs) = Including Wobble base pairs

N TN

abcdefghijklImnopgrstuyv
—/

Dependency graph:
Cycles, Paths, Trees. ..

n s—c m

|/ ,
RN
k P d—b—1t
fe—1-—0-—vVv

r i

Question: How many valid sequences?

Answer: Non-bipartite — @; Bipartite — 496 672




Our problem for general free-energy models

A

Problem (PFDesigns)

Input: Structures R = {Ry, ..., Ry} of length n+ Weight (x1, ..., Xk)
Output: Partition function 7 Z HXiE(S,R,)

Sex" =1
S valid for R




Counting/sampling, the Boltzmann-Gibbs way

a b c d e

OO b
L )
) &,

Target Structures
Dependency Hypergraph

~
~
~

=

b={bi, b>...} :node of D
Ty : subtree rooted at b
w : Width of treedecomposition D

k
WTolbe=vo. )= > [ T] 2(Telbiwi....)

by vy i=1 cfilsde b
v1€{A.C.G,U}

Complexity: © (nmk + nk 2" #°C) for sampling in Boltzmann-Gibbs distrib.

Tree Decomposition



Practical impact of Boltzmann-Gibbs sampling

Boltzmann probability of structure R, pour une séquence S:

E(S.R)
BT

e
T Zs—ze

Objectif classique du design négatif (— spécificité)

E(S.,R)
BT

P(R| S) =

CCCCCC ML)

10°
102
1074
1076

10°8

10710

Probability of target structure

1
10712 500

-30 -25 -20 -15 -10 -5 0 5
Energy of target structure [kcal/mol]
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ii) Merged Base-Pairs

RNARedPrint: a flexible method for (positive) design

n S C d===h=—m

T S

—t
el

iii) Compatibility Graph

( GCCGCGGUAGCUACAGCCGGCU
UUGGGGUUGGGUAGACUCCGGU
USRSl Ey GCUGCAGCGGCUGUGGCUGGCC
i G urGCUSi e GGUUCUGGUUUGCUUAGGGCUA
RVARedPrint s e TSt i v CGACGGCGGUGCCGGCAUUUGE
Partition Function Shenediaoiner o
Stochastic Backtrack GOUCACES! E,
£
E;
kealmol ! =5 0 B
Kealmol™! 0
Y E,
e l A ° lA GC% ‘
2
s, 50 100 kalmol -5 0
NN 0 50 100

v) Weight Optimization (Adaptive Sampling) vi) Final Designs
[Hammer/P/Wang/Will, RECOMB’18 + BMC Bioinfo 2019]

» Fixed Parameter Tractable algorithm based on tree width

» Uniform or Boltzmann-Gibbs sampling, to favor diversity and stability

» Multidimensional Boltzmann sampling for controlling free-energy, GC%. . .

https://github.com/yannponty/RNARedPrint

iv) Tree Decomposition


https://github.com/yannponty/RNARedPrint

Multidimensional Boltzmann sampling

Multidimensional Boltzmann sampling [Bodini, P, DMTCS 2011]
Input: Targeted free-energies (E; )i_;, weights (x;)5_; such that E(E(w, S;)) = E;. V£ :

k
P(w | %1 - x¢) ~ [ x% + Efficient rejection — 0(n*/?) exact/0(c) approx.
£=1
Empirical efficiency for additive concentrated constraints (GC%, dinucleotides ...)
— Partial functions — Hyper-edges, aka cliques'
{} General framework for integer-valued constraints; Concentration tests.

>

—R1

Bolizmann

- -30,-20
-30,-30
-25,-25
-20,-30

e Uniform

Energy (D&P Model) [kcal/mol]

-45

46 44 —42 40 -38 -36 -34 -32
Energy (Stacking Model) [kcal/mol]

-0 =30 -2 -10 0
Energy (D&P Model) [kcal/mol]

But tree width



Strangely enough, it actually works!

1dada

2str 3str 4str PK60 PK80 LE8O
®RNARedPrint + Opt. @RNABIluePrint + Opt. ®mRNARedPrint ®RNABIuePrint

MultiDefect

o

K > |E(S R)—E(S Ryl
MultiDefect(S, Ry --- Re) = > -1 E(S. R) — EFE(S) | 1stisk

K 2(3)
where EFE = ensemble free-energy EFE(S) := —BT log Zs.
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Conclusion

Our contribution :

» General framework for generating constrained sequences
Ideas similar to/generalized from CTE framework (R. Dechter);

» Application to multiple RNA design, proven #P hard;
> Uses efficient rejection scheme for practical control of complex constraints;
> Practical efficiency (reasonable tree width).

Perspectives :

== Complexity of sequence generation for k < 5 structures?

== How to deal with additional sequence constraints? (DFA "product")

L 0(2")

Forbidden sequences

o(d"")




Conclusion

Our contribution :

» General framework for generating constrained sequences
Ideas similar to/generalized from CTE framework (R. Dechter);

» Application to multiple RNA design, proven #P hard;

> Uses efficient rejection scheme for practical control of complex constraints;
> Practical efficiency (reasonable tree width).
Perspectives :

== Complexity of sequence generation for k < 5 structures?
== How to deal with additional sequence constraints? (DFA "product")

== How to locally navigate the space of valid sequences? (Local search)
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Conclusion

Our contribution :

» General framework for generating constrained sequences
Ideas similar to/generalized from CTE framework (R. Dechter);

» Application to multiple RNA design, proven #P hard;
> Uses efficient rejection scheme for practical control of complex constraints;
> Practical efficiency (reasonable tree width).

Perspectives :

== Complexity of sequence generation for k < 5 structures?

== How to deal with additional sequence constraints? (DFA "product")

== How to locally navigate the space of valid sequences? (Local search)

= How to simplify dense graphs? (DCA potentials)

Largest vertex set given tree-width budget?
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