Some little-known tricks in ensemble algebraic

dynamic programming and enumerative
combinatorics

Yann Ponty

LIX, CNRS/Ecole Polytechnique

Enumerative combinatorics is taking ADP by

storm, don’t be left out!

Yann Ponty

LIX, CNRS/Ecole Polytechnique

One weird trick algorithm designers don’t want

you to know!!

Yann Ponty

LIX, CNRS/Ecole Polytechnique

Closeted combinatorist found this old algebra

in the attic, watch what happened next!!!

Yann Ponty

LIX, CNRS/Ecole Polytechnique

Optimality and beyond

Why do we optimize?
» For fun: Because, who doesn’t just /ove algorithms?

Optimality and beyond

Why do we optimize?
» For fun: Because, who doesn’t just /ove algorithms?
» For money: Operations research, network design. . .

Optimality and beyond

Why do we optimize?
» For fun: Because, who doesn’t just /ove algorithms?
» For money: Operations research, network design. . .

» For love (of exhaustivity): Correct negative results
(vs heuristics)

Optimality and beyond

Why do we optimize?
» For fun: Because, who doesn’t just /ove algorithms?
» For money: Operations research, network design. . .

» For love (of exhaustivity): Correct negative results
(vs heuristics)

» To predict the unobservable: RNAs, phylogenies. ..

But optima may be poorly representative of search space

= Ensemble dynamic programming

Ensemble analysis in RNA research

Paradigm shifts: Energy-minimization — Thermodynamics — Kinetics

} » Partition function

» Inside/Outside

g » Max Expected Accuracy
Most likely features rather than most likely solution

» Partitioned approaches
Distributions more meaningful than objects

» Sampling/clustering

Minimal Algebraic DP framework

In this talk, ADP instance =

> Yield Grammar (Context-Free)

» Each derivation decorated with a constructor (function)
> Implicitly generates search space for instance

(no filtering beyond size of terminal char/e)
> Derivations implicitly combined by a choice function &

> Evaluation Algebra, defining semantics of functions
» Homogenous domain/data type A

Example: Nussinov-style RNA folding, input sequence w, |w| = n

S — up(char, S) | pair(char, S, char, S) | nil(¢) (choice @)
MFE algebra: (A, ®) := (R, min) Partition function: (A, @) := (R, +)
> up(iet,n,ved)—v > up(i,v) > v
> pair(i, v1, J Vo) = vi + Vo + E(w;, w)) > pair(i, vy, j, vo) — € EMm) B vy x vy
> nil(i) — > nil(i) = 0

with E(x,y) = —1if {x,y} € {{G,C}, {A, U}, {G, U}}, or +co otherwise

Additive features of a DP scheme

Additive feature F: Associate atomic contributions to the constructor terms,
and accumulate them over parse tree/term.

Example: #Base-pairs feature Fp,
S — up(char, S) | pair(char, S, char, S) | nil(¢) (choice @)
Fpp(pair) := 1, Fpp(—) :=0

Typical candidates for F:
> #Base-pairs, #Unpaired
> 5°/3’ distance
> Free-Energy (requires arguments)
> #Helices, #Hairpins, #Multiloops, #Bulges. .. (refined grammar)
> Distance to reference structure

Part I: Moments of additive
features in Boltzmann-like
distributions

Motivation

Thermodynamic equilibrium, Boltzmann-distributed sec. struct. for RNA w:

B(w, S)

P(S|w)= =2

with 2, = Y B(w, ') and B(w, S) := e EW:S)#
S/

General belief: Thermodynamics more accurate than energy minimization
= Functional evolutionary pressure on Boltzmann ensemble?

Functional folding? lll-defined folding: Bistable RNA
mRNA? Kinetics?

Function-specific nature of ensemble features — 1

Consider moments 4 (expect.), uo (=2var.).. . of free-energy distribution

N
wp=E(E(S)P|w) =) E(w,8)P-P(S§|w) =2
I3 Y 0
with Y =Yg E(w, §')P - B(w, S') (Note: Zy = Vo)
, deviations — . variances —_—
02 mmiRna | 0 W miRNA
0.2
miRNAs " ors
Sl |11} ! "
025075 125 175225275 325 375425475525 1 2 3 4 5 6 7 8 9 10 11
deviations variances
0.25 - 0.
- E E:r::::xm 035 & Random
tRNAs "*
0.1
0.05

Pre-ML (i.e. modest) conclusion: None of the statistics has sufficient
separating power to distinguish individual biological and random sequences
[Miklos, Meyer & Nagy, Bul Mat Bio 2005]

Function-specific nature of ensemble features — 2

Structural RNAs miRNAs

(@~

Sequence count
2 3 4 s

[CV

ence count
34 s

Average base pairs distance

Boltzmann sampling shows that miRNAs have distinct base-pair distributions
than dinucleotide shuffles. [Chan & Ding, J Mat Bio 2008]

Other features/moments? (at which cost?)

Objective

Problem: Given ADP scheme for partition function Z,,, compute’

Yo=Y Fw, 8P -2,¢
S/
where F is an additive feature.

Typical candidates for F:
> Energy
> Distance to reference structure
> #Helices, #Hairpins, #Multiloops, #Bulges. ..
> 5’/3 distance

Expected value of F = Y;/),; Std dev of F = \/yz/yo — Y12/ V62

'as lazily as possible

Objective

Problem: Given ADP scheme for partition function Z,,, compute?

yp1...pk = ZF1 (W, S/)P1 cee Fk(W, S/>pk . ZW,S’
S/
where F;, - - -, Fx are additive features.

Typical candidates features:
> Energy
> Distance to reference structure
> #Helices, #Hairpins, #Multiloops, #Bulges. ..
> 3'/5’ distance

Expected value of F =)4 /))y; Std dev of F = \/yz/yo — Y12/

Pearson Correlation of F and F' = y1,12_y0'1.y1,0/y0,0 =
\/3’2,0*371,0 /3’0,0'\/370,2*370,1 /Yo,0

2as lazily as possible

Moments through controlled ambiguity

Idea: Introduce controlled ambiguity within part. fun. grammar
[Ponty, Saule WABI 2011]

For each parse tree T generated with weight 5(T) by original DP scheme:

> Duplicate tree | T| times, pointing a different node in each copy;

> Multiply weight of copies by feature value of pointed node.
Overall weight of T-duplicates now becomes Y-, F(v) x B(T) = F(T) x B(T)
Example: Structure ((.)), Feature = #base pairs

Original

pair

a

pair nil
up nil

nil
Weight=8(T)

Property: Computing partition function over duplicates yields Y 7 F(T) x B(T) = V.

Remark: Similar to (partial) pointing in enumerative combinatorics [Denise, P, Termier TCS 2010]

Moments through controlled ambiguity

Idea: Introduce controlled ambiguity within part. fun. grammar
[Ponty, Saule WABI 2011]
For each parse tree T generated with weight 5(T) by original DP scheme:
> Duplicate tree | T| times, pointing a different node in each copy;
> Multiply weight of copies by feature value of pointed node.
Overall weight of T-duplicates now becomes Y-, F(v) x B(T) = F(T) x B(T)
Example: Structure ((.)), Feature = #base pairs

Original
pair paire pair pair pair pair pair
/N /N N /N /N N N
pair nil — pair nil pair0 nil pair nil pair il pair nil pair nil®
/\ /\ _ N _ /N /\
up nil up il up nil upe nil up nil up nil® up nil
\ \ \ \ ! \ \
nil nil nil nil nil® nil nil
Weight=8(T)

Property: Computing partition function over duplicates yields Y 7 F(T) x B(T) = V.

Remark: Similar to (partial) pointing in enumerative combinatorics [Denise, P, Termier TCS 2010]

Moments through controlled ambiguity

Idea: Introduce controlled ambiguity within part. fun. grammar
[Ponty, Saule WABI 2011]
For each parse tree T generated with weight 5(T) by original DP scheme:
> Duplicate tree | T| times, pointing a different node in each copy;
> Multiply weight of copies by feature value of pointed node.
Overall weight of T-duplicates now becomes Y-, F(v) x B(T) = F(T) x B(T)
Example: Structure ((.)), Feature = #base pairs

Original
pair paire pair pair pair pair pair

pair nil — pair nil pair0 nil pair nil pair il pair nil pair nil®

up nil up il up nil up9 nil up nil up nil® up nil

\ \ \ \ ! \ \

nil nil nil nil nil® nil nil

Weight=5(T) Weight=B(T)-1 Weight=3(T)-1 Weight=3(T)-0 Weight=53(T)-0 Weight=53(T)-0 Weight=53(T)-0
L
! Total Weight = 3(T)-#occ. of pair= B(T)- 2 !

Property: Computing partition function over duplicates yields Y 7 F(T) x B(T) = V.

Remark: Similar to (partial) pointing in enumerative combinatorics [Denise, P, Termier TCS 2010]

Moments through controlled ambiguity

Idea: Introduce controlled ambiguity within part. fun. grammar
[Ponty, Saule WABI 2011]
For each parse tree T generated with weight 5(T) by original DP scheme:
> Duplicate tree | T| times, pointing a different node in each copy;
> Multiply weight of copies by feature value of pointed node.
Overall weight of T-duplicates now becomes Y-, F(v) x B(T) = F(T) x B(T)

Example: Structure ((.)), Feature = #unpair bases

Original
pair pair9 pair pair pair pair pair
pair nil — pair nil paire nil pair nil pair nil pair nil pair nil®
up nil up il up nil up9 nil up nil up nil® up nil
\ \ \ \ ! \ \
nil nil nil nil nil® nil nil
Weight=5(T) Weight=8(T)-0 Weight=B(T)-0 Weight=8(T)-1 Weight=5(T)-0 Weight=B(T)-0 Weight=5(T)-0
1
I

Total Weight = Y, 7 B(T) - F(v) = B(T)-1 !

Property: Computing partition function over duplicates yields Y7 F(T) x B(T) = V.

Remark: Similar to (partial) pointing in enumerative combinatorics [Denise, P, Termier TCS 2010]

Higher-order moments

Pointing can be generalized using multiple (types of) points.
Any ®;-pointing of node v € T contributes factor F;(v) to weight

Example: Two (possibly identical) features F (@ point) and F’ (M point)

pair®® pair® pair® pair® pair® pair® pair® pair pair pair

pair pair
pair nil pair® nil pair il pair il pair il pair nil® pair nil pair® il pair il pair nil pair nil pair nil®
up nil up nil up® il up il up nil® up nil up il up il uwp® il up il up nil® up il
[[\ ‘ [[| | [\ [|
nil nil nil nil® nil nil nil® nil® nil® nil®® nil® nil®
pair® pair pair pair pair pair pair® pai pair pair pair pair
pai® il pair®® nil pai® il pai® nil pai® il pai® nil® pair nil pair® il pair il pair il pair nil pair nil®
up nil up nil up® il up il up nil® up nil up nil® up ni® up® ni® up nil® up ni®= up il
| | | | | | | | | | |
nil nil il nil® nil nil nil il nil nil® nil nil
pair® pair pair pair pair pair pair® pair pair pair pair pair
pair nil pair® nil pair il pair il pair il pair nil® pair ni® pair® ni® pair nil® pair i pair nil pair nil®!
up® nil up® nil up®® il up® il up® nil® up® nil up il up nil up® il up il up nil® up il
| | | ! | | | | | ! | |
nil il il nil® nil nil il il il nil® nil il

Overall weight of T-duplicates: ¥ c7 Y c7 F(V) - F'(V/) = F(T) - F'(T)

Property: Computing the partition function on a grammar Gp, ..o, generating
(p1 - - - px)-pointed versions of original trees yields YV, ...p,
— How to construct Gp,..p, ?

Constructing a single-pointed grammar

Pointing derivation as a propagation/dropping scheme for G :

> For each non-terminal S € NT, create new NT S® responsible for
placing a point in the sub-parsetrees generated from S;

> Each derivation S — fun(argy, ..., argm), argi € NT U T U {e}, leads to:

s® fune(arg1 argm) (Dropping point)
| fun(argy ® . argm) (Propagation, only if arg; € NT)
| fun(argy, ..., argme) (Propagation, only if argm € NT)

» Enrich algebra with fun® (arg, . .., argm) — F(fun) x fun(argy, ..., argm)

Constructing a single-pointed grammar

Pointing derivation as a propagation/dropping scheme for G :

> For each non-terminal S € NT, create new NT S® responsible for
placing a point in the sub-parsetrees generated from S;

> Each derivation S — fun(argy, ..., argm), argi € NT U T U {e}, leads to:

s® fune(arg1 argm) (Dropping point)

| fun(argy ® . argm) (Propagation, only if arg; € NT)

| fun(argy, ..., argme) (Propagation, only if argm € NT)

> Enrich algebra with funo(arg1 argm) — F(fun) x fun(argy, ..., argm)
Example:

S — pair(char, S, char, S) | up(char, S) | nil(¢)
s® paire(char, S, char, S) | pair(char, S® char, S) | pair(char, S, char, Se)
| Upe(char, S) | up(char, Se) | nilo(e)

Constructing a single-pointed grammar

Pointing derivation as a propagation/dropping scheme for G :

> For each non-terminal S € NT, create new NT S® responsible for
placing a point in the sub-parsetrees generated from S;

> Each derivation S — fun(argy, ..., argm), argi € NT U T U {e}, leads to:

s® fune(arg1 argm) (Dropping point)

| fun(argy ® . argm) (Propagation, only if arg; € NT)

| fun(argy, ..., argme) (Propagation, only if argm € NT)

> Enrich algebra with funo(arg1 argm) — F(fun) x fun(argy, ..., argm)
Example:

S — pair(char, S, char, S) | up(char, S) | nil(¢)
s® paire(char, S, char, S) | pair(char, S® char, S) | pair(char, S, char, Se)
| Upe(char, S) | up(char, Se) | nilo(e)

Complexity: Similar as initial grammar, up to constants
Memory =2, Timex (m* + 1) (m* := max#NTargs(f))

Constructing a multiple-pointed grammar

Iterated pointing : Zg, = V1, Z(g,), = V2. Z((G,)y); = V3 ---
Complexity overhead for computing V,: Memory x2P, Timex (m+ 1)P

Constructing a multiple-pointed grammar

Iterated pointing : Zg, = V1, Z(g,), = V2. Z((G,)y); = V3 ---
Complexity overhead for computing)p: Memoryx 2P, Timex (m+ 1)P
Multiply-pointed derivations: [Ponty, Saule WABI 2011]

> VS € NT, create new NTs S®1,... s®p responsible for placing 1 to p
points in the sub-parsetrees generated from S;

» Each derivation S — fun(argy, ..., argm), leads to:

s®q U (q9)1‘un°‘70(arg1°‘71 arg,®m)
ot +am=g 91927 Gm
s.t. gi=0if arg;i¢NT

> Add to algebra funeq(arg1

Constructing a multiple-pointed grammar

lterated pointing : Zg, =), 26 = V20 Z((G)1) = V3 -+
Complexity overhead for computlng Yp: Memoryxzp T|me>< (m+1)P

Multiply-pointed derivations: [Ponty, Saule WABI 2011]

> VS € NT, create new NTs S®1,... s®p responsible for placing 1 to p
points in the sub-parsetrees generated from S;

» Each derivation S — fun(argy, ..., argm), leads to:

s®q U (q9)1‘un°‘70(arg1°‘71 arg,®m)
Qo+q1+-+qdm= G1.G2. - Gm
s.t. gi=0if arg,eENT

> Add to algebra funeq(arg1 argm) — F(fun)9 x fun(arg,

Complexity: Memoryxp, Tlmex(p”")~ (p/m*+1)™ when k > m

Bellman’s GAP implementation in progress (M. Pommeret’s PhD)
Applications: Machine learning, RNA evolution, Approx. of density of states. ..

Part ll: Discrete Fourier
Transform for classified
ensemble DP

Classified ensemble dynamic programming

"RF00435_A"

probability

0 0 x » © F)) n ®
Hamming distance from reference structure

[Hagio et al, Bioinf. 2018]

distance o molas ablo slo

5 10 15

EE 40
distance fo ground state

[Lorenz, Flamm, Hofacker, GCB 2009]

510"

410" | /\

310" + |

MFE

) L — L L h .
-12.410.0 250 50.0 75.0 100.0 125.0
keal/mol

[Cupal, Hofacker, Stadler GCB 1996]

> Measure prevalence of sub-class
» Projection of search space

» Combinatorics vs Optimality

» Computationally challenging

Explicit/implicit convolution products

Objective: For all value v in the co-domain of feature F, compute

z0) = Y B(T)
TeTw st F(T)=v

Remark: Co-domain D can be exponentially large, e.g. when values taken
by F are exponentially far apart (on |w|).

Explicit/implicit convolution products

Objective: For all value v in the co-domain of feature F, compute

z0) = Y B(T)
TeTw st F(T)=v

Remark: Co-domain D can be exponentially large, e.g. when values taken
by F are exponentially far apart (on |w|).

First idea: Duplicate NTs, distribute targeted value

S — fun(argy, ..., argm) — sV U fun(argy, ..., argm)

v/ vy F (fun)=v
s.t. vj=0if arg;¢NT

Complexity: Memory x |D|, Timex |D|™
Alt.: Use polynomial data-type — complexity unchanged yet better constants

Impractical for typical applications (|D| = n, r? ..., m* = 2)

Interpolation

Second idea: Lagrange interpolation [Waldispiihl & P, RECOMB 2011]
» Add monomial, based on local feature contribution, to evaluation algebra

fun(argy, ..., argm) — xF) 5 fun(argy, .. ., argm)

for x a formal variable;
> For any concrete value of x, grammar/New algebra pair now computes

Z(x) = Y B(T) xFT =y zv.x
TeTwst F(T)=v veD

> Z(x) is a polynomial whose coeffs are interpolated from |D| evaluations
Complexity: Timex |D| +|D|2; Memory +|D|

Interpolation

Second idea: Lagrange interpolation [Waldispiihl & P, RECOMB 2011]
» Add monomial, based on local feature contribution, to evaluation algebra

fun(argy, ..., argm) — xF) 5 fun(argy, .. ., argm)

for x a formal variable;
> For any concrete value of x, grammar/New algebra pair now computes
Z(x) = Y B(T) xF(D =y zv.xv
TeTwst F(T)=v veD

> Z(x) is a polynomial whose coeffs are interpolated from |D| evaluations
Complexity: Timex |D| +|D|2; Memory +|D|

Final idea: Discrete Fourier Transform (DFT) [Senter et al, RECOMB'13 & Plos One]
> Algebra change to evaluate Z(w) on (complex) |D|-th roots of —1;
> Inverse DFT gives coeffs in O(|D| log |D|) after |D| evaluations.
Complexity: Timex|D| + |D| log; Memory +|D|

Conclusion on classified ensemble DP

> Inverse DFT allows an implicit computation of classified partition
function/counting

> Stable numerically & amenable to interval arithmetics (Sato et al)
> Bottleneck (evaluation on D points) embarassingly parallelizable

Conclusion on classified ensemble DP

> Inverse DFT allows an implicit computation of classified partition
function/counting

> Stable numerically & amenable to interval arithmetics (Sato et al)
> Bottleneck (evaluation on D points) embarassingly parallelizable

» Drastic asymptotic speed-up, some examples:
> Density of states: Feature = Free-energy

Time/Memory: ©(n5)/0(n®) 25 @(n*)/0(m?) (©(n®) on n cores)
> RNAbor: Feature = Base-pair distance to reference structure
Time/Memory: ©(n5)/0(nd) 25 @(n*)/0(n?) (©(n®) on n cores)
> RNA2DFold: Features = distances to two reference structures
Time/Memory: ©(n”)/0(n*) 25 @(n5)/0(n?) (®(n®) on n? cores)
> Caveat 1: Sensitive to #classes (Moments computations are not!)

> Caveat 2: Stochastic backtrack/sampling not readily available
— Multidimensional Boltzmann sampling [Bodini & P, DMTCS & AOFA 2010]

Part lll: Parametric
optimization and ADP

Motivation

Meanwhile, in bioinformatics, you sometimes need a single solution:
» Obijective function parameters are guess-timated
> Subject to experimental noise
> Inferred from partial data

How to measure the impact of parameters perturbations on predictions?
How to assess the validity domain, in the parameter space, of a prediction?

S

i (a//’ b//)

10

#ABreak

a. Polytope computation b. Cone segmentation c. Robustness analysis

Motivation

Meanwhile, in bioinformatics, you sometimes need a single solution:
» Obijective function parameters are guess-timated
> Subject to experimental noise
> Inferred from partial data

How to measure the impact of parameters perturbations on predictions?
How to assess the validity domain, in the parameter space, of a prediction?

Grid search wasteful and often incorrect — Parametric optimization
[Gusfield et al, SODA 1994] [Pachter & Strumfels, 2005] [Forouzmand & Citsaz, Bioinf. 2013]

10

#ABreak

a. Polytope computation b. Cone segmentation c. Robustness analysis

The Newton polytope

Consider additive features Fq,-- -, Fx + objective function f* such that:
FFoT—ag-F(T)+ag-Fo(T)+ -+ +ak- Fe(T)

where (a1, - - -, ay) are the parameters of the optimization.

We call (F(T),---, Fx(T)) the signature of T.

Definition (Newton polytope)

Newton polytope = Convex hull of
signatures reached in the search space of
a given instance

Some properties of the Polytope

@ Pareto optimal
@ Newton polytope
® Both

Property 1: The Newton polytope only contains signatures that are
(co)optimal for some parameters vector

Some properties of the Polytope

@ Pareto optimal
@ Newton polytope
® Both

Property 1: The Newton polytope only contains signatures that are
(co)optimal for some parameters vector

Property 2: The Newton polytope overlaps with the Pareto front, yet the two
are incomparable

Some properties of the Polytope

@ Pareto optimal
@ Newton polytope
® Both

Property 1: The Newton polytope only contains signatures that are
(co)optimal for some parameters vector

Property 2: The Newton polytope overlaps with the Pareto front, yet the two
are incomparable

Property 3: Normal vectors of facets (lines) represent parameters such that
all signatures in the facet are co-optimals (here, for minimization)

Some properties of the Polytope

@ Pareto optimal
@ Newton polytope
® Both

Property 1: The Newton polytope only contains signatures that are
(co)optimal for some parameters vector

Property 2: The Newton polytope overlaps with the Pareto front, yet the two
are incomparable

Property 3: Normal vectors of facets (lines) represent parameters such that
all signatures in the facet are co-optimals (here, for minimization)

Property 4: Any param. vector which falls between the normal vectors
adjacent to a vertex admits this vertex as co-optimal

Normal fan

#AGain

s : (a//’ b//)
|

#ABreak

a. Polytope computation b. Cone segmentation c. Robustness analysis

Computing the normal fan:
@ Compute Polytope
@ Derive the normals of the polytope facets
@ Project them back onto the origin (dual parameter space)
© Segment param. space into (hyper)cones where a single signature rules

Normal fan

#AGain

s : (a//’ b//)
|

#ABreak

a. Polytope computation b. Cone segmentation c. Robustness analysis

Computing the normal fan:
@ Compute Polytope (but how?)
@ Derive the normals of the polytope facets
@ Project them back onto the origin (dual parameter space)
© Segment param. space into (hyper)cones where a single signature rules

Computing the polytope

Thanks to ADP, simple algebraic substitution:

min — Union + Convex Hull
+ — Minkowski sum + Convex Hull
aj- Fi(fun) — (O, ..., Fi(fun),..., 0)

Union Minkowski sum

w-w S

Computing the polytope

Thanks to ADP, simple algebraic substitution:

min — Union + Convex Hull
+ — Minkowski sum + Convex Hull
aj- Fi(fun) — (O, ..., Fi(fun),..., 0)

Union Minkowski sum

w-Ww - .
» Works even for ambiguous DP schemes (but completeness matters!)

» In practice, much fewer points that the worst-case O(D™~') bound
> Implementation aspects a bit tricky (ghull, double representation. . .)

Conclusion

Still many generic applications of ADP to explore:
> Exotic semi-rings + post-treatments (DFT, Normal Fan analysis)
» Grammar rewriting (Moments)

> Variations on stochastic backtrack (Boltzmann multidim., Boustrophedon,
Non-redundant sampling)

> Generic optimizations (Sparsification?)
and low-level implementation for free!

Conclusion

Still many generic applications of ADP to explore:
> Exotic semi-rings + post-treatments (DFT, Normal Fan analysis)
» Grammar rewriting (Moments)

> Variations on stochastic backtrack (Boltzmann multidim., Boustrophedon,
Non-redundant sampling)

> Generic optimizations (Sparsification?)
and low-level implementation for free!

Enumerative combinatorics helps by providing principled ways to:
» Transform grammars to do one’s bidding (cf Labelle’s species theory)
» Shorten unambiguity/completeness proofs through generating functions

Conclusion

Still many generic applications of ADP to explore:
> Exotic semi-rings + post-treatments (DFT, Normal Fan analysis)
» Grammar rewriting (Moments)

> Variations on stochastic backtrack (Boltzmann multidim., Boustrophedon,
Non-redundant sampling)

> Generic optimizations (Sparsification?)
and low-level implementation for free!

Enumerative combinatorics helps by providing principled ways to:
» Transform grammars to do one’s bidding (cf Labelle’s species theory)
» Shorten unambiguity/completeness proofs through generating functions

But grammars (even multiple) are not co-substantial to ADP!

— Extend on the generative formalism? (while remaining effective)

That’s all folks!

...orisit?

Combinatorics help in the design of DP schemes

Reminder: Generating function of secondary structures [Waterman1978]

1— 2 _V1—2z-22_-2784+ 7%
S(z):=) s 2" = 2422V > ha
n>0 2z

» DP scheme unambiguous;

> Completeness can be established by cardinality argument

oo f k b

0 e
AR L

Combinatorics help in the design of DP schemes

Reminder: Generating function of secondary structures [Waterman1978]

—z+22-1-2z-22-28+ 27

1
— n _
S(z):=) sn2"= 272

n>0

» DP scheme unambiguous;
> Completeness can be established by cardinality argument

Seq(z)
2A(2) B = { gols oy
A(z) ={ zSeq(z)z?A(z) + 2% A(z) Seq(z) z C(z)z
+2Seq(z) 22 A(z) Seq(z)z C(z) = { 2 A(z2)
B(z) C(z)

Seq(z) =1+ zSeq(2)

A—z—22—\/1-27—22-22817*
n 272
=W(z) —1 (OMG! The empty secondary structure is missing. ..)

A(2)

