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Fundamental dogma of molecular biology (v2.0)
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Fundamental dogma of molecular biology
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RNA world: Resolving the chicken vs egg paradox at the origin of life...

| encodes

replicates

A gene big enough to specify an enzyme would be too big to replicate accurately
without the aid of an enzyme of the very kind that it is trying to specify. So the
system apparently cannot get started.

. Dawkins. The Ancestor’s Tale: A Pilgrimage to the Dawn of Evolution
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A gene big enough to specify an enzyme would be too big to replicate accurately
without the aid of an enzyme of the very kind that it is trying to specify. So the
system apparently cannot get started.

[-- -] This is the RNA World. To see how plausible it is, we need to look at why
proteins are good at being enzymes but bad at being replicators; at why DNA is

good at replicating but bad at being an enzyme; and finally why RNA might just
be good enough at both roles to break out of the Catch-22.

. Dawkins. The Ancestor’s Tale: A Pilgrimage to the Dawn of Evolution
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RNA folding

RNA are single-stranded and

fold on themselves, establishing =
complex 3D structures that are %
essential to their function(s). s
o
(i
RNA structures are stabilized by g
base-pairs, each mediated by g
e
hydrogen bonds. e
172}
=
[e)
o
=2
]
o
D
[72]
[
B

Canonical base-pairs

@ 15t International Computational Biology workshop



RNA Design

RNA = Linear Polymer = Sequence in {A,C,G,U}*

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG
CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA

cC

Primary Structure  Secondary Structure  Structure Tertiaire

5s rRNA (PDBID: 1K73:B)

@ 1%t International Computational Biology workshop



Evolution of RNAs

Homologous genes = Functionally equivalent, within or across organisms
Usually well-captured by sequence similarity in proteins, binding sites. . .

Problem: Many classes of non-(protein) coding RNAs (ncRNAs) poorly
conserved at the sequence level but adopt a conserved structure!

UBI887. 1/1-331
AF056391.1/9-395
V9882, 9/1-392
UB9883. 1/1-328
D13066. /58913
UF1756.1/1-291
X69983. 4/97-947
X69982. 1/95-999
AF151218.1/1-397
UB9885. 1/1-399
UB9886. #/1-331
AF295988.%/1-331
AF295989. 1/1-302
AJSI11701.%/1-371
AF295987.1/1-332

secondary structure. pmm)—mmp —
RFAM Bacterial RNAse-P class B Alignment
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RNA Design

RNA = Linear Polymer = Sequence in {A,C,G,U}*

Structure Prediction
UUAGGCGGCCACAGC 18
GGUGGGGUUGCCUCC :
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG
CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA

cC

Primary Structure  Secondary Structure  Structure Tertiaire

5s rRNA (PDBID: 1K73:B)
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RNA Design

RNA = Linear Polymer = Sequence in {A,C,G,U}*

Structure Prediction

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGG
GAGUACUGGA
CGAGCCUCS
CCCGGUUCGCCH

RNA Design

cC

Primary Structure  Secondary Structure  Structure Tertiaire

5s rRNA (PDBID: 1K73:B)
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Why we design RNAs

= To create building blocks for synthetic systems
Rationally-designed RNAs increase orthogonality
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Why we design RNAs

= To create building blocks for synthetic systems
Rationally-designed RNAs increase orthogonality

m To assess the significance of observed phenomenon
Random models should include every established characters. ..
...including adoption of a single structure

m To test/push our understanding of how RNA folds
Misfolding RNAs reveal gaps in our energy models and descriptors for the
conformational spaces

m To help search for homologous sequences
Incomplete covariance models hindered by limited training sets
Design can be used to generalize existing alignments

= To fuel RNA-based therapeutics
Sequence-based (siRNA, synthetic genes), but structure matters

= To perform controlled experiments

O
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Controlled experiments through RNA design

Motivation: Quantifying the impact
of structure S on efficacy of a single
Exon Splicing Enhancers (ESE):

m Presence of ESE motif E;
m Different structures S;, So...;

m Avoid library of (~1500!)
documented ESEs motifs.

Objectives. Design RNA which:

@ Folds into a prescribed
structure;

@ Features/avoids motifs.
@ Control GC%, Boltz. prob.....

Structural context of ESE motif in
transcript was shown to affect its
functionality. [Liu et al, FEBS Lett. 2010]
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Design objectives

| Positive structural design
. Optimize affinity of designs towards target structure(s)
i\ Examples: Most stable sequence for given fold. ..

Negative structural design
Limit affinity of designs towards alternative structures
Examples: Lowest free-energy, High Boltzmann probability/Low entropy. ..

Additional constraints:

m Forbid motif list to appear anywhere in design
m Force motif list to appear each at least once
m Limit available alternatives at certain positions
m Control overall composition (GC-content)

@ 1%t International Computational Biology workshop



Outline

m |. Single Structure Design (IncaRNAtion)

m |l. Constrained Design using Formal Languages

m |ll. Multiple Structures
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l. Inverse Folding

Designing a given structure



RNA sequence and structure(s)

RNA = Linear Polymer = Sequence in {A,C,G,U}*

UUAGGCGGCCATH

GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG
CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA

MFE folding prediction:

cC

Primary Structure  Secondary Structure  Tertiary Structure

5s rRNA (PDBID: 1K73:B)
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Crossing interactions

Excluded from the secondary structure:

m Non-canonical base-pairs:
Any base-pair other than {(A-U), (C-G), (G-U)}
OR interacting in a non-standard way (WC/WC-Cis) [Leontis Westhof, RNA

IRTETI &%

Canonical CG base-pair (WC/WC-Cis)  Non-canonical base-pair (Sugar/WC-Trans)
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Crossing interactions

Excluded from the secondary structure:

m Non-canonical base-pairs:
Any base-pair other than {(A-U), (C-G), (G-U)}
OR interacting in a non-standard way (WC/WC-Cis) [Leontis Westhof, RNA

| LAk VS ol

Canonical CG base-pair (WC/WC-Cis)  Non-canonical base-pair (Sugar/WC-Trans)

m (Pseudo?)knots: Crossing sets of nested stable base-pairs

Group | Ribozyme (PDBID: 1Y0Q:A)
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Crossing interactions

Excluded from the secondary structure:
m Non-canonical base-pairs:

Any L , .
OR Crossing interactions do exist!
200
Example: Group Il Intron (PDB ID: 3IGl)
But are hard to predict
[Lyngsoe-ICALP’04]
[Sheikh Backofen Ponty, CPM’12]
m (Ps
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Thermodynamics vs Kinetics

Paradigms for RNA structure prediction
m 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
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Paradigms for RNA structure prediction

m 1978-1990s Most probable structure = Minimal Free-Energy (MFE)

m 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition
function)
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Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

m 1978-1990s Most probable structure = Minimal Free-Energy (MFE)

‘ m 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition
| function)

m 2010s-???? Embracing the kinetics of RNA folding
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Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

m 1978-1990s Most probable structure = Minimal Free-Energy (MFE)

m 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition
function)

m 2010s-???? Embracing the kinetics of RNA folding

mRNA half-life: ~7h
(Mouse [sharova2009])
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Problem statement

m RNA structure S: Non-crossing base-pairs for positions in sequence w
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m RNA structure S: Non-crossing base-pairs for positions in sequence w
m Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, )
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Problem statement

m RNA structure S: Non-crossing base-pairs for positions in sequence w
m Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, Loops...)
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Problem statement

® ©
s
]
2 1 @~9 Ol &
o~e OaS
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26

m RNA structure S: Non-crossing base-pairs for positions in sequence w
m Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, Loops...)

m Energy model:
Motif — Free-energy contribution A(-) € R™ U {40}
Free-Energy E.(S): Sum over (independently contributing) motifs in S

Es:M@) +4.A® +2.A®
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Problem statement

m RNA structure S: Non-crossing base-pairs for positions in sequence w
m Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, Loops...)

m Energy model:
Motif — Free-energy contribution A(-) € R™ U {40}
Free-Energy E.(S): Sum over (independently contributing) motifs in S

Cyuu(G) Cuu(® UWp(® Qgn(® Unn(G)
s () o () - () o (1) -« (0
Ogm© O Oan©, @==© @™
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Problem statement

m RNA structure S: Non-crossing base-pairs for positions in sequence w
m Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, Loops...)

m Energy model:
Motif — Free-energy contribution A(-) € R™ U {40}
Free-Energy E.(S): Sum over (independently contributing) motifs in S

Cuu(© Cpu© O, Wen©® Ugm(©
Es:A<l>+A<‘)+A(‘)+A<‘>+A(l>
@™o o= OgnC©) @0 O]

Q@a o> O50)

+A | | +A( | +A L P

o, e 0a0
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Problem statement

m RNA structure S: Non-crossing base-pairs for positions in sequence w

m Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, Loops...)

m Energy model:
Motif — Free-energy contribution A(-) € R™ U {40}
Free-Energy E.(S): Sum over (independently contributing) motifs in S

Definition (MFE-PREDICT(E) problem)

Input: RNA sequence w € {A,C,G,U}"
Output: Secondary struct. S* with Minimal Free-Energy (MFE) E,(S™)

Problem solved exactly in O(n®) time.
[Nussinov Jacobson, PNAS 1980] [Z@ﬁr Stiegler, NAR 1981]. . ..
O
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Dynamic programming (DP) for RNA folding

Theorem ([Nussinov and Jacobson(1980)])
|
‘H‘ Max #base-pairs/min energy structure computed in O(n®)/O(n?) time/memory

E; «: Free-energy contribution of base-pair (i, k). (—1/ 4+ oo or AG(s; < Sk))

N; ; : Max #base-pairs over interval [i, j]

N = 0, Vtel[i,i+0]
N1 {i unpaired}
N; = min J
h mln E,‘7k + ’Vi+1,k71 + Nk+1‘j {I paired to k}
k=i+6+1

@ 1%t International Computational Biology workshop



Dynamic programming (DP) for RNA folding

Theorem ([Nussinov and Jacobson(1980)])
‘H‘ Max #base-pairs/min energy structure computed in O(n®)/O(n?) time/memory

E; «: Free-energy contribution of base-pair (i, k). (—1/ 4+ oo or AG(s; < Sk))
Ci; : Number of secondary structures compatible with interval [/, j]

C: = 1, Vtelii+0]

Cj+1,/‘ {i unpaired}
Co = 2V SV a4 G Cerr) {ipairedto k
Zk=/+e+1 comp.(i,k) X Cit1,k—1 X Ci+1,; {i paired to k}
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Dynamic programming (DP) for RNA folding

Theorem ([Nussinov and Jacobson(1980)])
|
“H‘ Max #base-pairs/min energy structure computed in O(n®)/O(n?) time/memory

E; «: Free-energy contribution of base-pair (i, k). (—1/ 4+ oo or AG(s; < Sk))

—Ew(S - . . sl s s
Zij =13 Scomp. € #% — Partition function for compatible structs within [/, j]

with w; 4

Z, = 1, Vtelii+6]
Zit1 {i unpaired}
> iie1® T X Zi1k 1XZki1 (i paired to K}
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Dynamic programming (DP) for RNA folding

Many extensions:

}‘ m Nearest-neighbor/Turner energy model [Zuker1981]
;“ m Comparative folding [Sankoff1985]
| m Equilibrium base-pairing probabilities [McCaskill1990]
m Moments of additive features [Miklos2005,Ponty2011]
m A kcal.mol~" suboptimal structures of MFE [Wuchtytoee]  ®
m Basic crossing structures [Rivas1999]. . . J
m Exact sampling in Boltzmann distr. [Ding2003,Ponty2008]
m Moments of additive features [Miklos2005,Ponty2011]
m Maximum expected accuracy structure [D02006]
m Distance-classified partitioning of Boltzmann ens. [E.Freyhult2007a]

Made possible by:

m Completeness/Unambiguity of decomposition
3 energy-preserving bijection between derivations of DP scheme and search space

m Objective function additive with respect to DP scheme

@& 1%t International Computational Biology workshop



RNA inverse folding

RNA = Linear Polymer = Sequence in {A,C,G,U}*

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGG
GAGUACUGGA
CGAGCCUCS
CCCGGUUCGCCH

cC

Primary Structure  Secondary Structure  Structure Tertiaire

5s rRNA (PDBID: 1K73:B)
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RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

Input: Secondary structure S + Energy distance A > 0.
Output: RNA sequence w € ¥* such that:

vS € S|w|\{S}: Eys > Ew,S+A

or @ if no such sequence exists.

Difficult problem: No obvious DP decomposition
m Existing algorithms: Heuristics or Exponential-time

m Complexity of problem unknown (despite [Schnall Levin et al, ICML08])
Reason: Non locality, no theoretical frameworks, too many parameters. ..
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RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

Input: Secondary structure S + Energy distance A > 0.
Output: RNA sequence w € ¥* such that:

vS € S|w|\{S}: Eys > Ew,S+A

or @ if no such sequence exists.

Example:

=20

@ 1%t International Computational Biology workshop



RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

Input: Secondary structure S + Energy distance A > 0.
Output: RNA sequence w € ¥* such that:

vS € S|w|\{S}: Eys > Ew,S+A

or @ if no such sequence exists.

Example:
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RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

\
Hé Input: Secondary structure S + Energy distance A > 0.
“ Output: RNA sequence w € X* such that:

|

i vS € S|w|\{S}: Eys > Ew,S+A

or @ if no such sequence exists.

—
— 1. 0o ‘1o
~20 N
13 N3

folds
6 i v <« AAGAGUCGCUCUC

Example:
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RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

\
Hé Input: Secondary structure S + Energy distance A > 0.
“ Output: RNA sequence w € X* such that:

|

i vS € S|w|\{S}: Eys > Ew,S+A

or @ if no such sequence exists.

Example:
AAGAGUCGCUCUCAAGAGUCGCUCUC
Folds¢
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Existing approaches for negative design

Based on local search. .. ... bio-inspired algorithms. ...
m RNAInverse - TBI Vienna RNAFBInv - Barash@Ben Gurion
m Info-RNA - Backofen@Freiburg FRNAKenstein - Hein@Oxford
m RNA-SSD - Condon@UBC AntaRNA - Backofen@Freiburg
‘ m NUPack - Pierce@Caltech ERD - Ganjtabesh@Tehran
| ... exact approaches. ..
RNAIFold - Clote@Boston College
CO4 - will@Leipzig

Typical issues:
m Naive initialization strategies

m Poor coverage of sequence space:
Local search remain confined near initial sequence

m GC-rich produced sequences
= Global sampling [Levin et al, NAR 12]
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Existing approaches for negative design

Based on local search. .. ... bio-inspired algorithms. ...
m RNAInverse - TBI Vienna m RNAFBInv - Barash@Ben Gurion
m Info-RNA - Backofen@Freiburg m FRNAKenstein - Hein@Oxford
m RNA-SSD - Condon@UBC m AntaRNA - Backofen@Freiburg
m NUPack - Pierce@Caltech m ERD - Ganjtabesh@Tehran
... exact approaches. ..
m RNAIFold - Clote@Boston College
m CO4 - Will@Leipzig

Typical issues:
m Naive initialization strategies

m Poor coverage of sequence space:
Local search remain confined near initial sequence

m GC-rich produced sequences
= Global sampling [Levin et al, NAR 12]
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The case for a control of GC-content

0.35 S —
I NUPACK
0.30r I INFO-RNA
Il RNAinverse
$0'25' B Frnakenstein|]|
1)
@ 0.20f
- ]
o
Q
2 0.15
o
L
0.10f
0.05

0'0%0 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
%GC content

High GC-content suspected to induce kinetic traps
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Global sampling [Levin et al, NAR 12]

Target structure S

m Boltzmann distribution based on affinity towards S
| m Random generation from Boltzmann Distribution
| m Fold sampled sequences and compare to target

Boltzmann factor:
—Ew(S)

Bu(S) := e~ A

Pseudo-Partition Function:

Z(S)= > Bu(S)

wexr*
Boltzmann probability:
_ Buw(S)
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IncaRNAtion [Reinharz et al, Bioinformatics 2013]

Explore sequence space
Structure fixed
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IncaRNAtion [Reinharz et al, Bioinformatics 2013]

Z {2 —@DEFOMNAAAAAAANNOH b
Explore sequence space “ s i
Structure fixed [Position i unpaired]
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IncaRNAtion [Reinharz et al, Bioinformatics 2013]

Explore sequence space
Structure fixed

. . Z'a\, O O ‘b
EHEMNAAAAAG T — v @ i1 i1 Ot
i J

[Paired ends + Stacking pairs]
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IncaRNAtion [Reinharz et al, Bioinformatics 2013]

Explore sequence space
Structure fixed

a O
a,b i+1 k=1 k |k+1 j
[Position i paired with k]
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IncaRNAtion [Reinharz et al, Bioinformatics 2013]

| Z {2 —@DEFOMNAAAAAAANNOH b
| ‘ a/ ~ - I'+ 1 ] ~ -
| Explore sequence space — -
Structure fixed [Position i unpaired]
A "~ Z ‘@ O O (b}
‘I~a—\b_"/) b © i1 j-1 Oat)
i j . . .
(Only 1 case applies) [Paired ends + Stacking pairs]

2 O
a,p’ i+1 j

[Position i paired with k]
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"Global" Stochastic Backtrack

Sequence:

/""
10 11 12 13 14 15 16 7| =

B T A S S S-S A T
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"Global" Stochastic Backtrack

Sequence: ()

4 5 6 7 8 Sl 10 11 12 13 14 15 16 7| =
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"Global" Stochastic Backtrack

Sequence:  ()() @)

4 5 6 7 8 s {0 1 12 1 4 15 16| 17 -
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"Global" Stochastic Backtrack

Sequence: () (o)) @)

4 5 6 7 8 s {0 1 12 i 4 15| 16 17 -
Z :@o‘[%tﬁﬁmﬁational Computational Biology workshop




"Global" Stochastic Backtrack

Sequence:  ()-()-(r) @“@ @)

o 1 G2 i 4 15| 16 17 -
J e ———
7 = weight of nt* A nt® @ 15t International Computational Biology workshop



"Global" Stochastic Backtrack

Sequence:

4 5 6 7 8 8 |10 1 12 i dal| 5 16 17 -
@ 1s4ntewsighiariakComutational Biology workshop




"Global" Stochastic Backtrack

Sequence: 0@@@@@@@@@“@@@@

4 5 6 7 8 9 10 11 12 13 14 15 16 7

— e R
@ 1s%ntevwighional'Camydtitational Biology workshop



GC-content bias

RFAM average GC content RFAM average GC content
48.8% o 48.8%
Average GC content is 64% W NUPACK
1000) 0.30 - INFQ—RNA
N RNAinverse
BN Frnakenstein
025
80
8
> £020
z g
2 an H
s 8
S 5015
®
40
0.10
i / -
0o 02 07 06 08 10 00852530 35 40 45 50 55 60 65 70 75 80 85 90 95 100
GC content %GC content
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Weighted DP Recursions

#GC(a') __ -
Z X (\a‘(\b‘,‘

a’ i+1 J
[Position i unpaired]

#ac@p’)
DX e

a b i+1 k=1 g [k+1
[ [Position i paired with k]

O
)
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Incarnation NT distribution: Bissection scheme

Target 15% GC

m— #CC — (2500
==  Totround 1is 0
1000 | 4
800
z
£ 6001
S
<o
400 |
200 -
90 0.2 0.4 0.6 0.8 1.0

GC content

[Waldispiihl and Ponty, RECOMB, 2011]
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Incarnation NT distribution: Bissection scheme

Target 15% GC

m— #CC — ().2500
==  Totround 1is0
1000 |
0 ().1250
== Tot round 2 is 141
800
2z
E 600
S
<o
400
200 -
%0 0.2 0.4 0.6 0.8 1.0

GC content

[Waldispiihl and Ponty, RECOMB, 2011]
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Incarnation NT distribution: Bissection scheme

Quantity

Target 15% GC

1000

800 -

=

S

=]
T

m— #CC — ().2500
==  Totround 1is0
o #CC — 01250
== Tot round 2 is 141
o #CC — 00625
== Tot round 3 is 547

0.4

GC content

0.6

0.8

[Waldispiihl and Ponty, RECOMB, 2011]

1.0
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Incarnation NT distribution: Bissection scheme

Target 15% GC

m— #CC — ().2500
==  Totround 1is0

1000

o #CC — 01250

== Tot round 2 is 141
800 e — #0C = 0.0625 |

== Tot round 3 is 547
%6 = 0.0938
Tot round 4 is 823 |1

Quantity
[=2]
(=3
=]

04 0.6 0.8 1.0
GC content

[Waldispiihl and Ponty, RECOMB, 2011]
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Incarnation NT distribution: Bissection scheme

Target 15% GC

m— #CC — 02500
==  Tot round 1is 0
— #CC — (1250
== Tot round 2 is 141
s00 | m— #0C = 0.0625 ,
== Tot round 3 is 547
g #GC — 00938
600 - ==  Tot round 4 is 823 |7
m— #GC — 00781

== Tot round 5 is 1165
400 [ R

1000 -

Quantity

200 1

%‘0 0.2 0.4 0.6 0.8 1.0
GC content

[Waldispiihl and Ponty, RECOMB, 2011]
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Limits of the approach

Heuristic: Strong affinity is neither sufficient, nor necessary, but ...
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Heuristic: Strong affinity is neither sufficient, nor necessary, but ...
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Limits of the approach

Heuristic: Strong affinity is neither sufficient, nor necessary, but ...
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Limits of the approach

Heuristic: Strong affinity is nor necessary, but . ..
m Strong empirical correlation affinity/success of design [Levin et al, NAR 2012]
m Linear time-complexity [Reinharz Ponty Waldispiihl, ISMB/ECCB’13]
m Composition control [Bodini Ponty, AofA’10] [Reinharz et al, ISMB/ECCB’13]
m Complementary with local search approaches [Reinharz et al, ISMB/ECCB’13]
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Local vs Global vs "Glocal”
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Local vs Global vs "Glocal”
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Local vs Global vs "Glocal”
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The success of glocal strategies

o - RNAensign *:x RNAensigns-S ¢ 9 RNAinverse Fp
v-v RNAensign-P = -@ RNAinverse Fm & -a NUPACK
1.0 T T T T —yTTTT
g :,'; P Lk ¥
-] .
.ld 0.9 a
> v’
T 0.8 T
@ 2 .
4 0.7 ‘e’
°
Q N AN
< 0.6 : )/ AN
(o] ’ N
-+ 7 ~
y— 0.5 ’ °
(@] 7
’ »m
> 0.4 4 ’
-+ 7 7
—_ ’ ’
5 03 o --* ,/
© So - ’
Q 02 Pt e = /’
(] ~ e~ - . 7
s o . -
a . m . . .
]20 30 40 50 60 70 80

percentage of stacking pairs

Sampling + Optimize creates highly probable design sequences
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Il. Constrained design

Avoiding/forcing motifs



Existing approaches for negative design

Based on local search. .. ... bio-inspired algorithms. . .
m RNAInverse - TBI Vienna m RNAFBInv - Barash@Ben Gurion
m Info-RNA - m FRNAKenstein - Hein@Oxford
Backofen@Freiburg m AntaRNA - Backofen@Freiburg
® RNA-SSD - Condon@UBC ...exact approaches. ...
m NUPack - Pierce@Caltech m RNAIFold - Clote@Boston College

m CO4 - wil@Leipzig

Few algorithms support avoided/mandatory moatifs. ...

...none guarantees reasonable runtime.

O
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Existing approaches for negative design

Based on local search. .. ... bio-inspired algorithms. . .
m RNAInverse - TBI Vienna m RNAFBInv - Barash@Ben Gurion
m Info-RNA - m FRNAKenstein - Hein@Oxford
Backofen@Freiburg m AntaRNA - Backofen@Freiburg
® RNA-SSD - Condon@UBC ...exact approaches. ...
m NUPack - Pierce@Caltech m RNAIFold - Clote@Boston College

m CO4 - wil@Leipzig

Few algorithms support avoided/mandatory moatifs. ...

...none guarantees reasonable runtime.

Typical reasons:
m Deep local minima (Rugged landscape)
m Mandatory motifs = Late deadends (Branch and Bound)
m Forbidden motifs = Search space disconnection (Local Search)

O
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Problem with local approaches: An example

Simplified vocabulary {A, U}

UAAUU

UAAAA UUUUA
/ AUAAA AR
g UUUAU
AAAAA__ __ AAUAU ™~
UL Uuuuu
N ~ —— UUAUU—
AAAUA AAUUA
~ UAUUU
AAAUA —— AAAUU\ /

AAUUU — AUUUU
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Problem with local approaches: An example

Simplified vocabulary {A,U} + Forbidden motifs 7 = {AU,UA}

. UAAUU ~
UAAAA UUUUA
AUUAU
\
AUAAA UUUAU
AAAAA -
AAUAA— AAUAU
—— UUAUU
AAAUA  AAUUA
™~ UAUUU
« AAAUA— AAAUU_
AN AAUUU — AUUUU

= F may disconnect search space (holds for any move set!)

@ 1%t International Computational Biology workshop



Idea

Use formal language constructs to constrain global sampling

Forced motifs

Avoided motifs — Regular language L € Reg
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Idea

Use formal language constructs to constrain global sampling

Forced motifs
Regular | R
Avoided motifs — Regularlanguage L € Reg

Structure compatibility
+ Positional constraints — Weighted Context-Free Lang £Lg € CFL

+ Energy Model
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Idea

. Use formal language constructs to constrain global sampling

Forced motifs
Regular | R
Avoided motifs — Regularlanguage L € Reg
Structure compatibility
+ Positional constraints — Weighted Context-Free Lang £Lg € CFL

+ Energy Model

Folklore theorem (constructive): Reg N (W)CFL C (W)CFL
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Idea

M Use formal language constructs to constrain global sampling
1\

M
|
i Forced motifs

Regular |
Avoided motifs — Regular language L € Reg

Structure compatibility
+ Positional constraints — Weighted Context-Free Lang £Lg € CFL

+ Energy Model
Folklore theorem (constructive): Reg N (W)CFL C (W)CFL

Build weighted context-free grammar G for Lo N Lg
1 + Random generation

= Global sampling under constraints
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Building the Finite State Automaton

| To force multiple words, keep Example: M = {AGC,GG}
track of generated words:

m Create disjunctive
automata for each
M CM
l"‘ A@\"\
T %
#States:
o(2M (it +xym))
{GG} Aacey

1%
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Building the Finite State Automaton

| To force multiple words, keep Example: M = {AGC,GG}

track of generated words:
m Create disjunctive
automata for each
M CM
m Reroute accepting states

m Accepting state = no
forced word remaining (¢
in Ag)

#States:

(lel (z,|f|+2,|m/|))

A

%)
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Building the Finite State Automaton

To force multiple words, keep Example:
track of generated words: M ={AGC,GG}; F = {AA}

m Create disjunctive
automata for each
M CM

m Reroute accepting states

m Accepting state = no
forced word remaining (¢
in AQ;)

m Forbidden words can be
added to sub-automata

#States:

<2IM| (> |f|+2,|m/|))
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Building the grammar

Input: Secondary Structure S + Positional constraints

| | | |
1 5 10 12

c cCc - ) - ) )
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Building the grammar

Input: Secondary Structure S + Positional constraints
‘U A Create Parse Tree for secondary structure

(So)

DIIIDIIIDDII

10 12
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Building the grammar

Input: Secondary Structure S + Positional constraints
I A Create Parse Tree for secondary structure
¥ B Translate Parse Tree into single-word grammar
\

S — .5 Sz—)(Sg,) S3—>(S4)Sg S4—>(S5)
S5 —. Sg—)(Sg) S — . S10 Sio— .
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Building the grammar

Input: Secondary Structure S + Positional constraints
A Create Parse Tree for secondary structure
B Translate Parse Tree into single-word grammar
C Expand grammar to instantiate compatible base/base-pairs

Vi AV, | CVs | GV3 | UV,

Vo= AV3U | CV3G | GV5C | GVU | UVSA | UV5G

Vs — AVaU Vg | CV4GVs | GV, CVy | GV4UVy| UV,AVs | UV, G Vg
Vi— AVsU | CVsG | GV5C | GVsU | UVsA | UVsG

Vs A|C|G|U

Vs = AVoU | CVoG | GVoC | GVoU | UVA | UVeG

Vo — AVig | CVio | GVio | UVig

Vio—>A|C|G|U
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Building the grammar

Input: Secondary Structure S + Positional constraints

A Create Parse Tree for secondary structure

B Translate Parse Tree into single-word grammar

C Expand grammar to instantiate compatible base/base-pairs
D Restrict to bases/base-pairs allowed at each position

Vi AV | CVa | GVa | UV,

Va = AV3U | CV5G [ GVAC| GVAU | UVA [ UVG

Vi = AV4UVg | CVGVg | GV €V | GV UV UV, AV | UV GV
Vi— AVsU | CV5G | GVC | GVsU [UVsA | UVsG

Vs 5 A|C|G|U

Vs = AVoU | CVoG | GVC | GVoU [ UVo A | UVsG

Vo = AVio | CVio | GVio | UVio

Vo A|C|G|U
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Random generation

Combine CFG and aut. — CFG (Multiplying #Rules by |Q[°)

|
W GenRGenS [Ponty Termier Denise, Bioinformatics 2006]:
H m Precomputes #words for each non-terminal

m Random Generation w.r.t. weighted distribution

Energy models:
m Uniform distribution
m Nussinov energy model

m Stacking-pairs model (Turner 2004)
Based on refined, yet similar, grammar

Overall complexity: |S|-23M1. (37, [fi| + Imj)°
Ml = Linear on |S|

m Exponential on | M|, but NP-Hard problem
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lll. Positive design for multiple
structures



Motivation: Kinetics and riboswitches

QSD muek\s‘
OFF

AG

@ - Local Minimum (LM)
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Design objectives

Positive structural design

Optimize affinity of designed sequences towards target structure
Or simply ensure their compatibility with one or several structures
Examples: Most stable sequence for given fold. ..

Negative structural design

Limit affinity of designed sequences towards alternative structures
Examples: Lowest free-energy, High Boltzmann probability/Low entropy. ..

Additional constraints:
m Forbid motif list to appear anywhere in design
m Force motif list to appear each at least once
m Limit available alternatives at certain positions
m Control overall composition (GC-content)

()
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Design objectives

Positive structural design

Optimize affinity of designed sequences towards target structure
Or simply ensure their compatibility with one or several structures
Examples: Most stable sequence for given fold. ..

Negative structural design
Limit affinity of designed sequences towards alternative structures
Examples: Lowest free-energy, High Boltzmann probability/Low entropy. ..

Additional constraints:
m Forbid motif list to appear anywhere in design
m Force motif list to appear each at least once
m Limit available alternatives at certain positions
m Control overall composition (GC-content)
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Counting compatible RNAs: Watson-Crick + Single structure
A—U

G—+C

Compatible Base Pairs = Only Watson-Crick base pairs

N TN

abcdefghijklmnopgqgrstuyv
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Counting compatible RNAs: Watson-Crick + Single structure

A—U

G—+C

Compatible Base Pairs = Only Watson-Crick base pairs

Compatible Sequence

N (TN

GAGCUCAGCGCGAACGCUCUCA
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Counting compatible RNAs: Watson-Crick + Single structure

A—U

G—+C

H Compatible Base Pairs = Only Watson-Crick base pairs

Incompatible Sequence
N (7
AAAAGACUGGACUUGGCCUUUGC

Question: How many Compatible sequences?
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Counting compatible RNAs: Watson-Crick + Single structure
A—U

G—+C

Compatible Base Pairs = Only Watson-Crick base pairs

N TN

abcdefghijklmnopqgrstuyv

Question: How many Compatible sequences?
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Counting compatible RNAs: Watson-Crick + Single structure
A—U

G—+—C

Compatible Base Pairs = Only Watson-Crick base pairs

N

abcdefghifjkilmnopgristuyv

Question: How many Compatible sequences?
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Counting compatible RNAs: Watson-Crick + Single structure
A—U

G—+—C

Compatible Base Pairs = Only Watson-Crick base pairs

N

abcdefghifjkilmnopgristuyv

Question: How many Compatible sequences?
Answer: 4#BPs  g#Unpaired _, 568 435 456
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Counting compatible RNAs: Watson-Crick + Two structures

A—U

G—C

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles + Paths

i m n r
g-e-a-u h j—¢@
N TN i || |
abcdefghijklmnopgrstuyv k p d—b—t

\\_y U M f—|—0-—Vv Cc—Ss

Question: How many Compatible sequences?
Answer: #£ & (both base-pairs and dependency graphs bipartite)
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Counting compatible RNAs: Watson-Crick + Two structures

A—U

G—C

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles + Paths

i m n r

N (70 T

|
abcde@f@ghijRkl mno@qgrstwyv P d—b—t

w U M f—|—0-—Vv Cc—Ss

Question: How many Compatible sequences?

Answer: #£ & (both base-pairs and dependency graphs bipartite)
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Counting compatible RNAs: Watson-Crick + Two structures

A—U

G—C

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles + Paths

i m n r

g=e=a=u h j==q
AN TN I I

|
P d==b==t

w u M f—|—o0-—v cCc—s

Question: How many Compatible sequences?
Answer: #£ & (both base-pairs and dependency graphs bipartite)
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Counting compatible RNAs: Watson-Crick + Two structures

A—U

G—C

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles + Paths

i m n r

g=e=a=u h j==q
W\ I I

|
abcdefghiGgklmnopqgrstwv p b=t

w u \\Y_// f o | Q VG S

Question: How many Compatible sequences?
Answer: #£ & (both base-pairs and dependency graphs bipartite)
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Counting compatible RNAs: Watson-Crick + Two structures

A—U

G—C

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles + Paths

g=e=a=u h j==q
NN LT

Question: How many Compatible sequences?

Answer: #£ & (both base-pairs and dependency graphs bipartite)
4#CCs _, 65536
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Counting compatible RNAs: Watson-Crick + > 2 structs

A—U

G—C

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

n s—c m
N TN e
abcdefghijklmnopgrstuyv ?'e'a'T T J_?
k P d—b—t

= ——n

—]—0—vV
I
i

Question: How many Compatible sequences?
Answer:
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Counting compatible RNAs: Watson-Crick + > 2 structs

A—U

G—C

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

n s—c m

AN (TN Wi
aBc@efg@i@k I @nop@rs®uv ?'e‘a'lll fl1 J—CI1
k P b m—t
__O_M

Question: How many Compatible sequences?
Answer: Non-bipartite — @;
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Counting compatible RNAs: Watson-Crick + > 2 structs

A—U

G—+—C

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

N (7N WA

abcdefghijkI  mnopgqrstuv g-e-a-u h j—d

[ | [ |
k P d—b—t
—]—0—V

Question: How many Compatible sequences?
Answer: Non-bipartite — &;
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Counting compatible RNAs: Watson-Crick + > 2 structs

A—U

G—+—C

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

N (7 LSt

|
aBPc@efgBi@Gk I Mnop@rsduv g-e-a-u h j==q
k P d=Db=t

—]—0—V

Question: How many Compatible sequences?
Answer: Non-bipartite — ;
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Counting compatible RNAs: Watson-Crick + > 2 structs

A—U

G—+—C

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

AN N

n

1/
abo@efghi@k MM oporeoduw v g-e-a=
— :

Question: How many Compatible sequences?
Answer: Non-bipartite — ;
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Counting compatible RNAs: Watson-Crick + > 2 structs

A—U

G—+—C

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...
S C

AN 7N

n
|
abc@efghiGgk I Mmnop@rsduv %-e-a-
k

m
1l
h j==q
—/ |
d

= m— t

Question: How many Compatible sequences?
Answer: Non-bipartite — @; Bipartite — 4#CCs = 64

@ 1%t International Computational Biology workshop



Counting compatible RNAs: WC/Wobble + Single struct.

A+U
Gic
|

Compatible Base Pairs = Include Wobble base pairs

7=\

abcdefghijklmnopgqgrstuyv

Question: How many Compatible sequences?
Answer: 4#Unpaired

@ 1%t International Computational Biology workshop



Counting compatible RNAs: WC/Wobble + Single struct.

A+U
Gic
|

Compatible Base Pairs = Include Wobble base pairs

AN

abcdefghifjkillmnopaqgristuyv

Question: How many Compatible sequences?
Answer: 4#Unpaired , g#BPs _, 6879707 136
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Counting compatible RNAs: WC/Wobble + Two structures

AT
a
G

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles + Paths

i m n r

g-e-a-u h j—¢Q
|

N TN T

|
abcdefghijklmnopgqgrstuv P d—b—t

k
=/ U M f—]—o0—Vv c—Ss

Question: How many Compatible sequences?

Answer: # & (base-pairs and dependency graphs always bipartite)
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Counting compatible RNAs: WC/Wobble + Two structures

At
7

G

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles + Paths
i m n r
g=e=a=u h j—(Q
I | I
k P d—b—t
f—|—0-—v Cc—Ss

Question: How many Compatible sequences?

Answer: # & (base-pairs and dependency graphs always bipartite)
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Counting compatible RNAs: WC/Wobble + Two structures

>
7

G

Compatible Base Pairs = Include Wobble base pairs

AN T~

abcdefoghigkl mnopagr stwv

N

&/

\—/

Dependency graph:
Cycles + Paths
i m n r
g=e=a=u h j==q
I I 1 |
k P g m—t
f—|—0-—v Cc—Ss

Question: How many Compatible sequences?

Answer: # & (base-pairs and dependency graphs always bipartite)
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Counting compatible RNAs: WC/Wobble + Two structures
A —

1
G

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles + Paths

i m n r

g=e=a=u h j==q
AN 7N | I

|
abcde@fghigklmno@ar stwv p b=t

&/ \\_-// \\Ej_// fomm|==Q==Vv C—S5

Question: How many Compatible sequences?

Answer: # & (base-pairs and dependency graphs always bipartite)
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Counting compatible RNAs: WC/Wobble + Two structures

>
7

G

Compatible Base Pairs = Include Wobble base pairs

N N

ab@©@defgohiklmnopagqr®twyv

=\

9
I
k

i m n
=e=a=uU h j==(
I 1 |
P (e m—t

Dependency graph:
Cycles + Paths

Question: How many Compatible sequences?

Answer: # & (base-pairs and dependency graphs always bipartite)
#Designs(G) = [[ #Designs(cc)

ceCC(G
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Counting compatible designs for paths and cycles

Theorem (#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:
| p(n) =2 Fni2 and c(n)=2F,+4Fn_q

where F,: n" Fibonacci number, 7o = 0, 71 = 1 and Fn = Fn_1 + Fn_s.

For paths: A simple DFA generates compatible sequences

U Remark: A < C/G < U symmetry
"_@
start @
@O
C ©
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Counting compatible designs for paths and cycles

Theorem (#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:
| p(n) =2 Fn,2 and c(n) =2Fn+4 Fp_q

where F,: n" Fibonacci number, 7o = 0, 71 = 1 and Fn = Fn_1 + Fn_s.

For paths: A simple DFA generates compatible sequences

G,U Remark: A + C/G < U symmetry

start O = (Do
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Counting compatible designs for paths and cycles

Theorem (#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:
| p(n) =2 Fni2 and c(n)=2F,+4Fn_q

where F,: n" Fibonacci number, 7o = 0, 71 = 1 and Fn = Fn_1 + Fn_s.

For paths: A simple DFA generates compatible sequences

G,U Remark: A + C/G < U symmetry

me(n) = mo(n—1)

start O = (Do
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Counting compatible designs for paths and cycles

Theorem (#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:
| p(n) =2 Fni2 and c(n)=2F,+4Fn_q

where F,: n" Fibonacci number, 7o = 0, 71 = 1 and Fn = Fn_1 + Fn_s.

For paths: A simple DFA generates compatible sequences

G,U Remark: A + C/G < U symmetry

me(n) = mo(n—1)
mo(n) = mo(n—1) 4+ me(n—1)
start @ @ ° =mo(n—1)+mo(n—2)

=F(n+2)
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Counting compatible designs for paths and cycles

Theorem (#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:
| p(n) =2 Fn,0 and c(n) =2Fn+4 Fp_q

where F,: n Fibonacci number, 7o = 0, 71 = 1 and Fn = Fn_1 + Fn_s.

For paths: A simple DFA generates compatible sequences

G,U Remark: A + C/G « U symmetry
me(n) = mo(n—1)
mo(n) =me(n—1)+ me(n—1)
start @ @ ° =mo(n—1)+ ms(n—2)
=F(n+2)

(Since m,(0) =1 and m.(1) = 2)
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Counting compatible designs for paths and cycles

Theorem (#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:
| p(n) =2Fni2 and c(n)=2F,+4Fn_q

where F,: n Fibonacci number, 7o = 0, 71 = 1 and Fn = Fn_1 + Fn_s.

For paths: A simple DFA generates compatible sequences
G,U Remark: A + C/G « U symmetry
me(n) = mo(n—1)
- OO0 " ime )
=F(n+2)
(Since m,(0) =1 and m.(1) = 2)

p(n):=m.(n)=2my(n—1)+2ms(n—1) =2(F(n) + F(n+1)) =, F(n+2)

@ 1%t International Computational Biology workshop



Counting compatible designs for paths and cycles

Theorem (#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:
p(n) =2 Fni2 and c(n)=2F,+4Fn_q

where F,: n" Fibonacci number, 7o = 0, 71 = 1 and Fn = Fn_1 + Fn_s.

For cycle: A barely more involved DFA generates compatible sequences

o [ ]
Remark: A <+ C/G < U symmetry
AG,|e —=(*1)
start o Mo, (N) = F(n+2)

@ Mo, (n) = F(n+1)

(Since m,,(0) =1 and m,, (1) = 1)

c(n) :=m.(n)=2mo,(n—2)+2ms,(n—1)
=2(F(n—1)+F(n+1)=2Fn)+4F(n—-1)
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Counting compatible designs for paths and cycles

Theorem (#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:

p(n) =2 Fni2 and c(n)=2F,+4Fn_q

| where F,: n" Fibonacci number, Fo = 0, F1 = 1 and Fy = Fp_1 + Fr_a.

Theorem (#Compatible designs for general 2-structures graphs)

G: dependency graph associated with 2 RNA structures (max deg=2).
The number #Designs(G) of compatible designs for G is given by

#Designs(G) = [[ 27prex [ (2Fq+4Fc-1)
peP(G) ceC(G)

where G decomposes into paths P(G) and cycles C(G).

v
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Counting compatible sequences: WC/Wobble + Two structures

S
a
G

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles + Paths

i m n r
g=e=a=u h j—(Q
TN L

ab@©@defgohiklmnopagqr®twyv

&/ u \\\:/_// f—I—o0—v c—s

Question: How many Compatible sequences?

Answer: # & (base-pairs and dependency graphs always bipartite)

#Designs(G) = [ #Designs(cc) =2322432

ceCC(G)
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Counting compatible sequences: Watson-Crick + > 2 structures
A —
e
I
G

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles, Paths, Trees...

m @ n S—C m

abcdefghijklmnopgrstuyv g-e-a-u h j—q

] | [ |
k P d—b—t
f—I|—0-—vV

r i

Question: How many Compatible sequences?

Answer: Non-bipartite — &; Bipartite —
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Counting compatible sequences: Watson-Crick + > 2 structures
A —
e
I
G

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles, Paths, Trees...

n S m= C m
N T~ Vi
abodefohijWImhopgre®twy R J
U | I | |
k P d—b—t
f—I]—o0—v

r i

Question: How many Compatible sequences?

Answer: Non-bipartite —+ @; Bipartite - ] 2 x #/S(cc)

cceCC(G)
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Bijection between Independent Sets and Valid Designs

i p—E 00
b d-o— @+0@
|

g
i

@ 1%t International Computational Biology workshop



Bijection between Independent Sets and Valid Designs

0-0
/ ole
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Bijection between Independent Sets and Valid Designs

b—c

ej@
o ©+0O
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Bijection between Independent Sets and Valid Designs
b === C 1
(A ) ©
I
—©—9 ©&xC/
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Bijection between Independent Sets and Valid Designs

© b——c A
0060 ©
O ®
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Bijection between Independent Sets and Valid Designs

0 @O o
0060 ©
O ®

j@
eNC)



Bijection between Independent Sets and Valid Designs

O @O o
e O-0O@ ©
O O

Remark: No adjacent black letters in compatible designs

j@
eNC)

Up to trivial symmetry* (e.g. top-left position € {G, A}):

Designs*(cc) C IndependentSets(cc)
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Bijection between Independent Sets and Valid Designs

O @O o
e O-0O@ ©
O O

Remark: No adjacent black letters in compatible designs

j@
eNC)

Up to trivial symmetry* (e.g. top-left position € {G, A}):
Designs*(cc) C IndependentSets(cc)

Also, IS (black) + N\ vert. € {G, A} = Unique compatible design

O
@ 1%t International Computational Biology workshop



Bijection between Independent Sets and Valid Designs

© 00 @
0600 O
© ®

Remark: No adjacent black letters in compatible designs

©
®

Up to trivial symmetry* (e.g. top-left position € {G, A}):
Designs*(cc) C IndependentSets(cc)

Also, IS (black) + N\ vert. € {G, A} = Unique compatible design

= Bijection between Designs*(cc) and IndependentSets(cc).
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Valid designs and independent sets

Theorem (#Valid design for bipartite connected dependency graphs)

Let G be a bipartite connected dependency graph, one has:

#Designs(G) = 2 x #Designs*(G) = 2 x #IS(G)
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Valid designs and independent sets

Theorem (#Valid design for bipartite connected dependency graphs)

Let G be a bipartite connected dependency graph, one has:

U #Designs(G) = 2 x #Designs*(G) = 2 x #IS(G)

For a bipartite dependency graph G we get:

#Designs(G) = [ 2 x #IS(cc) =2'“O x #IS(G)

cceCC(G)
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Valid designs and independent sets

Theorem (#Valid design for bipartite connected dependency graphs)
‘\\‘ Let G be a bipartite connected dependency graph, one has:

| #Designs(G) = 2 x #Designs*(G) = 2 x #IS(G)

For a bipartite dependency graph G we get:

#Designs(G) = [ 2 x #IS(cc) =2'“O x #IS(G)

cceCC(G)
But #/S(G) is #P-hard on bipartite graphs [Bubbley&Dyer’01]

(+ Any G is a dependency graph)
Algorithm A € P for #Designs(G) — Algorithm A" € P for #BIS...
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Valid designs and independent sets

Theorem (#Valid design for bipartite connected dependency graphs)

Let G be a bipartite connected dependency graph, one has:

| #Designs(G) = 2 x #Designs*(G) = 2 x #IS(G)

For a bipartite dependency graph G we get:

#Designs(G) = [ 2 x #IS(cc) =2'“O x #IS(G)

cceCC(G)
But #/S(G) is #P-hard on bipartite graphs [Bubbley&Dyer’01]

(+ Any G is a dependency graph)
Algorithm A € P for #Designs(G) — Algorithm A" € P for #BIS...

#Designs is #P-hard. \

o polynomial algorithm for #Designs(G) ur@s #P = FP (= P=NP)
O
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Consequences

Corollary (#Approximability for < 5 structures) [Weitz'06]

For any G built from < 5 pseudoknotted structures, #Design(G) can be
approximated within any ratio in polynomial time (PTAS)

l @ 1%t International Computational Biology workshop



Consequences

Corollary (#Approximability for < 5 structures) [Weitz’06]

For any G built from < 5 pseudoknotted structures, #Design(G) can be
approximated within any ratio in polynomial time (PTAS)

Corollary (#BIS hardness for > 5 struct.) [Cai, Galanis, Goldberg, Jerrum,

McQuillan’16]

Beyond 5 pseudoknotted structures, approximating #Design becomes as hard
as approximating #BIS without any constraint.

Why pseudoknotted? Because any bipartite graph of max degree A can be
decomposed into A matchings in polynomial time (Vizing’s theorem).
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Consequences

Corollary (#Approximability for < 5 structures) [Weitz’06]

For any G built from < 5 pseudoknotted structures, #Design(G) can be
approximated within any ratio in polynomial time (PTAS)

Corollary (#BIS hardness for > 5 struct.) [Cai, Galanis, Goldberg, Jerrum,

McQuillan’16]

Beyond 5 pseudoknotted structures, approximating #Design becomes as hard
as approximating #BIS without any constraint.

Why pseudoknotted? Because any bipartite graph of max degree A can be
decomposed into A matchings in polynomial time (Vizing’s theorem).

Lastly, connection between counting and sampling [Jerrum, Valiant, Vazirani’86].

Conjecture (#BIS hardness of sampling)

Generating comp. sequences (almost) uniformly for general input is #BIS-hard.
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Perspectives: FPT and Boltzmann sampling algorithms

ab

RNARedPrint

Partition Function

“y8rom

iv) Tree Decomposition

=

ii) Merged Base-Pairs
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iii) Compatibility Graph

v) Weight Optimization (Adaptive Sampling)
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vi) Final Designs

m FPT algorithm for counting based on tree decomposition
m Multidimensional Boltzmann sampling to control energies, GC. ..
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Counting compatible sequences: Watson-Crick + > 2 structures
A —
e
I
G

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles, Paths, Trees...

m @ n S—C m

abcdefghijklmnopgrstuyv g-e-a-u h j—q

] | [ |
k P d—b—t
f—I|—0-—vV

r i

Question: How many Compatible sequences?

Answer: Bipartite —
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Counting compatible sequences: Watson-Crick + > 2 structures

A
A
G

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles, Paths, Trees...

m @ n S—C m

abcdefghijklmnopgrstuyv g-e-a-u h j—q

] | [ |
k P d—b—t
f—I|—0-—vV

r i

Question: How many Compatible sequences?

Answer: Bipartite — [ 2 x #1S(cc) = 496672

cceCC(G)
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Perspectives:

abcdef
W

ii) Merged Base-Pairs
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FPT and Boltzmann sampling algorithms
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iii) Compatibility Graph
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iv) Tree Decomposition

v) Weight Optimization (Adaptive Sampling)

vi) Final Designs

m FPT algorithm for counting based on tree decomposition
m Multidimensional Boltzmann sampling to control energies, GC. ..
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Conclusions

m RNA is cool!

m RNA design is one of the current challenge of RNA bioinformatics with
far-reaching consequences for drug design, synthetic biology. . .

m Practical use-cases require expressive and modular constraints

m Future methods: kinetics, interactions,multiple structures,
pseudoknots. ..

m RNA inverse folding is the combinatorial core of design.
It remains largely unsolved, and opens new lines of research in Comp.
Sci.
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