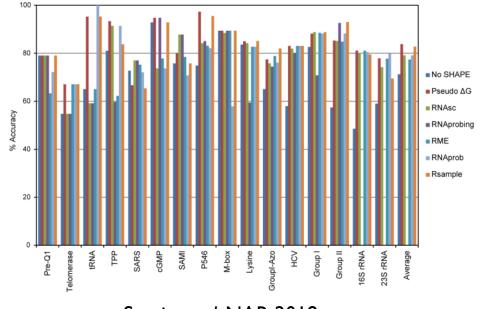


The SHAPE wars: 100% accuracy and beyond...

David H Mathews

Now, wait a minute guys...!



Spasic et al, NAR 2018

The practice of RNA modeling

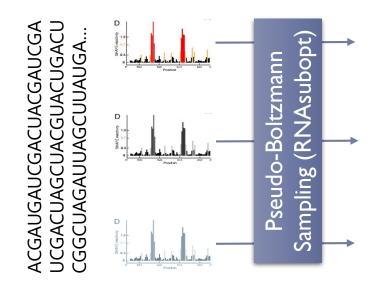
Probing is tricky to perform and interpret.

Beyond RNAPuzzle, modelers usually try different techniques and reagents, but integration is no gimme...

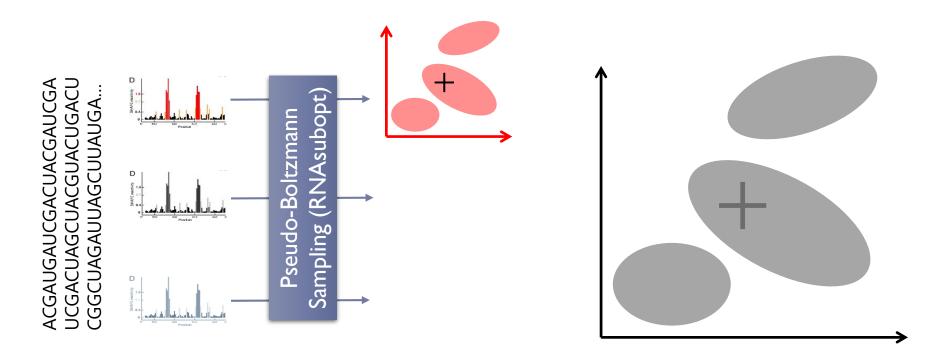
Bruno Sargueil

How to integrate multiple probing profiles?

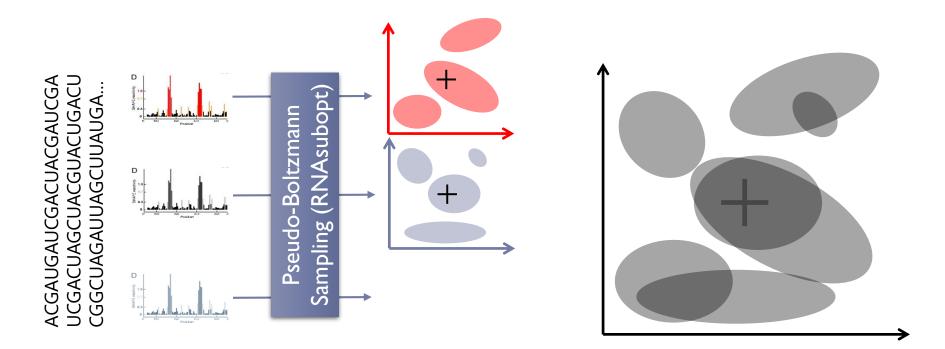
- Reactivity profiles uniformly captured as pseudo potentials in prediction methods (RNAsubopt + Soft constraints)
- Native structure should be represented in each of the pseudo-Boltzmann ensemble (maybe not at the top)



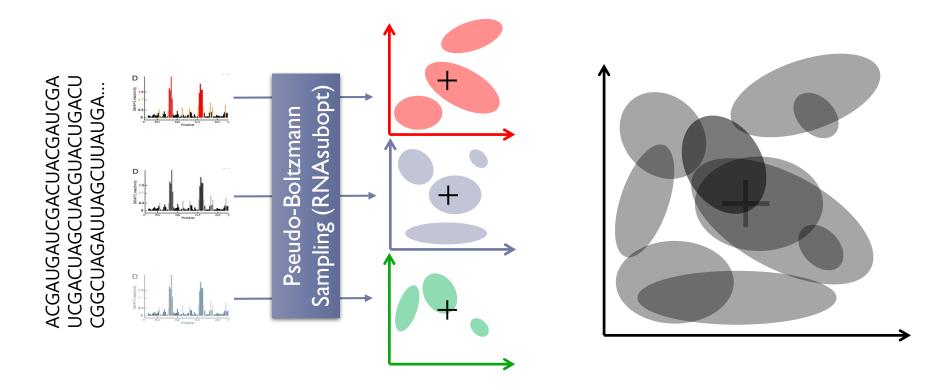
- Reactivity profiles uniformly captured as pseudo potentials in prediction methods (RNAsubopt + Soft constraints)
- Native structure should be represented in each of the pseudo-Boltzmann ensemble (maybe not at the top)

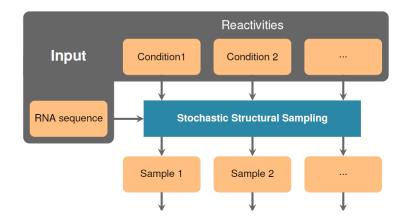


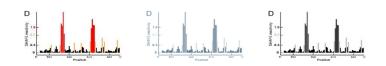
- Reactivity profiles uniformly captured as pseudo potentials in prediction methods (RNAsubopt + Soft constraints)
- Native structure should be represented in each of the pseudo-Boltzmann ensemble (maybe not at the top)

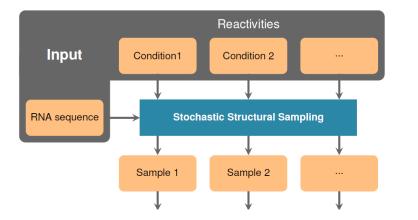


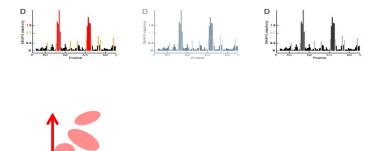
- Reactivity profiles uniformly captured as pseudo potentials in prediction methods (RNAsubopt + Soft constraints)
- Native structure should be represented in each of the pseudo-Boltzmann ensemble (maybe not at the top)

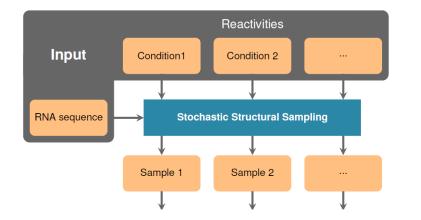


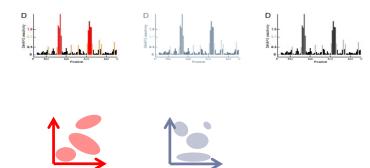


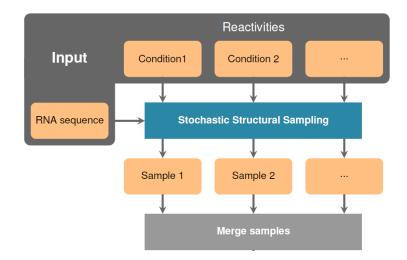


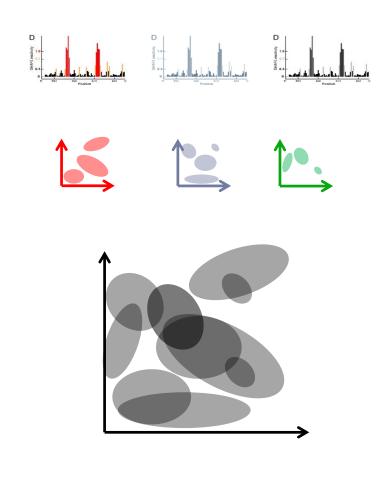


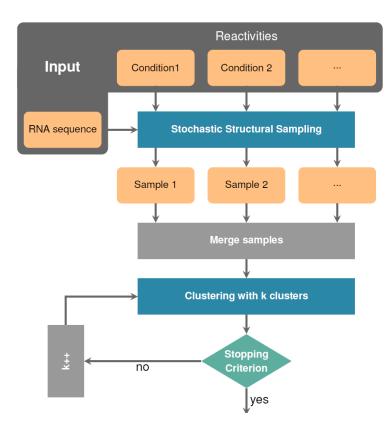


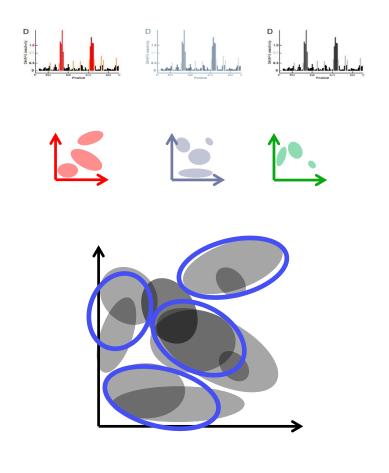


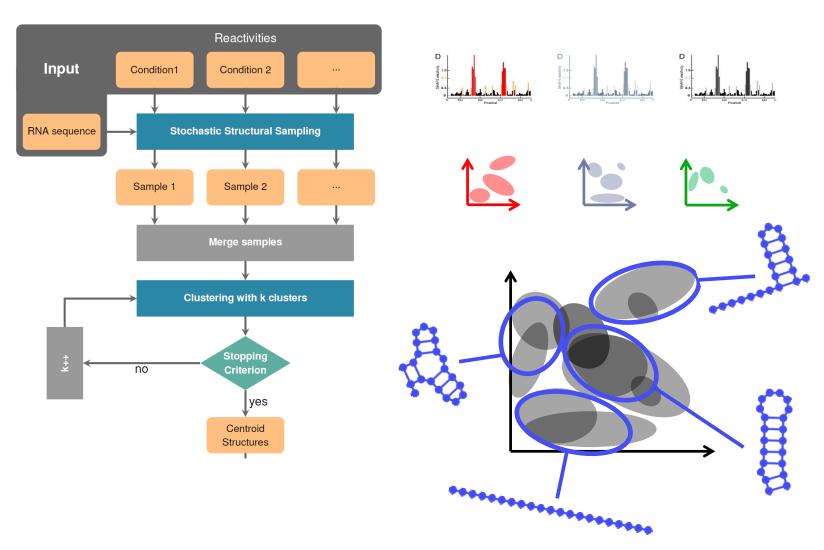


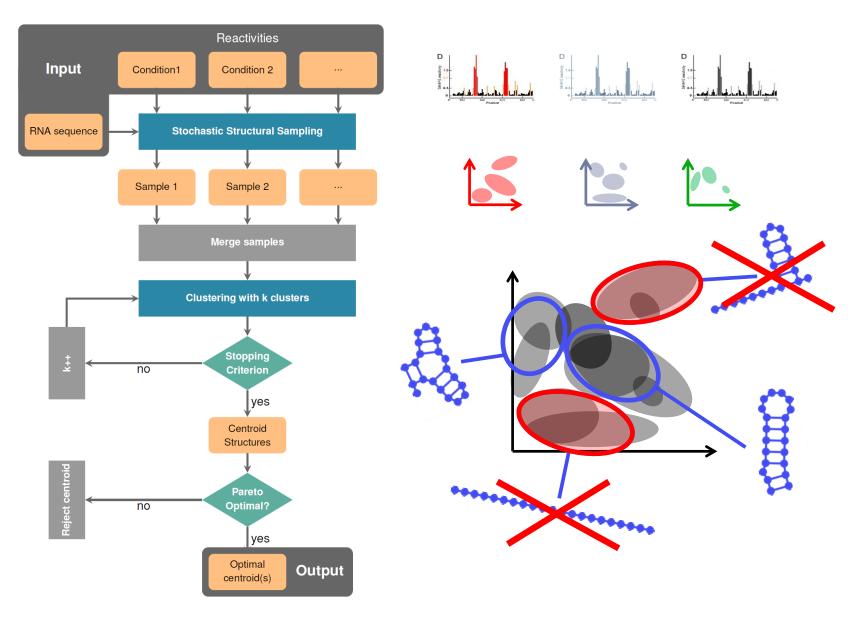












Single condition/single structure dataset

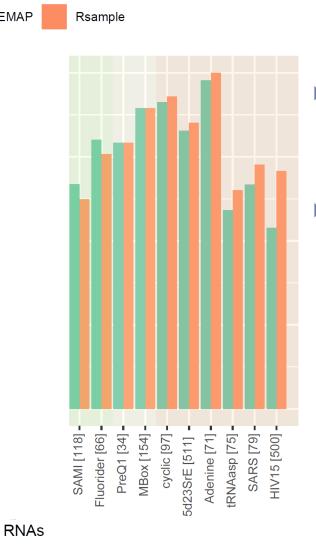
IPANEMAP Rsample

Hajdin et al dataset SHAPE IM7 50-500nts RNAs

 $GM(S \mid R) = \sqrt{Sens(S \mid R)} \times PPV(S \mid R)$ Geometric Mean

Single condition/single structure dataset

IPANEMAP

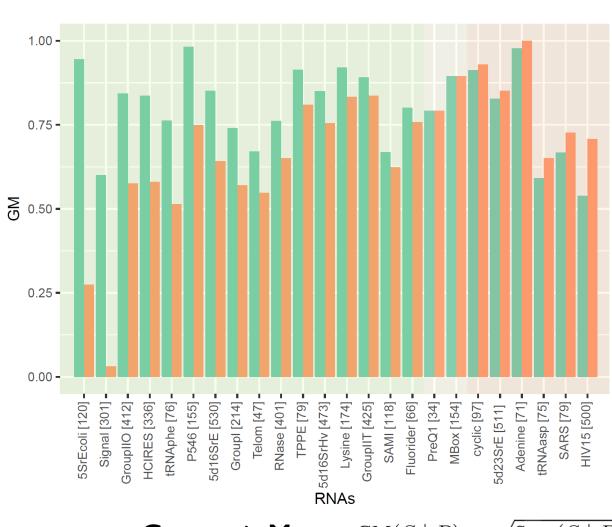


- **IPANEMAP** vs Rsample [Spasic et al, NAR 2018]
- Hajdin et al dataset SHAPE IM7 50-500nts RNAs

 $GM(S \mid R) = \sqrt{Sens(S \mid R) \times PPV(S \mid R)}$ Geometric Mean

Single condition/single structure dataset

Rsample



IPANEMAP

- IPANEMAP vs Rsample
 [Spasic et al, NAR 2018]
- Hajdin et al dataset
 SHAPE IM7
 50-500nts RNAs
- 80% GM IPANEMAP
 vs 63% GM for Rsample
- Reason: Rsample \approx MEA

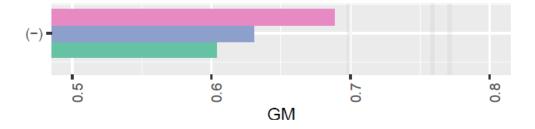
Geometric Mean $GM(S \mid R) = \sqrt{Sens(S \mid R) \times PPV(S \mid R)}$

6 RMDB RNAs

- **5s** RNA E. coli
- Glycine Riboswitch
- cidGMP riboswitch
 V. Cholerae
- P4 P6 domain
 Tetrahymena ribozyme
- add Adenine Riboswitch
- tRNA phenylalanine yeast

3 conditions

- SHAPE (NMIA)
- DMS
- CMCT



IPANEMAP

MEA [Rnafold]

MFE [Rnafold]

6 RMDB RNAs

- **5s** RNA E. coli
- Glycine Riboswitch
- cidGMP riboswitch
 V. Cholerae
- P4 P6 domain
 Tetrahymena ribozyme
- add Adenine Riboswitch
- tRNA phenylalanine yeast

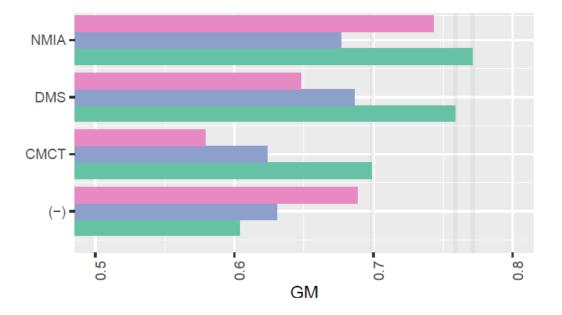
3 conditions

- SHAPE (NMIA)
- DMS
- CMCT

IPANEMAP

MEA [Rnafold]

MFE [Rnafold]

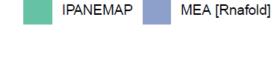


6 RMDB RNAs

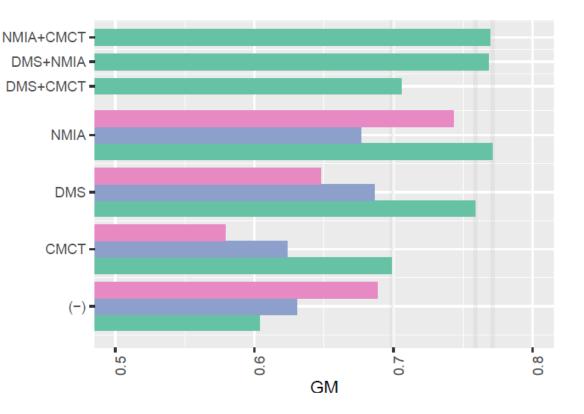
- **5s** RNA E. coli
- Glycine Riboswitch
- cidGMP riboswitch
 V. Cholerae
- P4 P6 domain
 Tetrahymena ribozyme
- add Adenine Riboswitch
- tRNA phenylalanine yeast

3 conditions

- SHAPE (NMIA)
- DMS
- CMCT



MFE [Rnafold]

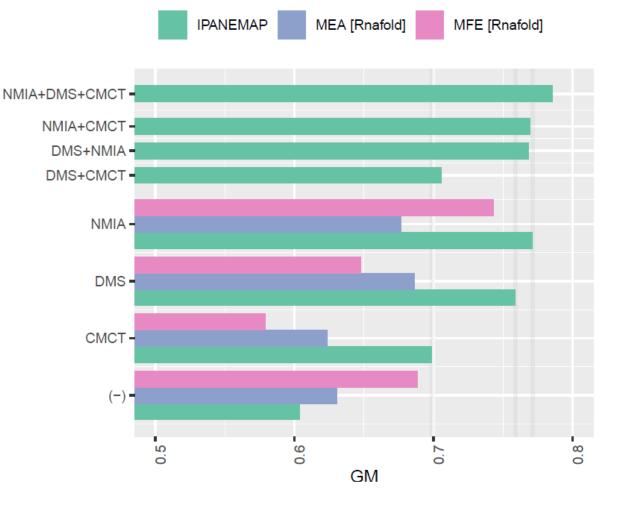


6 RMDB RNAs

- **5s** RNA E. coli
- Glycine Riboswitch
- cidGMP riboswitch
 V. Cholerae
- P4 P6 domain
 Tetrahymena ribozyme
- add Adenine Riboswitch
- tRNA phenylalanine yeast

3 conditions

- SHAPE (NMIA)
- DMS
- CMCT

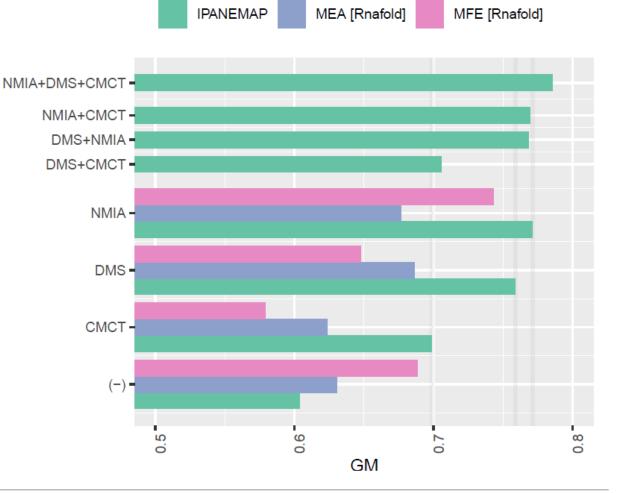


6 RMDB RNAs

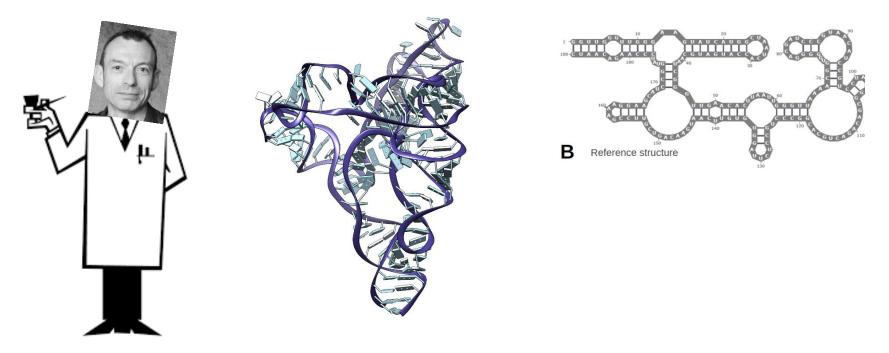
- **5s** RNA E. coli
- Glycine Riboswitch
- cidGMP riboswitch
 V. Cholerae
- P4 P6 domain
 Tetrahymena ribozyme
- add Adenine Riboswitch
- tRNA phenylalanine yeast

3 conditions

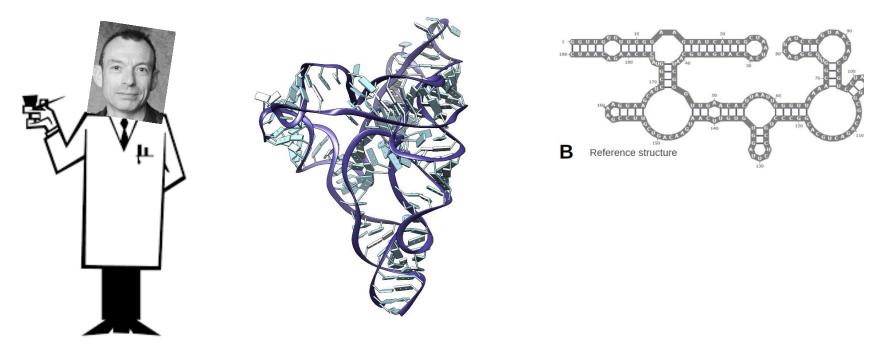
- SHAPE (NMIA)
- DMS
- CMCT



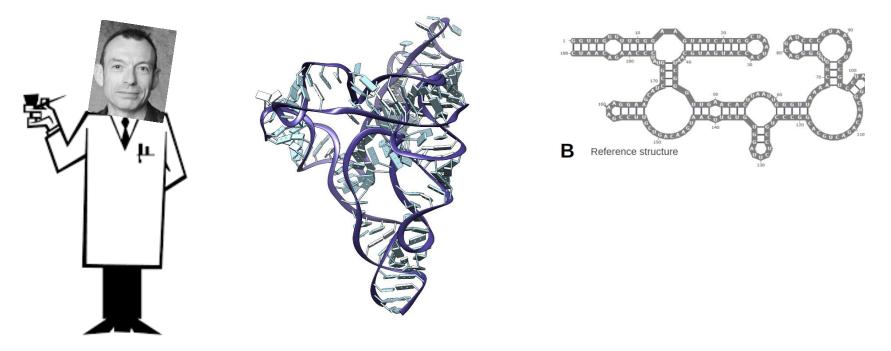
Sequence	GAUAUGAGGAGAGAUUUCAUUUUAAUGAAACACCGAAGGAGAAAUCUUUCAGGUAAAAAGGACUCAUAUUUGGACGAACCUCUGGAGAGACUUAUCUAAGAGAAGACGAGGAGAAAGCUAAUUUUAACUCAAGUAAAAGACGACGAA	GM
Ø	((((((((((((((((((((((((((((((((((((.568
CMCT	((((((()))))), ((((((()))))), ((((((()))))), ())), ()))) () (
DMS+CMCT	$((((((((\dots,)))))),((((((((\dots,)))))),\dots,))),\dots,))))))))$.658
DMS+CMCT+NMIA	$((((((((\dots, ((((\dots,))))))), ((((((((\dots, ())))))))), \dots, ()))))))) \dots \dots (((((((\dots, ()))))))) \dots \dots ((((((\dots, ((((\dots, ())))))))))$.868
Reference	$((((((((((\dots, ((((\dots,))))))), (((\dots, ((((\dots,)))), \dots))))))))))$	1



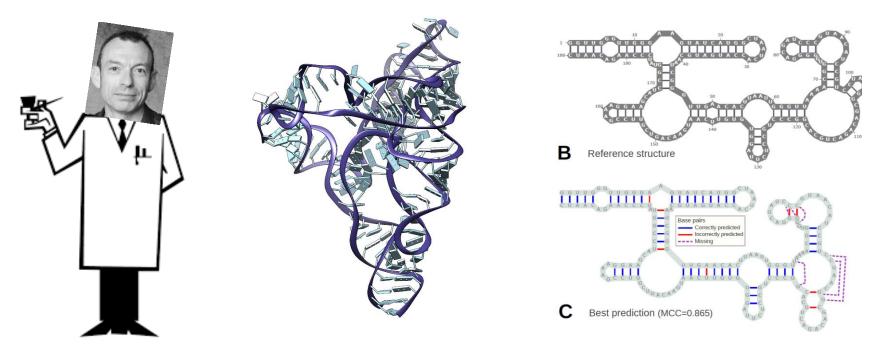
Lariat Capping Ribozyme (PDB 4P8Z) from Didymium iridis



- Lariat Capping Ribozyme (PDB 4P8Z) from Didymium iridis
- Probed under 14 different conditions:
 - ► Technique: SHAPE, DMS, CMCT
 - Reagents: IM7, NMIA, DMS, CMCT, NAI, BzCN
 - Stop based and Mutation based readouts
 - Presence/absence Magnesium



- Lariat Capping Ribozyme (PDB 4P8Z) from Didymium iridis
- Probed under 14 different conditions:
 - Technique: SHAPE, DMS, CMCT
 - Reagents: IM7, NMIA, DMS, CMCT, NAI, BzCN
 - Stop based and Mutation based readouts
 - Presence/absence Magnesium



- Lariat Capping Ribozyme (PDB 4P8Z) from Didymium iridis
- Probed under 14 different conditions:
 - Technique: SHAPE, DMS, CMCT
 - Reagents: IM7, NMIA, DMS, CMCT, NAI, BzCN
 - Stop based and Mutation based readouts
 - Presence/absence Magnesium

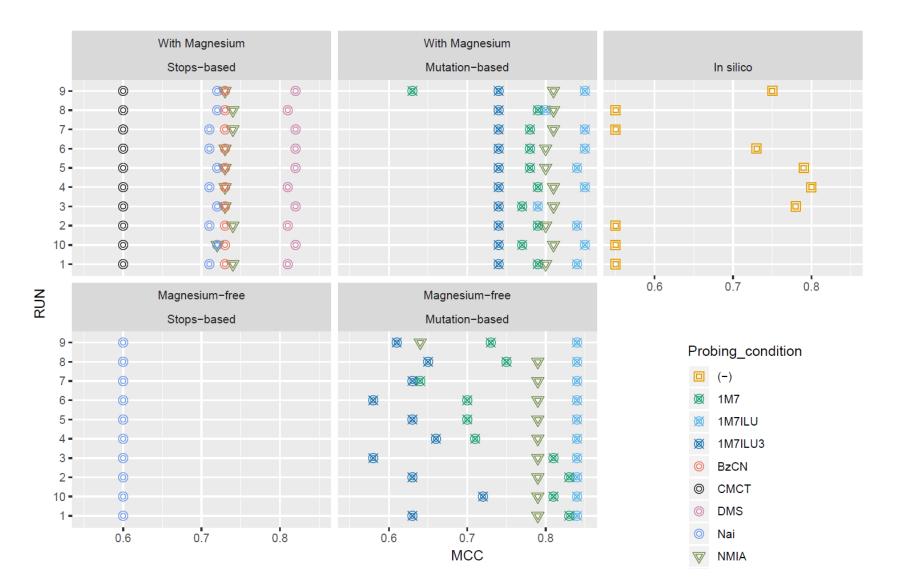
Mono probing analysis

			MCC		
Condition name	Tech.	+/- Mg ²⁺	IPANEMAP	MFE	MEA
1M7ILU	Mut	0	.84	.82	.85
1M7ILUMg	Mut	•	.83	.82	.8
DMSMg	Stop	•	.82	.41	.86
NMIAMg	Mut	•	.81	.8	.8
1M7ILU3Mg	Mut	•	.77	.75	.76
NMIAMgCE	Stop	•	.77	.675	.74
1M7Mg	Mut	•	.74	.735	.64
BzCNMg	Stop	•	.74	.72	.73
NMIA	Mut	0	.73	.69	.71
NaiMg	Stop	•	.73	.65	.71
1 M 7	Mut	0	.71	.51	.56
1M7ILU3	Mut	0	.62	.59	.67
CMCTMg	Stop	•	.6	.58	.59
Nai	Stop	0	.6	.59	.6
Avg Technology	Mut	_	.76	.71	.72
	Stop	_	.71	.61	.71
Avg +/- Mg ²⁺	_	0	.76	.68	.74
	_	•	.70	.64	.68
Average overall	_	_	.74	.67	.72

- Different performances
- No clear factor
- Some outliers (NAI & CMCTMg)

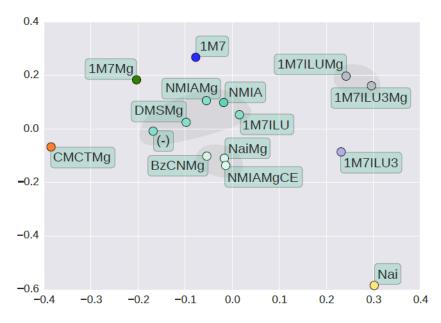
$$\frac{\text{MCC:}}{\sqrt{(\text{TP} + \text{FP})(\text{TP} + \text{FN})(\text{TN} + \text{FP})(\text{TN} + \text{FN})}}$$

Reproducibility



(Squared) Euclidian distance between conditions $Dist(d, d') = \sum_{i=1}^{n} \sum_{j=1}^{n} (\mathbb{P}(i, j \mid d) - \mathbb{P}(i, j \mid d'))$

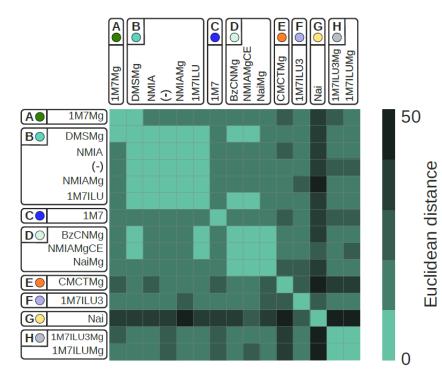
$$\operatorname{Dist}(d, d') = \sum_{i=1}^{n} \sum_{j=x+1} \left(\mathbb{P}(i, j \mid d) - \mathbb{P}(i, j \mid d') \right)^2$$

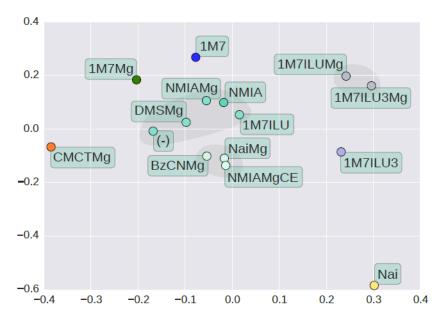


I4 conditions + no-probing (-)

(Squared) Euclidian distance between conditions

$$Dist(d, d') = \sum_{i=1}^{n} \sum_{j=x+1}^{n} \left(\mathbb{P}(i, j \mid d) - \mathbb{P}(i, j \mid d') \right)^{2}$$

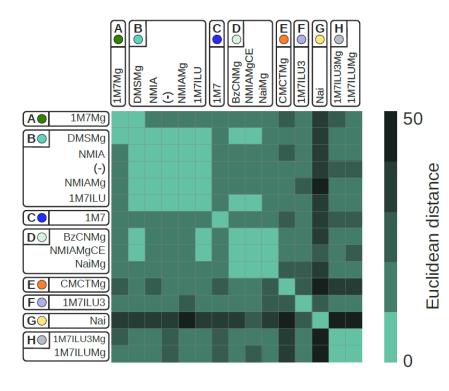


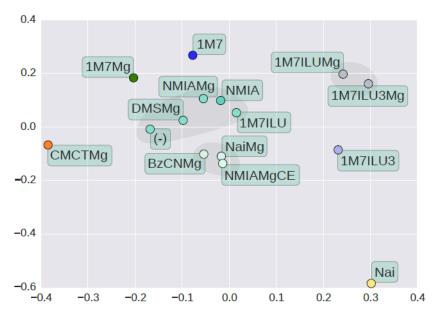


- I4 conditions + no-probing (-)
- Conditions cluster in 8 groups

(Squared) Euclidian distance between conditions

$$\text{Dist}(d, d') = \sum_{i=1}^{n} \sum_{j=x+1}^{n} \left(\mathbb{P}(i, j \mid d) - \mathbb{P}(i, j \mid d') \right)^2$$





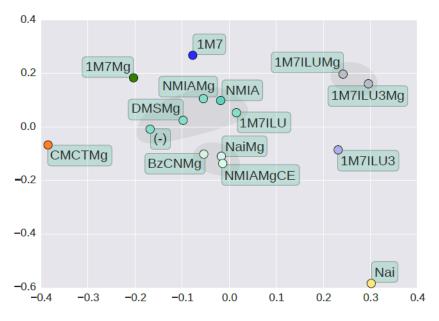
- I4 conditions + no-probing (-)
- Conditions cluster in 8 groups
- 5 singletons

(Squared) Euclidian distance between conditions

$$Dist(d, d') = \sum_{i=1}^{n} \sum_{j=x+1}^{n} \left(\mathbb{P}(i, j \mid d) - \mathbb{P}(i, j \mid d') \right)^{2}$$



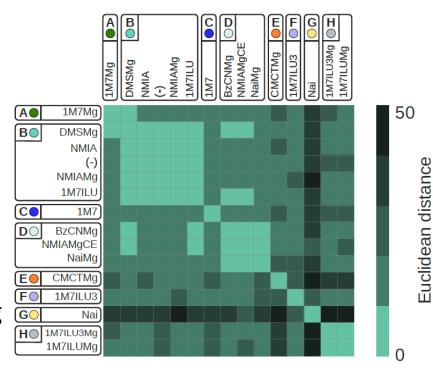
More mono probing analysis



- I4 conditions + no-probing (-)
- Conditions cluster in 8 groups
- 5 singletons
- Outliers confirmed: NAI & CMCTMg

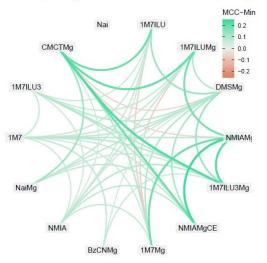
(Squared) Euclidian distance between conditions

$$\operatorname{Dist}(d,d') = \sum_{i=1}^{n} \sum_{j=x+1}^{n} \left(\mathbb{P}(i,j \mid d) - \mathbb{P}(i,j \mid d') \right)^2$$



Dual probing analysis

A – Bi-probing MCC vs Min MCC of mono-probing

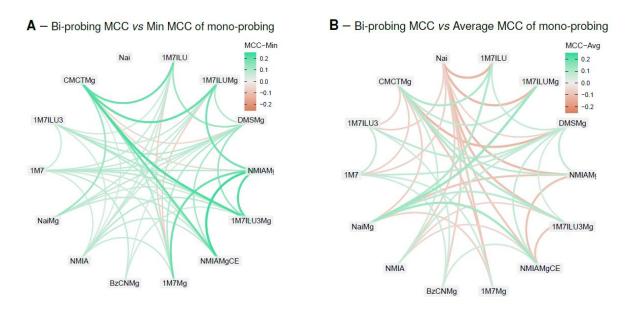


Pairs of conditions do not improve predictions (+.2% MCC) but:

Mitigates the risk of poor conditions:

+5% MCC on average against worst condition

Dual probing analysis



Pairs of conditions do not improve predictions (+.2% MCC) but:

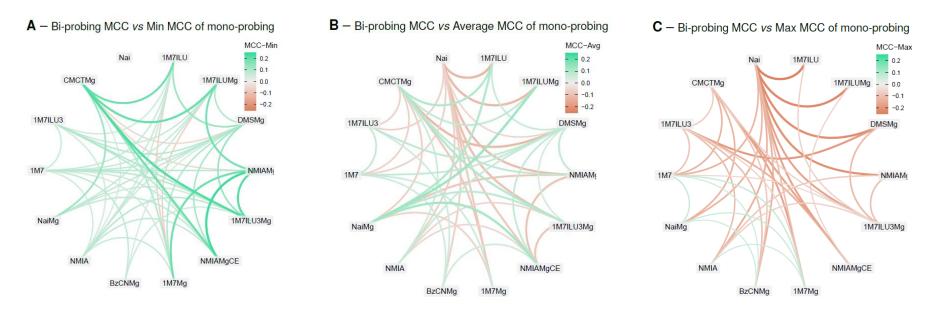
Mitigates the risk of poor conditions:

+5% MCC on average against worst condition

Slightly increases expectation:

+0.2% against mean MCC, +1% w/o NAI

Dual probing analysis



Pairs of conditions do not improve predictions (+.2% MCC) but:

Mitigates the risk of poor conditions:

+5% MCC on average against worst condition

Slightly increases expectation:

+0.2% against mean MCC, +1% w/o NAI

• Sensitive to contamination:

-4.4% against best, -1.5% w/o NAI & CMCTMg

Considering triplets of conditions (364 runs) :

Considering triplets of conditions (364 runs) :

Improves MCC by 10% over worst MCC

Considering triplets of conditions (364 runs) :

- Improves MCC by 10% over worst MCC
- Improves by 2.6% over mean MCC on avg (+3.4% median)

Considering triplets of conditions (364 runs) :

- Improves MCC by 10% over worst MCC
- Improves by 2.6% over mean MCC on avg (+3.4% median)
- Degrades by 4% over best MCC of triplet (2% median)

Considering triplets of conditions (364 runs) :

- Improves MCC by 10% over worst MCC
- Improves by 2.6% over mean MCC on avg (+3.4% median)
- Degrades by 4% over best MCC of triplet (2% median)
- Some triplets improve overall best MCCs
 - IM7ILUMg + NMIAMgCE + IM7ILU3
 - IM7ILUMg + IM7 + BzCNMg

 \rightarrow 85.3%MCC

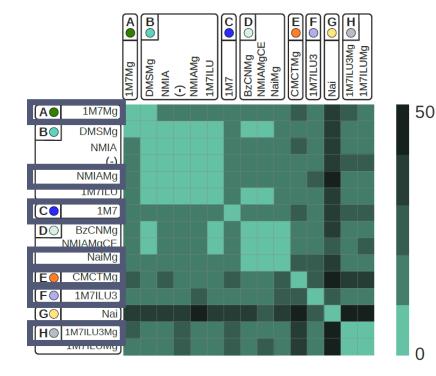
IM7ILUMg + IM7ILU3 + IM7

Beyond three conditions?

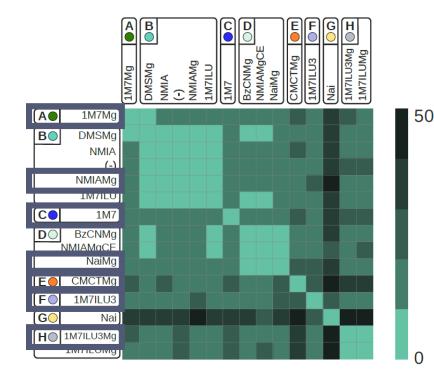
All 14 conditions: 80% MCC (vs 73% Avg)

- All 14 conditions: 80% MCC (vs 73% Avg)
- Within clustered conditions: Limited info/improvement

- All 14 conditions: 80% MCC (vs 73% Avg)
- Within clustered conditions: Limited info/improvement
- Across clusters
 - One condition for each cluster
 - 79% MCC w/o NAI
 - 74% MCC with NAI
 - But best (86.5% MCC) has NAI



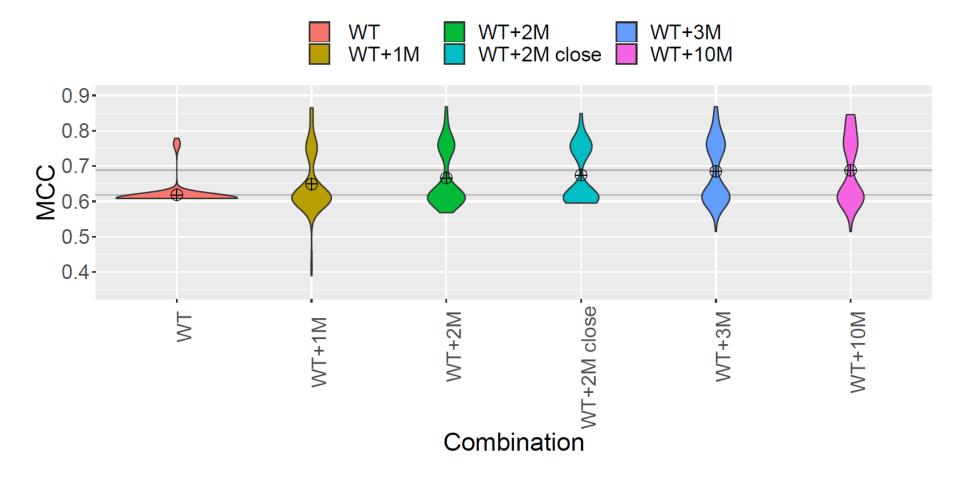
- All 14 conditions: 80% MCC (vs 73% Avg)
- Within clustered conditions: Limited info/improvement
- Across clusters
 - One condition for each cluster
 - 79% MCC w/o NAI
 - 74% MCC with NAI
 - But best (86.5% MCC) has NAI
- Orthogonality?
- Complementarity?



Euclidean distance

Preliminary: Treating mutants as conditions

- Mutate-And-Map profiles produced by Das lab
- Systematic single-point mutants, usually similar structure



IPANEMAP is way more than just a cool acronym

- IPANEMAP is way more than just a cool acronym
- Exploits the complementarity of probing experiments

- IPANEMAP is way more than just a cool acronym
- Exploits the complementarity of probing experiments
- Paves the way for quantifying a notion of orthogonality

- IPANEMAP is way more than just a cool acronym
- Exploits the complementarity of probing experiments
- Paves the way for quantifying a notion of orthogonality

Take home message:

- IPANEMAP is way more than just a cool acronym
- Exploits the complementarity of probing experiments
- Paves the way for quantifying a notion of orthogonality

Take home message:

Probing remains challenging (accuracy still slightly below 120%)

- IPANEMAP is way more than just a cool acronym
- Exploits the complementarity of probing experiments
- Paves the way for quantifying a notion of orthogonality

Take home message:

- Probing remains challenging (accuracy still slightly below 120%)
- Having >2 reactivity profiles (even bad ones) appears to help

- IPANEMAP is way more than just a cool acronym
- Exploits the complementarity of probing experiments
- Paves the way for quantifying a notion of orthogonality

Take home message:

- Probing remains challenging (accuracy still slightly below 120%)
- Having >2 reactivity profiles (even bad ones) appears to help

- IPANEMAP is way more than just a cool acronym
- Exploits the complementarity of probing experiments
- Paves the way for quantifying a notion of orthogonality

Take home message:

- Probing remains challenging (accuracy still slightly below 120%)
- Having >2 reactivity profiles (even bad ones) appears to help

The future needs:

Explore better pseudo-potentials

- IPANEMAP is way more than just a cool acronym
- Exploits the complementarity of probing experiments
- Paves the way for quantifying a notion of orthogonality

Take home message:

- Probing remains challenging (accuracy still slightly below 120%)
- Having >2 reactivity profiles (even bad ones) appears to help

- Explore better pseudo-potentials
- Better clustering procedures (beyond majority rule)

- IPANEMAP is way more than just a cool acronym
- Exploits the complementarity of probing experiments
- Paves the way for quantifying a notion of orthogonality

Take home message:

- Probing remains challenging (accuracy still slightly below 120%)
- Having >2 reactivity profiles (even bad ones) appears to help

- Explore better pseudo-potentials
- Better clustering procedures (beyond majority rule)
- Test on multi-stable RNAs

- IPANEMAP is way more than just a cool acronym
- Exploits the complementarity of probing experiments
- Paves the way for quantifying a notion of orthogonality

Take home message:

- Probing remains challenging (accuracy still slightly below 120%)
- Having >2 reactivity profiles (even bad ones) appears to help

- Explore better pseudo-potentials
- Better clustering procedures (beyond majority rule)
- Test on multi-stable RNAs
- Optimal/iterative design of probing experiments

- IPANEMAP is way more than just a cool acronym
- Exploits the complementarity of probing experiments
- Paves the way for quantifying a notion of orthogonality

Take home message:

- Probing remains challenging (accuracy still slightly below 120%)
- Having >2 reactivity profiles (even bad ones) appears to help

- Explore better pseudo-potentials
- Better clustering procedures (beyond majority rule)
- Test on multi-stable RNAs
- Optimal/iterative design of probing experiments
- More data to build mechanical understanding of SHAPE

Thank you!

Postdoc?

Bruno Sargueil

Delphine Allouche

Ronny (da main man) for modular extensions to Vienna package


```
Soft constraints x Sampling = Awesomeness
```

Supported by Fondation pour la Recherche Médicale

