Complexity and enumerative aspects of multiple RNA design

Stefan Hammer ${ }^{\dagger}$ Yann Ponty ${ }^{+}{ }^{+\star}$ Wei Wang ${ }^{\star, \bullet}$ Sebastian Will ${ }^{\dagger}$

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology (v2.0)

Fundamental dogma of molecular biology

RNA world: Resolving the chicken vs egg paradox at the origin of life...

A gene big enough to specify an enzyme would be too big to replicate accurately without the aid of an enzyme of the very kind that it is trying to specify. So the system apparently cannot get started.
R. Dawkins. The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

RNA world: Resolving the chicken vs egg paradox at the origin of life...

A gene big enough to specify an enzyme would be too big to replicate accurately without the aid of an enzyme of the very kind that it is trying to specify. So the system apparently cannot get started.
[...] This is the RNA World. To see how plausible it is, we need to look at why proteins are good at being enzymes but bad at being replicators; at why DNA is good at replicating but bad at being an enzyme; and finally why RNA might just be good enough at both roles to break out of the Catch-22.
R. Dawkins. The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

RNA sequence and structure(s)

$$
\text { RNA }=\text { Linear Polymer }=\text { Sequence in }\{A, C, G, U\}^{\star}
$$

Primary Structure Secondary Structure
Tertiary Structure
5s rRNA (PDBID: 1K73:B)

RNA inverse folding

$$
\text { RNA }=\text { Linear Polymer }=\text { Sequence in }\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{U}\}^{\star}
$$

Primary Structure
 Secondary Structure Structure Tertiaire

Design objectives

Positive structural design
Optimize affinity of designed sequences towards target structure Or simply ensure their compatibility with one or several structures
Examples: Most stable sequence for given fold...

Negative structural design

Limit affinity of designed sequences towards alternative structures
Examples: Lowest free-energy, High Boltzmann probability/Low entropy...

Additional constraints:

- Forbid motif list to appear anywhere in design
- Force motif list to appear each at least once
- Limit available alternatives at certain positions
- Control overall composition (GC-content)

Existing approaches for negative design

Based on local search...

- RNAInverse - TBI Vienna
- Info-RNA - Backofen@Freiburg
- RNA-SSD - Condon@UBC
- NUPack - Pierce@Caltech
- RNAFBinv - Barash@Ben

Gurion
... bio-inspired algorithms. . .

- ERB - Gantjabesh@Tehran
- FRNAKenstein - Hein@Oxford
- AntaRNA - Backofen@Freiburg
... exact approaches...
- RNAIFold - Clote@Boston College
- CO4 - Will@Vienna

RNA negative design remains a very active area of research ...
... whose computational complexity remains largely unknown!

Design objectives

Positive structural design

Optimize affinity of designed sequences towards target structure Or simply ensure their compatibility with one or several structures
Examples: Most stable sequence for given fold...
Negative structural design
Limit affinity of designed sequences towards alternative structures
Examples: Lowest free-energy, High Boltzmann probability/Low entropy...

Additional constraints:

- Forbid motif list to appear anywhere in design
- Force motif list to appear each at least once
- Limit available alternatives at certain positions
- Control overall composition (GC-content)

Design objectives

Positive structural design

Optimize affinity of designed sequences towards target structure Or simply ensure their compatibility with one or several structures
Examples: Most stable sequence for given fold...
Negative structural design
Limit affinity of designed sequences towards alternative structures
Examples: Lowest free-energy, High Boltzmann probability/Low entropy...

Additional constraints:

- Forbid motif list to appear anywhere in design
- Force motif list to appear each at least once
- Limit available alternatives at certain positions
- Controll overall composition (GC-content)

Counting compatible sequences: Watson-Crick + Single structure

$$
\mathrm{A} \stackrel{\mathrm{I}}{+} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Counting compatible sequences: Watson-Crick + Single structure

$$
\mathrm{A} \stackrel{\mathrm{I}}{+} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Counting compatible sequences: Watson-Crick + Single structure

$$
\mathrm{G} \stackrel{\mathrm{I}}{\square} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?

Counting compatible sequences: Watson-Crick + Single structure

$$
\mathrm{A} \stackrel{\mathrm{H}}{\square} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?

Counting compatible sequences: Watson-Crick + Single structure

$$
\begin{gathered}
\mathrm{A} \stackrel{\mathrm{I}}{\leftrightarrows} \mathrm{U} \\
\mathrm{G} \stackrel{\mathrm{C}}{\square}
\end{gathered}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?

Counting compatible sequences: Watson-Crick + Single structure

$$
\begin{gathered}
\mathrm{A} \stackrel{\mathrm{I}}{\leftrightarrows} \mathrm{U} \\
\mathrm{G} \stackrel{\mathrm{C}}{\square}
\end{gathered}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?
Answer: $4^{\# B P s} \times 4^{\# \text { Unpaired }} \rightarrow 268435456$

Counting compatible sequences: Watson-Crick + Two structures

$$
\begin{gathered}
\mathrm{A} \stackrel{\mathrm{I}}{\leftrightarrows} \mathrm{U} \\
\mathrm{G} \stackrel{\mathrm{C}}{\square}
\end{gathered}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (both base-pairs and dependency graphs bipartite)

Counting compatible sequences: Watson-Crick + Two structures

$$
\mathrm{A} \stackrel{\mathrm{I}}{\square} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (both base-pairs and dependency graphs bipartite)

Counting compatible sequences: Watson-Crick + Two structures

$$
\begin{gathered}
\mathrm{A} \stackrel{\mathrm{I}}{\leftrightarrows} \mathrm{U} \\
\mathrm{G} \stackrel{\mathrm{C}}{\square}
\end{gathered}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (both base-pairs and dependency graphs bipartite)

Counting compatible sequences: Watson-Crick + Two structures

$$
\begin{gathered}
\mathrm{A} \stackrel{\mathrm{I}}{\leftrightarrows} \mathrm{U} \\
\mathrm{G} \stackrel{\mathrm{C}}{\square}
\end{gathered}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (both base-pairs and dependency graphs bipartite)

Counting compatible sequences: Watson-Crick + Two structures

$$
\begin{gathered}
\mathrm{A} \stackrel{\mathrm{I}}{\leftrightarrows} \mathrm{U} \\
\mathrm{G} \stackrel{\mathrm{C}}{\square}
\end{gathered}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (both base-pairs and dependency graphs bipartite)

$$
4^{\# C C s} \rightarrow 65536
$$

Counting compatible sequences: Watson-Crick + > 2 structures

$$
\begin{gathered}
\mathrm{A} \stackrel{\mathrm{I}}{\square} \mathrm{U} \\
\mathrm{G} \\
\mathrm{C}
\end{gathered}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?
Answer:

Counting compatible sequences: Watson-Crick + > 2 structures

$$
\mathrm{G} \stackrel{\mathrm{I}}{\mathrm{I}} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$;

Counting compatible sequences: Watson-Crick + > 2 structures

$$
\mathrm{A} \stackrel{\mathrm{I}}{\mathrm{~L}} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$;

Counting compatible sequences: Watson-Crick + > 2 structures

$$
\mathrm{A} \stackrel{\mathrm{I}}{\mathrm{~T}} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$;

Counting compatible sequences: Watson-Crick + > 2 structures

$$
\begin{gathered}
\mathrm{A} \stackrel{\mathrm{I}}{\leftrightarrows} \mathrm{U} \\
\mathrm{G} \stackrel{\mathrm{C}}{\square}
\end{gathered}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$;

Counting compatible sequences: Watson-Crick + > 2 structures

$$
\begin{gathered}
A \stackrel{I}{\Perp}+C \\
G
\end{gathered}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...
 $\underset{r}{f}=I-0-v$

Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$; Bipartite $\rightarrow 4^{\# C C s}=64$

Counting compatible sequences: WC/Wobble + Single structure

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: 4 \#Unpaired \times

Counting compatible sequences: WC/Wobble + Single structure

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: 4\#Unpaired $\times 6$ \#BPs $\rightarrow 6879707136$

Counting compatible sequences: WC/Wobble + Two structures

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (base-pairs and dependency graphs always bipartite)

Counting compatible sequences: WC/Wobble + Two structures

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (base-pairs and dependency graphs always bipartite)

Counting compatible sequences: WC/Wobble + Two structures

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (base-pairs and dependency graphs always bipartite)

Counting compatible sequences: WC/Wobble + Two structures

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (base-pairs and dependency graphs always bipartite)

Counting compatible sequences: WC/Wobble + Two structures

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (base-pairs and dependency graphs always bipartite)

$$
\text { \#Designs }(G)=\prod_{c \in C C(G)} \text { \#Designs }(c c)
$$

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers $p(n)$ and $c(n)$ of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number, s.t. $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For paths: A simple DFA generates compatible sequences

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers $p(n)$ and $c(n)$ of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number, s.t. $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For paths: A simple DFA generates compatible sequences

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers $p(n)$ and $c(n)$ of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number, s.t. $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For paths: A simple DFA generates compatible sequences

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

$$
m_{\bullet}(n)=m_{\circ}(n-1)
$$

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers $p(n)$ and $c(n)$ of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number, s.t. $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For paths: A simple DFA generates compatible sequences

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

$$
\begin{aligned}
m_{\bullet}(n) & =m_{\circ}(n-1) \\
m_{\circ}(n) & =m_{\circ}(n-1)+m_{\bullet}(n-1) \\
& =m_{\circ}(n-1)+m_{\circ}(n-2) \\
& =\mathcal{F}(n+2)
\end{aligned}
$$

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers $p(n)$ and $c(n)$ of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number, s.t. $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For paths: A simple DFA generates compatible sequences

Remark: $\mathrm{A} \leftrightarrow \mathrm{C} / \mathrm{G} \leftrightarrow \mathrm{U}$ symmetry

$$
\begin{aligned}
m_{\bullet}(n) & =m_{\circ}(n-1) \\
m_{\circ}(n) & =m_{\circ}(n-1)+m_{\bullet}(n-1) \\
& =m_{\circ}(n-1)+m_{\circ}(n-2) \\
& =\mathcal{F}(n+2)
\end{aligned}
$$

(Since $m_{\circ}(0)=1$ and $m_{\circ}(1)=2$)

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers $p(n)$ and $c(n)$ of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number, s.t. $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For paths: A simple DFA generates compatible sequences

Remark: $\mathrm{A} \leftrightarrow \mathrm{C} / \mathrm{G} \leftrightarrow \mathrm{U}$ symmetry

$$
\begin{aligned}
m_{\bullet}(n) & =m_{\circ}(n-1) \\
m_{\circ}(n) & =m_{\circ}(n-1)+m_{\bullet}(n-1) \\
& =m_{\bullet}(n-1)+m_{\bullet}(n-2) \\
& =\mathcal{F}(n+2)
\end{aligned}
$$

(Since $m_{\circ}(0)=1$ and $m_{\circ}(1)=2$)

$$
p(n):=m_{\varepsilon}(n)=2 m_{\bullet}(n-1)+2 m_{\circ}(n-1)=2(\mathcal{F}(n)+\mathcal{F}(n+1))=, \mathcal{F}(n+2)
$$

Counting compatible designs for paths and cycles

Theorem (\#Valid designs for paths and cycles)

The numbers $p(n)$ and $c(n)$ of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number, s.t. $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For cycle: A barely more involved DFA generates compatible sequences

Remark: $\mathrm{A} \leftrightarrow \mathrm{C} / \mathrm{G} \leftrightarrow \mathrm{U}$ symmetry

$$
\begin{aligned}
& m_{\circ_{2}}(n)=\mathcal{F}(n+2) \\
& m_{\circ_{1}}(n)=\mathcal{F}(n+1)
\end{aligned}
$$

(Since $m_{\circ 1}(0)=1$ and $m_{\circ 1}(1)=1$)

$$
\begin{aligned}
c(n) & :=m_{\varepsilon}(n)=2 m_{\circ_{1}}(n-2)+2 m_{\circ_{2}}(n-1) \\
& =2(\mathcal{F}(n-1)+\mathcal{F}(n+1))=2 \mathcal{F}(n)+4 \mathcal{F}(n-1)
\end{aligned}
$$

Counting compatible designs for paths and cycles

Theorem (\#Valid designs for paths and cycles)

The numbers $p(n)$ and $c(n)$ of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} is the n-th Fibonacci number, s.t. $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.

Theorem (\#Compatible designs for general 2-structures graphs)

Let G be the dependency graph associated with 2 RNA structures (max degree=2).
The number \#Designs (G) of compatible designs for G is given by

$$
\# \operatorname{Designs}(G)=\prod_{p \in \mathcal{P}(G)} 2 \mathcal{F}_{|p|+2} \times \prod_{c \in \mathcal{C}(G)}\left(2 \mathcal{F}_{|c|}+4 \mathcal{F}_{|c|-1}\right)
$$

where G decomposes into paths $\mathcal{P}(G)$ and cycles $\mathcal{C}(G)$.

Counting compatible sequences: WC/Wobble + Two structures

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (base-pairs and dependency graphs always bipartite)

$$
\text { \#Designs }(G)=\prod_{c \in C C(G)} \text { \#Designs }(c c)=2322432
$$

Counting compatible sequences: Watson-Crick + > 2 structures

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles, Paths, Trees...
$\mathrm{n} \quad \mathrm{s}-\mathrm{c} \quad \mathrm{m}$

$f-\mathrm{I}=\mathrm{O}-\mathrm{V}$

Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$; Bipartite \rightarrow

Counting compatible sequences: Watson-Crick + > 2 structures

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:

Cycles, Paths, Trees...

$f-\mathrm{I}-\mathrm{O}-\mathrm{V}$
r i

Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$; Bipartite $\rightarrow \prod_{c c \in C C(G)} 2 \times \# I S(c c)$

Bijection between Independent Sets and Valid Designs

Remark: No adjacent black letters in compatible designs
Up to trivial symmetry ${ }^{\star}$ (e.g. top-left position $\in\{G, A\}$):

$$
\text { Designs }^{\star}(\mathrm{cc}) \subseteq \text { IndependentSets }(\mathrm{cc})
$$

Bijection between Independent Sets and Valid Designs

Remark: No adjacent black letters in compatible designs Up to trivial symmetry ${ }^{\star}$ (e.g. top-left position $\in\{G, A\}$):

$$
\text { Designs }^{\star}(\mathrm{cc}) \subseteq \text { IndependentSets }(\mathrm{cc})
$$

Also, IS (black vert.) $+\nwarrow$ vert. $\in\{G, A\} \Rightarrow$ Unique compatible design

Bijection between Independent Sets and Valid Designs

Remark: No adjacent black letters in compatible designs
Up to trivial symmetry ${ }^{\star}$ (e.g. top-left position $\in\{G, A\}$):

$$
\text { Designs }^{\star}(\mathrm{cc}) \subseteq \text { IndependentSets }(\mathrm{cc})
$$

Also, IS (black vert.) + \nwarrow vert. $\in\{G, A\} \Rightarrow$ Unique compatible design
\Rightarrow Bijection between Designs ${ }^{\star}(\mathrm{cc})$ and IndependentSets(cc).

Valid designs and independent sets

Theorem (\#Valid design for bipartite connected dependency graphs)
Let G be a bipartite connected dependency graph, one has:

$$
\# \operatorname{Designs}(G)=2 \times \text { Designs }^{\star}(G)=2 \times \# I S(G)
$$

Valid designs and independent sets

Theorem (\#Valid design for bipartite connected dependency graphs)
Let G be a bipartite connected dependency graph, one has:

$$
\# \operatorname{Designs}(G)=2 \times \text { Designs }^{\star}(G)=2 \times \# I S(G)
$$

For a bipartite dependency graph G is then:

$$
\# \operatorname{Designs}(G)=\prod_{c C \in C C(G)} 2 \times \# I S(c c)=2^{|C C(G)|} \times \# I S(G)
$$

Valid designs and independent sets

Theorem (\#Valid design for bipartite connected dependency graphs)

Let G be a bipartite connected dependency graph, one has:

$$
\# \operatorname{Designs}(G)=2 \times \text { Designs }^{\star}(G)=2 \times \# I S(G)
$$

For a bipartite dependency graph G is then:

$$
\# \operatorname{Designs}(G)=\prod_{c c \in C C(G)} 2 \times \# I S(c c)=2^{|C C(G)|} \times \# I S(G)
$$

But \#IS(G) is \#P-hard on bipartite graphs [Bubbley\&Dyer'01] (+ Any G is a dependency graph)
Algorithm $\mathcal{A} \in P$ for $\# \operatorname{Designs}(G) \rightarrow$ Algorithm $\mathcal{A}^{\prime} \in P$ for $\# B I S \ldots$

Valid designs and independent sets

Theorem (\#Valid design for bipartite connected dependency graphs)

Let G be a bipartite connected dependency graph, one has:

$$
\# \operatorname{Designs}(G)=2 \times \# \operatorname{Designs}^{\star}(G)=2 \times \# \mathrm{IS}(\mathrm{G})
$$

For a bipartite dependency graph G is then:

$$
\# \operatorname{Designs}(G)=\prod_{c c \in C C(G)} 2 \times \# I S(c c)=2^{|C C(G)|} \times \# I S(G)
$$

But \#IS (G) is \#P-hard on bipartite graphs [Bubbley\&Dyer'01]
(+ Any G is a dependency graph)
Algorithm $\mathcal{A} \in P$ for $\# \operatorname{Designs}(G) \rightarrow$ Algorithm $\mathcal{A}^{\prime} \in P$ for $\# B I S . .$.

Theorem

\#Designs is \#P-hard.

No polynomial algorithm for \#Designs(G) unless \#P $=F P(\Rightarrow P=N P)$

Consequences

Corollary (\#Approximability for ≤ 5 structures) [Weitz'06]
For any G built from ≤ 5 pseudoknotted structures, \#Design (G) can be approximated within any ratio in polynomial time (PTAS)

Consequences

Corollary (\#Approximability for ≤ 5 structures) [Weitz'06]

For any G built from ≤ 5 pseudoknotted structures, \#Design (G) can be approximated within any ratio in polynomial time (PTAS)

Corollary (\#BIS hardness for > 5 struct.) [Cai, Galanis, Goldberg, Jerrum, McQuillan'16]
Beyond 5 pseudoknotted structures, approximating \#Design becomes as hard as approximating \#BIS without any constraint.

Why pseudoknotted? Because any bipartite graph of max degree Δ can be decomposed into Δ matchings in polynomial time (Vizing's theorem).

Consequences

Corollary (\#Approximability for ≤ 5 structures) [Weitz'06]

For any G built from ≤ 5 pseudoknotted structures, \#Design (G) can be approximated within any ratio in polynomial time (PTAS)

Corollary (\#BIS hardness for > 5 struct.) [Cai, Galanis, Goldberg, Jerrum, McQuillan'16]
Beyond 5 pseudoknotted structures, approximating \#Design becomes as hard as approximating \#BIS without any constraint.

Why pseudoknotted? Because any bipartite graph of max degree Δ can be decomposed into Δ matchings in polynomial time (Vizing's theorem).

Finally, strong connection between counting and sampling [Jerrum, Valiant, Vazirani'86].

Conjecture (\#BIS hardness of sampling)

Generating compatible sequences (almost) uniformly w.r.t. a set of structures is \#BIS-hard.

Perspectives: FPT and Boltzmann sampling algorithms

i) Input Structures

ii) Merged Base-Pairs
iv) Tree Decomposition

v) Weight Optimization (Adaptive Sampling)

iii) Compatibility Graph

GCCGCGGUAGCUACAGCCGGCU UUGGGGUUGGGUAGACUCCGGU GCUGCAGCGGCUGUGGCUGGCC GGUUCUGGUUUGCUUAGGGCUA CGACGGCGGUGCCGGCAUUUGC

vi) Final Designs

- FPT algorithm for counting based on tree decomposition
- Multidimensional Boltzmann sampling to control energies, GC...

Counting compatible sequences: Watson-Crick + > 2 structures

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles, Paths, Trees...
$\mathrm{n} \quad \mathrm{s}-\mathrm{C} \quad \mathrm{m}$

$f=I=0-v$

Question: How many Compatible sequences?
Answer: Bipartite \rightarrow

Counting compatible sequences: Watson-Crick + > 2 structures

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles, Paths, Trees...

$f-\mathrm{I}=\mathrm{O}-\mathrm{V}$
r i

Question: How many Compatible sequences?
Answer: Bipartite $\rightarrow \prod_{c c \in C C(G)} 2 \times \# I S(c c)=496672$

Perspectives: FPT and Boltzmann sampling algorithms

i) Input Structures

ii) Merged Base-Pairs

iv) Tree Decomposition
v) Weight Optimization (Adaptive Sampling)

iii) Compatibility Graph

GCCGCGGUAGCUACAGCCGGCU UUGGGGUUGGGUAGACUCCGGU GCUGCAGCGGCUGUGGCUGGCC GGUUCUGGUUUGCUUAGGGCUA CGACGGCGGUGCCGGCAUUUGC

vi) Final Designs

- FPT algorithm for counting based on tree decomposition
- Multidimensional Boltzmann sampling to control energies, GC...

Thanks!

Submission deadline Nov 6 ${ }^{\text {th }}$ Registration open soon...

