

Why do we optimize?

- ► For fun: Because, who doesn't just *love* algorithms?
- ► For money: Operations research, network design...
- ► For love (of exhaustivity): Correct negative results

 (vs heuristics)
- To predict the unobservable: RNAs, phylogenies...

But optima may be poorly representative of search space

⇒ Ensemble dynamic programming

Why do we optimize?

- For fun: Because, who doesn't just *love* algorithms?
- ► For money: Operations research, network design...
- ► For love (of exhaustivity): Correct negative results

 (vs heuristics)
 - To predict the unobservable: RNAs, phylogenies...

But optima may be poorly representative of search space

⇒ Ensemble dynamic programming

Why do we optimize?

- ► For fun: Because, who doesn't just *love* algorithms?
- ► For money: Operations research, network design. . .
- ► For love (of exhaustivity): Correct negative results (vs heuristics)
- To predict the unobservable: RNAs, phylogenies...

But optima may be poorly representative of search space

 \Rightarrow Ensemble dynamic programming

Why do we optimize?

- For fun: Because, who doesn't just *love* algorithms?
- ► For money: Operations research, network design. . .
- ► For love (of exhaustivity): Correct negative results (vs heuristics)
- To predict the unobservable: RNAs, phylogenies...

But optima may be poorly representative of search space

⇒ Ensemble dynamic programming

Ensemble analysis in RNA research

- Partition function
- Inside/Outside
- Max Expected Accuracy
- Partitioned approaches
- Sampling/clustering

Most likely features rather than most likely solution Distributions more meaningful than objects

Minimal Algebraic DP framework

In this talk, ADP instance =

- Yield Grammar (Context-Free)
 - Each derivation decorated with a constructor (function)
 - Implicitly generates search space for instance

(no filtering beyond size of terminal $char/\epsilon$)

- Derivations implicitly combined by a choice function ⊕
- Evaluation Algebra, defining semantics of functions
- Homogenous domain/data type Δ

Example: Nussinov-style RNA folding, input sequence w, |w| = n

$$S \to \mathsf{up}(\mathsf{char}, S) \mid \mathsf{pair}(\mathsf{char}, S, \mathsf{char}, S) \mid \mathsf{nil}(\varepsilon)$$
 (choice \oplus)

$$\mathsf{MFE}\ \mathsf{algebra} \colon (\Delta, \oplus) := (\mathbb{R}, \mathsf{min})$$

- ▶ $pair(i, v_1, j, v_2) \rightarrow v_1 + v_2 + E(w_i, w_j)$
- ightharpoonup $\operatorname{nil}(i) \to 0$

Partition function:
$$(\Delta, \oplus) := (\mathbb{R}, +)$$

- ightharpoonup $\operatorname{nil}(i) \to 0$

with E(x,y)=-1 if $\{x,y\}\in\{\{G,C\},\{A,U\},\{G,U\}\},$ or $+\infty$ otherwise

Additive features of a DP scheme

Additive feature *F*: Associate atomic contributions to the constructor terms, and accumulate them over parse tree/term.

Example: #Base-pairs feature F_{bp}

$$S \to \mathsf{up}(\mathsf{char}, S) \mid \mathsf{pair}(\mathsf{char}, S, \mathsf{char}, S) \mid \mathsf{nil}(\varepsilon)$$
 (choice \oplus)

$$F_{bp}(\text{pair}) := 1, F_{bp}(-) := 0$$

Typical candidates for F:

- #Base-pairs, #Unpaired
- 5'/3' distance
- ► Free-Energy (requires arguments)
- ► #Helices, #Hairpins, #Multiloops, #Bulges... (refined grammar)
- Distance to reference structure

Part I: Moments of additive features in Boltzmann-like

distributions

Motivation

Thermodynamic equilibrium, Boltzmann-distributed sec. struct. for RNA w:

$$\mathbb{P}(\mathcal{S} \mid w) = \frac{\mathcal{B}(w, S)}{\mathcal{Z}_w} \text{ with } \mathcal{Z}_w = \sum_{S'} \mathcal{B}(w, S') \text{ and } \mathcal{B}(w, S) := e^{-E(w, S) \cdot \beta}$$

General belief: Thermodynamics more accurate than energy minimization ⇒ Functional evolutionary pressure on Boltzmann ensemble?

Functional folding?

Ill-defined folding: mRNA?

Bistable RNA Kinetics?

Function-specific nature of ensemble features - 1

Consider moments μ_1 (expect.), μ_2 (\approx var.)... of free-energy distribution

$$\mu_{p} = \mathbb{E}(E(S)^{p} \mid w) = \sum_{S'} E(w, S')^{p} \cdot \mathbb{P}(S' \mid w) = \frac{\mathcal{Y}_{p}}{\mathcal{Y}_{0}}$$

with
$$\mathcal{Y}_p = \sum_{S'} E(w, S')^p \cdot \mathcal{B}(w, S')$$

(Note: $\mathcal{Z}_w = \mathcal{Y}_0$)

Pre-ML (i.e. modest) conclusion: None of the statistics has sufficient separating power to distinguish individual biological and random sequences
[Miklos, Meyer & Nagy, Bul Mat Bio 2005]

Function-specific nature of ensemble features – 2

Boltzmann sampling shows that miRNAs have distinct base-pair distributions than dinucleotide shuffles. [Chan & Ding, J Mat Bio 2008]

Other features/moments? (at which cost?)

Objective

Problem: Given ADP scheme for partition function \mathcal{Z}_w , compute¹

$$\mathcal{Y}_p = \sum_{S'} F(w, S')^p \cdot \mathcal{Z}_{w, S'}$$

where F is an additive feature.

Typical candidates for F:

- Energy
- ► Distance to reference structure
- #Helices, #Hairpins, #Multiloops, #Bulges. . .
- ► 5'/3' distance

Expected value of $F = \mathcal{Y}_1/\mathcal{Y}_0$; Std dev of $F = \sqrt{\mathcal{Y}_2/\mathcal{Y}_0 - \mathcal{Y}_1^2/\mathcal{Y}_0^2}$

¹as lazily as possible

Objective

Problem: Given ADP scheme for partition function \mathcal{Z}_w , compute²

$$\mathcal{Y}_{p_1\cdots p_k} = \sum_{S'} F_1(w,S')^{p_1}\cdots F_k(w,S')^{p_k}\cdot \mathcal{Z}_{w,S'}$$

where F_1, \dots, F_k are additive features.

Typical candidates features:

- Energy
- Distance to reference structure
- #Helices, #Hairpins, #Multiloops, #Bulges...
- ► 3'/5' distance

Expected value of
$$F = \mathcal{Y}_1/\mathcal{Y}_0$$
; Std dev of $F = \sqrt{\mathcal{Y}_2/\mathcal{Y}_0 - \mathcal{Y}_1^2/\mathcal{Y}_0^2}$
Pearson Correlation of F and $F' = \frac{\mathcal{Y}_{1,1} - \mathcal{Y}_{0,1} \cdot \mathcal{Y}_{1,0}/\mathcal{Y}_{0,0}}{\sqrt{\mathcal{Y}_{2,0} - \mathcal{Y}_{1,0}^2/\mathcal{Y}_{0,0}} \cdot \sqrt{\mathcal{Y}_{0,2} - \mathcal{Y}_{0,1}^2/\mathcal{Y}_{0,0}}}$

²as lazily as possible

Idea: Introduce controlled ambiguity within part. fun. grammar

[Ponty, Saule WABI 2011]

For each parse tree T generated with weight $\mathcal{B}(T)$ by original DP scheme:

- ▶ Duplicate tree |T| times, pointing a different node in each copy;
- Multiply weight of copies by feature value of pointed node.

Overall weight of *T*-duplicates now becomes $\sum_{v \in T} F(v) \times \mathcal{B}(T) = F(T) \times \mathcal{B}(T)$

Example: Structure ((.)), Feature = #base pairs

Original

Property: Computing partition function over duplicates yields $\sum_{T} F(T) \times \mathcal{B}(T) = \mathcal{Y}_1$.

Idea: Introduce controlled ambiguity within part. fun. grammar

[Ponty, Saule WABI 2011]

For each parse tree T generated with weight $\mathcal{B}(T)$ by original DP scheme:

- ▶ Duplicate tree | *T* | times, **pointing** a different node in each copy;
- Multiply weight of copies by feature value of pointed node.

Overall weight of *T*-duplicates now becomes $\sum_{v \in T} F(v) \times \mathcal{B}(T) = F(T) \times \mathcal{B}(T)$

Example: Structure ((.)), Feature = #base pairs

Original

Total Weight = $\mathcal{B}(T)$ -#occ. of pair= $\mathcal{B}(T)$ · 2

Property: Computing partition function over duplicates yields $\sum_{T} F(T) \times \mathcal{B}(T) = \mathcal{Y}_1$.

Idea: Introduce controlled ambiguity within part. fun. grammar

[Ponty, Saule WABI 2011]

For each parse tree T generated with weight $\mathcal{B}(T)$ by original DP scheme:

- ▶ Duplicate tree | *T* | times, **pointing** a different node in each copy;
- Multiply weight of copies by feature value of pointed node.

Overall weight of *T*-duplicates now becomes $\sum_{v \in T} F(v) \times \mathcal{B}(T) = F(T) \times \mathcal{B}(T)$

Example: Structure ((.)), Feature = #base pairs

Original

Property: Computing partition function over duplicates yields $\sum_{T} F(T) \times \mathcal{B}(T) = \mathcal{Y}_1$.

Idea: Introduce controlled ambiguity within part. fun. grammar
[Ponty. Saule WABI 2011]

For each parse tree T generated with weight $\mathcal{B}(T)$ by original DP scheme:

- ▶ Duplicate tree | *T* | times, **pointing** a different node in each copy;
- Multiply weight of copies by feature value of pointed node.

Overall weight of *T*-duplicates now becomes $\sum_{v \in T} F(v) \times \mathcal{B}(T) = F(T) \times \mathcal{B}(T)$

Example: Structure ((.)), Feature = #unpair bases

Original

Property: Computing partition function over duplicates yields $\sum_{T} F(T) \times \mathcal{B}(T) = \mathcal{Y}_1$.

Higher-order moments

Pointing can be generalized using multiple (types of) points. Any \bullet_i -pointing of node $v \in T$ contributes factor $F_i(v)$ to weight

Example: Two (possibly identical) features F (point) and F' (point)

pair** poir** p

Overall weight of *T*-duplicates: $\sum_{v \in T} \sum_{v' \in T} F(v) \cdot F'(v') = F(T) \cdot F'(T)$

Property: Computing the partition function on a grammar $\mathcal{G}_{p_1\cdots p_k}$ generating $(p_1\cdots p_k)$ -pointed versions of original trees yields $\mathcal{Y}_{p_1\cdots p_k}$

 \rightarrow How to construct $\mathcal{G}_{p_1\cdots p_k}$?

Constructing a single-pointed grammar

Pointing derivation as a **propagation**/**dropping** scheme for \mathcal{G}_1 :

- For each non-terminal $S \in NT$, create new NT S^{\bullet} responsible for placing a point in the sub-parsetrees generated from S;
- ▶ Each derivation $S \to \text{fun}(arg_1, ..., arg_m)$, $arg_i \in NT \cup T \cup \{\epsilon\}$, leads to:

$$S^{ullet} o \operatorname{fun}^{ullet}(arg_1,\ldots,arg_m)$$
 (Dropping point)
| $\operatorname{fun}(arg_1^{ullet},\ldots,arg_m)$ (Propagation, only if $arg_1 \in NT$)
 \vdots
| $\operatorname{fun}(arg_1,\ldots,arg_m^{ullet})$ (Propagation, only if $arg_m \in NT$)

► Enrich algebra with $\text{fun}^{\oplus}(arg_1, \dots, arg_m) \rightarrow F(\text{fun}) \times \text{fun}(arg_1, \dots, arg_m)$

Example:

```
S 	o \mathsf{pair}(\mathsf{char}, S, \mathsf{char}, S) \mid \mathsf{up}(\mathsf{char}, S) \mid \mathsf{nil}(\varepsilon) S^{ullet} 	o \mathsf{pair}(\mathsf{char}, S, \mathsf{char}, S) \mid \mathsf{pair}(\mathsf{char}, S^{ullet}, \mathsf{char}, S) \mid \mathsf{pair}(\mathsf{char}, S, \mathsf{char}, S^{ullet}) \mid \mathsf{up}^{ullet}(\mathsf{char}, S) \mid \mathsf{up}(\mathsf{char}, S^{ullet}) \mid \mathsf{nil}^{ullet}(\varepsilon)
```

Complexity: Similar as initial grammar, up to constants Memory×2, Time× $(m^* + 1)$

 $(m^* := \max_f \# NTargs(f))$

Constructing a single-pointed grammar

Pointing derivation as a **propagation**/**dropping** scheme for \mathcal{G}_1 :

- For each non-terminal $S \in NT$, create new NT S^{\bullet} responsible for placing a point in the sub-parsetrees generated from S;
- ▶ Each derivation $S \to \text{fun}(arg_1, ..., arg_m)$, $arg_i \in NT \cup T \cup \{\epsilon\}$, leads to:

$$S^{ullet} o \operatorname{fun}^{ullet}(arg_1,\ldots,arg_m)$$
 (Dropping point)
$$|\operatorname{fun}(arg_1^{ullet},\ldots,arg_m) (\operatorname{Propagation, only if } arg_1 \in \mathit{NT})$$

$$\vdots |\operatorname{fun}(arg_1,\ldots,arg_m^{ullet}) (\operatorname{Propagation, only if } arg_m \in \mathit{NT})$$

► Enrich algebra with $\operatorname{fun}^{\oplus}(\operatorname{arg}_1,\ldots,\operatorname{arg}_m)\to F(\operatorname{fun})\times \operatorname{fun}(\operatorname{arg}_1,\ldots,\operatorname{arg}_m)$

Example:

```
\begin{split} S &\to \mathsf{pair}(\mathsf{char}, S, \mathsf{char}, S) \mid \mathsf{up}(\mathsf{char}, S) \mid \mathsf{nil}(\varepsilon) \\ S^{\bullet} &\to \mathsf{pair}^{\bullet}(\mathsf{char}, S, \mathsf{char}, S) \mid \mathsf{pair}(\mathsf{char}, S^{\bullet}, \mathsf{char}, S) \mid \mathsf{pair}(\mathsf{char}, S, \mathsf{char}, S^{\bullet}) \\ &\mid \mathsf{up}^{\bullet}(\mathsf{char}, S) \mid \mathsf{up}(\mathsf{char}, S^{\bullet}) \mid \mathsf{nil}^{\bullet}(\varepsilon) \end{split}
```

Complexity: Similar as initial grammar, up to constants Memory×2, Time× $(m^* + 1)$

Constructing a single-pointed grammar

Pointing derivation as a propagation/dropping scheme for \mathcal{G}_1 :

- \triangleright For each non-terminal $S \in NT$, create new NT S^{Θ} responsible for placing a point in the sub-parsetrees generated from S;
- ▶ Each derivation $S \rightarrow \text{fun}(arg_1, ..., arg_m)$, $arg_i \in NT \cup T \cup \{\epsilon\}$, leads to:

```
S^{ullet} \rightarrow \operatorname{fun}^{ullet}(\operatorname{arg}_1, \dots, \operatorname{arg}_m)
                                                                                                                      (Dropping point)
           | \operatorname{fun}(arg_1 \overset{\bullet}{=}, \dots, arg_m) |
                                                                                      (Propagation, only if arg_1 \in NT)
           | \operatorname{fun}(ara_1, \ldots, ara_m^{\bullet}) |
                                                                                     (Propagation, only if arg_m \in NT)
```

► Enrich algebra with fun $(arg_1, ..., arg_m) \rightarrow F(fun) \times fun(arg_1, ..., arg_m)$ **Example:**

```
S \rightarrow \text{pair}(\text{char}, S, \text{char}, S) \mid \text{up}(\text{char}, S) \mid \text{nil}(\varepsilon)
S^{ullet} 	o \mathsf{pair}^{ullet}(\mathsf{char}, S, \mathsf{char}, S) \mid \mathsf{pair}(\mathsf{char}, S^{ullet}, \mathsf{char}, S) \mid \mathsf{pair}(\mathsf{char}, S, \mathsf{char}, S^{ullet})
              | up^{\bullet}(char, S) | up(char, S^{\bullet}) | nil^{\bullet}(\varepsilon)
```

Complexity: Similar as initial grammar, up to constants Memory \times 2, Time \times (m^*+1)

 $(m^* := \max_f \# NTargs(f))$

Constructing a multiple-pointed grammar

Iterated pointing : $\mathcal{Z}_{\mathcal{G}_1} = \mathcal{Y}_1$, $\mathcal{Z}_{(\mathcal{G}_1)_1} = \mathcal{Y}_2$, $\mathcal{Z}_{((\mathcal{G}_1)_1)_1} = \mathcal{Y}_3 \dots$ Complexity overhead for computing \mathcal{Y}_p : Memory×2^p, Time×(m+1)^p

Multiply-pointed derivations:

Ponty, Saule WABI 2011]

- ▶ $\forall S \in NT$, create new NTs $S^{\oplus 1}, \dots, S^{\oplus p}$ responsible for placing 1 to p points in the sub-parsetrees generated from S;
- ▶ Each derivation $S \rightarrow \text{fun}(arg_1, ..., arg_m)$, leads to:

$$S^{ullet q}
ightarrow igcup_{\substack{q_0+q_1+\dots+q_m=q \ ext{s.t. } q_i=0 \text{ if } arg_i
otin}} ig(egin{matrix} q \ q_1, q_2, \dots, q_m \end{pmatrix} ext{fun}^{ullet q_0} (arg_1^{ullet q_1}, \dots, arg_m^{ullet q_m})$$

▶ Add to algebra $fun^{\Theta q}(arg_1, ..., arg_m) \rightarrow F(fun)^q \times fun(arg_1, ..., arg_m)$

Complexity: Memory×p, Time× $\binom{p+m^*}{m^*}$ ~ $(p/m^*+1)^{m^*}$ when $k\gg m$

Bellman's GAP implementation in progress (M. Pommeret's PhD)

Applications: Machine learning, RNA evolution, Approx. of density of states...

Constructing a multiple-pointed grammar

Iterated pointing : $\mathcal{Z}_{\mathcal{G}_1} = \mathcal{Y}_1$, $\mathcal{Z}_{(\mathcal{G}_1)_1} = \mathcal{Y}_2$, $\mathcal{Z}_{((\mathcal{G}_1)_1)_1} = \mathcal{Y}_3 \dots$ Complexity overhead for computing \mathcal{Y}_p : Memory×2^p, Time×(m+1)^p

Multiply-pointed derivations:

[Ponty, Saule WABI 2011]

- ▶ $\forall S \in NT$, create new NTs $S^{\oplus 1}, \dots, S^{\oplus p}$ responsible for placing 1 to p points in the sub-parsetrees generated from S;
- ▶ Each derivation $S \rightarrow \text{fun}(arg_1, ..., arg_m)$, leads to:

$$S^{\bigoplus q} \to \bigcup_{\substack{q_0+q_1+\dots+q_m=q\\\text{s.t. }q_i=0\text{ if } arg_i\notin NT}} \binom{q}{q_1,q_2,\cdots,q_m} \text{fun}^{\bigoplus q_0}(arg_1^{\bigoplus q_1},\dots,arg_m^{\bigoplus q_m})$$

▶ Add to algebra $fun^{\bigoplus q}(arg_1, ..., arg_m) \rightarrow F(fun)^q \times fun(arg_1, ..., arg_m)$

Complexity: Memory×p, Time× $\binom{p+m^*}{m^*}$ $\sim (p/m^*+1)^{m^*}$ when $k\gg m$

Bellman's GAP implementation in progress (M. Pommeret's PhD)
Applications: Machine learning, RNA evolution, Approx. of density of states...

Constructing a multiple-pointed grammar

Iterated pointing : $\mathcal{Z}_{\mathcal{G}_1} = \mathcal{Y}_1$, $\mathcal{Z}_{(\mathcal{G}_1)_1} = \mathcal{Y}_2$, $\mathcal{Z}_{((\mathcal{G}_1)_1)_1} = \mathcal{Y}_3 \dots$ Complexity overhead for computing \mathcal{Y}_p : Memory×2^p, Time×(m+1)^p

Multiply-pointed derivations:

[Ponty, Saule WABI 2011]

- ▶ $\forall S \in NT$, create new NTs $S^{\oplus 1}, \dots, S^{\oplus p}$ responsible for placing 1 to p points in the sub-parsetrees generated from S;
- ▶ Each derivation $S \rightarrow \text{fun}(arg_1, ..., arg_m)$, leads to:

$$S^{\bigoplus q} \to \bigcup_{\substack{q_0+q_1+\dots+q_m=q\\\text{s.t. } q_i=0 \text{ if } arg_i \notin NT}} \binom{q}{q_1,q_2,\cdots,q_m} \text{fun}^{\bigoplus q_0} (arg_1^{\bigoplus q_1},\dots,arg_m^{\bigoplus q_m})$$

▶ Add to algebra $fun^{\bigoplus q}(arg_1, ..., arg_m) \rightarrow F(fun)^q \times fun(arg_1, ..., arg_m)$

Complexity: Memory×p, Time× $\binom{p+m^*}{m^*}$ $\sim (p/m^*+1)^{m^*}$ when $k\gg m$

Bellman's GAP implementation in progress (M. Pommeret's PhD)
Applications: Machine learning, RNA evolution, Approx. of density of states...

Part II: Discrete Fourier Transform for classified ensemble DP

Classified ensemble dynamic programming

[Hagio et al, Bioinf. 2018]

[Lorenz, Flamm, Hofacker, GCB 2009]

[Cupal, Hofacker, Stadler GCB 1996]

- Measure prevalence of sub-class
- Projection of search space
- Combinatorics vs Optimality
- Computationally challenging

Explicit/implicit convolution products

Objective: For all value v in the co-domain of feature F, compute

$$\mathcal{Z}^{(v)} = \sum_{T \in \mathcal{T}_{w} \text{ s.t. } F(T) = v} \mathcal{B}(T)$$

Remark: Co-domain D can be **exponentially large**, e.g. when values taken by F are exponentially far apart (on |w|).

First idea: Duplicate NTs, distribute targeted value

$$S o \operatorname{fun}(arg_1,\ldots,arg_m) \longrightarrow S^{(v)} o \bigcup_{ \substack{ v_1^{v_1}+\cdots+v_m^{v_m}+F(\operatorname{fun})=v \\ ext{s.t. } v_i=0 \text{ if } arg_i
otin NT}} \operatorname{fun}(arg_1,\ldots,arg_m)$$

Complexity: Memory×|D|, Time× $|D|^{m^x}$

Alt.: Use polynomial data-type \rightarrow complexity unchanged yet better constants

Impractical for typical applications ($|D| = n, n^2 ..., m^* = 2$)

Explicit/implicit convolution products

Objective: For all value v in the co-domain of feature F, compute

$$\mathcal{Z}^{(v)} = \sum_{T \in \mathcal{T}_W \text{ s.t. } F(T) = v} \mathcal{B}(T)$$

Remark: Co-domain D can be **exponentially large**, *e.g.* when values taken by F are exponentially far apart (on |w|).

First idea: Duplicate NTs, distribute targeted value

$$S o \operatorname{fun}(\mathit{arg}_1, \ldots, \mathit{arg}_m) \longrightarrow S^{(v)} o \bigcup_{\substack{v_1^{v_1} + \cdots + v_m^{v_m} + F(\operatorname{fun}) = v \\ \operatorname{s.t. } v_i = 0 \text{ if } \mathit{arg}_i \notin \mathit{NT}}} \operatorname{fun}(\mathit{arg}_1, \ldots, \mathit{arg}_m)$$

Complexity: Memory×|D|, Time× $|D|^{m^*}$

 $\textbf{Alt.:} \ \textbf{Use polynomial data-type} \rightarrow \textbf{complexity unchanged yet better constants}$

Impractical for typical applications ($|D| = n, n^2 ..., m^* = 2$)

Interpolation

Second idea: Lagrange interpolation

[Waldispühl & P, RECOMB 2011]

Add monomial, based on local feature contribution, to evaluation algebra

$$\operatorname{fun}(\operatorname{\textit{arg}}_1,\ldots,\operatorname{\textit{arg}}_m)\longrightarrow x^{F(\operatorname{fun})}\times\operatorname{fun}(\operatorname{\textit{arg}}_1,\ldots,\operatorname{\textit{arg}}_m)$$

for x a formal variable;

 \blacktriangleright For any concrete value of x, grammar/New algebra pair now computes

$$\mathcal{Z}(x) := \sum_{T \in \mathcal{T}_w \text{ s.t. } F(T) = v} \mathcal{B}(T) \cdot x^{F(T)} = \sum_{v \in D} \mathcal{Z}^v \cdot x^v$$

 $ightharpoonup \mathcal{Z}(x)$ is a polynomial whose coeffs are interpolated from |D| evaluations Complexity: Time $\times |D| + |D|^2$; Memory + |D|

- Final idea: Discrete Fourier Transform (DFT) [Senter et al, RECOMB'13 & Plos One]
- Algebra change to evaluate $\mathcal{Z}(\omega)$ on (complex) |D|-th roots of -1;
- ▶ Inverse DFT gives coeffs in $\mathcal{O}(|D| \log |D|)$ after |D| evaluations.

Complexity: Time $\times |D| + |D| \log$; Memory + |D|

Interpolation

Second idea: Lagrange interpolation

[Waldispühl & P, RECOMB 2011]

Add monomial, based on local feature contribution, to evaluation algebra

$$\operatorname{fun}(\operatorname{\textit{arg}}_1,\ldots,\operatorname{\textit{arg}}_m)\longrightarrow \operatorname{\textit{x}}^{F(\operatorname{fun})}\times\operatorname{fun}(\operatorname{\textit{arg}}_1,\ldots,\operatorname{\textit{arg}}_m)$$

for x a formal variable;

For any concrete value of x, grammar/New algebra pair now computes

$$\mathcal{Z}(x) := \sum_{T \in \mathcal{T}_w \text{ s.t. } F(T) = v} \mathcal{B}(T) \cdot x^{F(T)} = \sum_{v \in D} \mathcal{Z}^v \cdot x^v$$

 \triangleright $\mathcal{Z}(x)$ is a polynomial whose coeffs are interpolated from |D| evaluations Complexity: Time $\times |D| + |D|^2$; Memory +|D|

Final idea: Discrete Fourier Transform (DFT) [Senter et al, RECOMB'13 & Plos One]

- ▶ Algebra change to evaluate $\mathcal{Z}(\omega)$ on (complex) |D|-th roots of -1;
- ▶ Inverse DFT gives coeffs in $\mathcal{O}(|D| \log |D|)$ after |D| evaluations.

Complexity: Time $\times |D| + |D| \log$; Memory +|D|

Conclusion on classified ensemble DP

- Inverse DFT allows an implicit computation of classified partition function/counting
- Stable numerically & amenable to interval arithmetics (Sato et al)
- ▶ Bottleneck (evaluation on *D* points) embarassingly parallelizable
- Drastic asymptotic speed-up, some examples:
 - Density of states: Feature = Free-energy
 - Time/Memory: $\Theta(n^5)/\Theta(n^3) \xrightarrow{\text{DFI}} \Theta(n^4)/\Theta(n^2)$ $(\Theta(n^3) \text{ on } n$
 - ► RNAbor: Feature = Base-pair distance to reference structure
 - Time/Memory: $\Theta(n^5)/\Theta(n^3) \xrightarrow{\text{DFT}} \Theta(n^4)/\Theta(n^2)$ $(\Theta(n^3) \text{ on } n \text{ cores})$
 - RNA2DFold: Features = distances to two reference structures
 - Time/Memory: $\Theta(n')/\Theta(n^4) \xrightarrow{S^*} \Theta(n^3)/\Theta(n^2)$ ($\Theta(n^3)$ on n^2 cores)
- ► Caveat 1: Sensitive to #classes (Moments computations are not!)
- Caveat 2: Stochastic backtrack/sampling not readily available
 - → Multidimensional Boltzmann sampling [Bodini & P, DMTCS & AOFA 2010]

Conclusion on classified ensemble DP

- Inverse DFT allows an implicit computation of classified partition function/counting
- ▶ Stable numerically & amenable to interval arithmetics (Sato et al)
- ▶ Bottleneck (evaluation on *D* points) embarassingly parallelizable
- Drastic asymptotic speed-up, some examples:
 - ▶ Density of states: Feature = Free-energy

 Time/Memory: $\Theta(n^5)/\Theta(n^3) \xrightarrow{\text{DFT}} \Theta(n^4)/\Theta(n^2)$ ($\Theta(n^3)$ on n cores)
 - ► RNAbor: Feature = Base-pair distance to reference structure Time/Memory: $\Theta(n^5)/\Theta(n^3) \xrightarrow{\text{DFT}} \Theta(n^4)/\Theta(n^2)$ $(\Theta(n^3) \text{ on } n \text{ cores})$
 - ► RNA2DFold: Features = distances to two reference structures Time/Memory: $\Theta(n^7)/\Theta(n^4) \xrightarrow{\text{DFT}} \Theta(n^5)/\Theta(n^2)$ $(\Theta(n^3) \text{ on } n^2 \text{ cores})$
- Caveat 1: Sensitive to #classes (Moments computations are not!)
- Caveat 2: Stochastic backtrack/sampling not readily available
 → Multidimensional Boltzmann sampling [Bodini & P, DMTCS & AOFA 2010]

optimization and ADP

Part III: Parametric

Motivation

Meanwhile, in bioinformatics, you sometimes need a single solution:

- Objective function parameters are guess-timated
- Subject to experimental noise
- Inferred from partial data

How to measure the impact of parameters perturbations on predictions? How to assess the validity domain, in the parameter space, of a prediction?

Grid search wasteful and often incorrect → Parametric optimization

[Gusfield et al, SODA 1994] [Pachter & Strumfels, 2005] [Forouzmand & Citsaz, Bioinf. 2013

Motivation

Meanwhile, in bioinformatics, you sometimes need a single solution:

- Objective function parameters are guess-timated
- Subject to experimental noise
- Inferred from partial data

How to measure the impact of parameters perturbations on predictions? How to assess the validity domain, in the parameter space, of a prediction?

Grid search wasteful and often incorrect → Parametric optimization
[Gusfield et al, SODA 1994] [Pachter & Strumfels, 2005] [Forouzmand & Citsaz, Bioinf. 2013]

The Newton polytope

Consider additive features F_1, \dots, F_k + objective function f^* such that:

$$f^*: T \to \alpha_1 \cdot F_1(T) + \alpha_2 \cdot F_2(T) + \cdots + \alpha_k \cdot F_k(T)$$

where $(\alpha_1, \dots, \alpha_k)$ are the parameters of the optimization.

We call $(F_1(T), \dots, F_k(T))$ the **signature** of T.

Definition (Newton polytope)

Newton polytope = Convex hull of signatures reached in the search space of a given instance

Property 1: The Newton polytope only contains signatures that are (co)optimal for some parameters vector

Property 2: The Newton polytope overlaps with the **Pareto front**, yet the two are incomparable

Property 3: Normal vectors of facets (lines) represent parameters such that all signatures in the facet are co-optimals (here, for minimization)

Property 1: The Newton polytope only contains signatures that are (co)optimal for some parameters vector

Property 2: The Newton polytope overlaps with the **Pareto front**, yet the two are incomparable

Property 3: Normal vectors of facets (lines) represent parameters such that all signatures in the facet are co-optimals (here, for minimization)

Property 1: The Newton polytope only contains signatures that are (co)optimal for some parameters vector

Property 2: The Newton polytope overlaps with the **Pareto front**, yet the two are incomparable

Property 3: Normal vectors of facets (lines) represent parameters such that all signatures in the facet are co-optimals (here, for minimization)

Property 1: The Newton polytope only contains signatures that are (co)optimal for some parameters vector

Property 2: The Newton polytope overlaps with the **Pareto front**, yet the two are incomparable

Property 3: Normal vectors of facets (lines) represent parameters such that all signatures in the facet are co-optimals (here, for minimization)

Normal fan

a. Polytope computation

b. Cone segmentation

c. Robustness analysis

Computing the normal fan:

- Compute Polytope (but how?)
- Operive the normals of the polytope facets
- Project them back onto the origin (dual parameter space)
- Segment param. space into (hyper)cones where a single signature rules

Normal fan

b. Cone segmentation

c. Robustness analysis

Computing the normal fan:

- Compute Polytope (but how?)
- Openion of the polytope facets
- Project them back onto the origin (dual parameter space)
- Segment param. space into (hyper)cones where a single signature rules

Computing the polytope

Thanks to ADP, simple algebraic substitution:

$$\begin{split} & \min \longrightarrow \text{Union + Convex Hull} \\ & + \longrightarrow \text{Minkowski sum + Convex Hull} \\ & \alpha_i \cdot F_i(\text{fun}) \longrightarrow (0, \dots, F_i(\text{fun}), \dots, 0) \end{split}$$

Union

→

Minkowski sum

- ► Works even for ambiguous DP schemes (but completeness matters!)
- ▶ In practice, much fewer points that the worst-case $\mathcal{O}(D^{m-1})$ bound
- Implementation aspects a bit tricky (qhull, double representation...)

Computing the polytope

Thanks to ADP, simple algebraic substitution:

$$\min \longrightarrow \text{Union} + \text{Convex Hull} + \longrightarrow \text{Minkowski sum} + \text{Convex Hull}$$
 $\alpha_i \cdot F_i(\text{fun}) \longrightarrow (0, \dots, F_i(\text{fun}), \dots, 0)$
Union Minkowski sum

- Works even for ambiguous DP schemes (but completeness matters!)
- In practice, much fewer points that the worst-case $\mathcal{O}(D^{m-1})$ bound
- ► Implementation aspects a bit tricky (qhull, double representation...)

Conclusion

Still many **generic applications** of ADP to explore:

- Exotic semi-rings + post-treatments (DFT, Normal Fan analysis)
- Grammar rewriting (Moments)
- Variations on stochastic backtrack (Boltzmann multidim., Boustrophedon, Non-redundant sampling)
- ► Generic optimizations (Sparsification?)

and low-level implementation for free!

Enumerative combinatorics helps by providing principled ways to:

- ► Transform grammars to do one's bidding (cf Labelle's species theory)
- Shorten unambiguity/completeness proofs through generating functions

But grammars (even multiple) are **not** co-substantial to ADP!

ightarrow Extend on the generative formalism? (while remaining effective)

Conclusion

Still many **generic applications** of ADP to explore:

- Exotic semi-rings + post-treatments (DFT, Normal Fan analysis)
- Grammar rewriting (Moments)
- Variations on stochastic backtrack (Boltzmann multidim., Boustrophedon, Non-redundant sampling)
- Generic optimizations (Sparsification?)

and low-level implementation for free!

Enumerative combinatorics **helps** by providing principled ways to:

- Transform grammars to do one's bidding (cf Labelle's species theory)
- Shorten unambiguity/completeness proofs through generating functions

But grammars (even multiple) are **not** co-substantial to ADP!

→ Extend on the generative formalism? (while remaining effective)

Conclusion

Still many **generic applications** of ADP to explore:

- Exotic semi-rings + post-treatments (DFT, Normal Fan analysis)
- Grammar rewriting (Moments)
- Variations on stochastic backtrack (Boltzmann multidim., Boustrophedon, Non-redundant sampling)
- Generic optimizations (Sparsification?)

and low-level implementation for free!

Enumerative combinatorics **helps** by providing principled ways to:

- ► Transform grammars to do one's bidding (cf Labelle's species theory)
- Shorten unambiguity/completeness proofs through generating functions

But grammars (even multiple) are **not** co-substantial to ADP!

 \rightarrow Extend on the generative formalism? (while remaining effective)

Combinatorics help in the design of DP schemes

Reminder: Generating function of secondary structures [Waterman1978]

$$S(z) := \sum_{n \ge 0} s_n \, z^n = \frac{1 - z + z^2 - \sqrt{1 - 2z - z^2 - 2z^3 + z^4}}{2z^2}$$

- ► DP scheme unambiguous;
- ► Completeness can be established by cardinality argument

Combinatorics help in the design of DP schemes

Reminder: Generating function of secondary structures [Waterman1978]

$$S(z) := \sum_{n \ge 0} s_n \ z^n = \frac{1 - z + z^2 - \sqrt{1 - 2z - z^2 - 2z^3 + z^4}}{2z^2}$$

- DP scheme unambiguous;
- ▶ Completeness can be established by cardinality argument

$$A(z) = \begin{cases} \operatorname{Seq}(z) \\ z^2 A(z) \\ z \operatorname{Seq}(z) z^2 A(z) + z^2 A(z) \operatorname{Seq}(z) z \\ + z \operatorname{Seq}(z) z^2 A(z) \operatorname{Seq}(z) z \end{cases} B(z) = \begin{cases} B(z) C(z) \\ \operatorname{Seq}(z) B(z) \\ C(z) \end{cases}$$

$$C(z) = \begin{cases} C(z) z \\ z^2 A(z) \end{cases}$$

$$\operatorname{Seq}(z) = 1 + z \operatorname{Seq}(z)$$

$$A(z) = \frac{1-z-z^2-\sqrt{1-2z-z^2-2z^3+z^4}}{2z^2}$$
 = W(z) - 1 (OMG! The *empty* secondary structure is missing...)