Assessing the robustness of predictions for ancestral adjacencies

A. Rajaraman^{1,2}, C. Chauve¹ and Y. Ponty^{1,3,4,5} and J. Zanetti^{1,3,6,7}

- Department of Mathematics, Simon Fraser University,
 Department of Bioengineering, UIUC
 Pacific Institute for the Mathematical Sciences,
 CNRS/LIX, École Polytechnique, Palaiseau
 AMIB, Inria Saclay
 Institute of Computing, UNICAMP, Campinas, Brazil
- 7. São Paulo Research Foundation, FAPESP, São Paulo, Brazil

Some things I learned during my

holidays sabbatical in Vancouver

Anything misleading is probably false, as distractions were many and time was scarce.

The tree of life

Species trees vs Gene trees

How best to explain (reconcile) those? (and hopefully learn something in the process)

Gene/Species Trees Reconciliation

Find (parsimonious) evolutionary scenario using (min# of) Duplications/Losses(/Transfers)

Gene/Species Trees Reconciliation

Find (parsimonious) evolutionary scenario using (min# of) Duplications/Losses(/Transfers)

Inferring ancestral characters

Goal: To infer features of ancestral genomes

Inferring ancestral characters

Goal: To infer features of ancestral genomes

Inferring ancestral syntenic characters

• Efficient algorithms exist for parsimonious scenarios for genomic characters (genes under DTL, for example).

- Efficient algorithms exist for parsimonious scenarios for genomic characters (genes under DTL, for example).
- Bérard *et al* (2012) extended methods to gene adjacencies under gene Speciation, Duplication, Loss.
- DeCo considers cost of gains/ breaks due to rearrangements.

- Efficient algorithms exist for parsimonious scenarios for genomic characters (genes under DTL, for example).
- Bérard *et al* (2012) extended methods to gene adjacencies under gene Speciation, Duplication, Loss.
- DeCo considers cost of gains/ breaks due to rearrangements.

Robustness of DeCo predictions

- Zanetti et al (2014): Boltzmann-Gibbs probability as support;
- Rajaraman et al (2015): Parameter dependence of predictions.

DeCo : Parsimoniously inferring ancestral adjacencies

Problem

Given two reconciled gene trees + extant adjacencies, construct a parsimonious evolutionary scenario

DeCo : Parsimoniously inferring ancestral adjacencies

Problem

Given two reconciled gene trees + extant adjacencies, construct a parsimonious evolutionary scenario

Output: Adjacency forest

Event costs/parameters

- Adjacency gain: x
- Adjacency break: y

W.l.o.g., $x^2 + y^2 = 1$.

Event costs/parameters

- Adjacency gain: x
- Adjacency break: y

W.l.o.g., $x^2 + y^2 = 1$.

Event costs/parameters

- Adjacency gain: x
- Adjacency break: y

W.l.o.g., $x^2 + y^2 = 1$.

Signature of a scenario

(g, b): Number of gains(g) and breaks(b).

$$Cost((g, b)) = x \cdot g + y \cdot b.$$

Event costs/parameters

- Adjacency gain: x
- Adjacency break: y

W.l.o.g., $x^2 + y^2 = 1$.

Signature of a scenario

(g, b): Number of gains(g) and breaks(b).

$$Cost((g, b)) = x \cdot g + y \cdot b.$$

Extended signatures for a given adjacency

(g, b, d): d = 1 if adjacency present, 0 otherwise.

$$Cost((g, b, d)) = x \cdot g + y \cdot b + 0 \cdot d.$$

Deco Dynamic Programming Scheme

A peek (Bérard et al., 2012)

1. $e(g_1) = \text{Extant and } e(g_2) = \text{Extant:}$	
$c_1(g_1, g_2) = \begin{cases} 0 & \text{if } g_1 g_2 \text{ is an adjacency} \\ 0 & \text{otherwise} \end{cases}$	
$c_0(g_1, g_2) = \begin{cases} 0 & \text{if } g_1 g_2 \text{ is not an adjacency} \\ 0 & \text{otherwise} \end{cases}$	8. $e(g_1) = GDup$ and $e(g_2) = GDup$:
$\begin{split} & (0,0) = 20^{-1} \left\{ 0 \text{otherwise} \\ & 2 (q) = G(3s \ \text{and} (q_2)) \in [\text{Extant}, \text{Spec}, \text{GDup}]; \\ & c_1(g_1, g_2) = c_0(g_1, g_2) = 0^{2\text{HereGDap}(g_2)} \\ & 3 (q_1) \in [\text{Extant}, \text{Spec}, \text{GDup}] \ \text{and} \ c_2(g_2) = \text{GLoss}; \\ & c_1(g_1, g_2) = c_0(g_1, g_2) = 0^{2\text{HereGDap}(g_1)} \\ & 4 (q_1) = \text{GLoss} \ \text{and} \ c_2(g_2) = \text{GLoss}; \\ & c_1(g_1, g_2) = c_0(g_1, g_2) = 0 \\ & 5 (g_1, g_2) = c_0(g_1, g_2) = 0 \\ & 5 (g_1, g_2) = c_0(g_1, g_2) = 0 \\ & c_1(g_1, g_2) = \min \left\{ \begin{array}{c} c_1(g_1, g_2) + c_0(g_1, g_2_2), \\ & c_1(g_1, g_2) + c_1(g_1, g_2_2), \\ & c_1(g_1, g_2) + c_1(g_1, g_2_2), \\ & c_1(g_1, g_2) + c_1(g_1, g_2_2), \\ & c_1(g_1, g_2) = \min \left\{ \begin{array}{c} c_1(g_1, g_2) + c_1(g_1, g_2_2), \\ & c_1(g_1, g_2) + c_0(g_1, g_2), \\ & c_1(g_1, g_2) + c_0(g_1, g_2), \\ & c_1(g_1, g_2) - c_0(g_1, g_2), \\ & c_1(g_1, g_2) = \min \left\{ \begin{array}{c} c_1(g_1, g_2) + c_1(g_1, g_2), \\ & c_1(g_1, g_2) + c_0(g_1, g_2), \\ & c_1(g_1, g_2) - c_0(g_1, g_2), \\ & c_1(g_1, g_2) = \min \left\{ \begin{array}{c} c_1(g_1, g_2) + c_0(g_1, g_2), \\ & c_1(g_1, g_2) - c_0(g_1, g_2), \\ & c_1(g_1, g_2) - c_0(g_1, g_2), \\ & c_1(g_1, g_2) = \min \left\{ \begin{array}{c} c_1(g_1, g_2) + c_0(g_1, g_2), \\ & c_1(g_1, g_2) - c_0(g_1, $	$c_1(g_1,g_2) = \min\{0, 0_{12}, g_2\}, \dots, (a_{11},g_2) + c_1(g_1,g_2) + g_1, \\c_1(g_1,g_2) + c_1(g_1,g_2) + g_2, \\c_1(g_1,g_2) + c_1(g_1,g_2) + g_2) + g_2(g_1,g_2) + g_2(g_1,$
$c_0(g_1,g_2) = \min \begin{cases} c_0(a_{g_1},g_2) + c_0(b_{g_1},g_2), & c_0(a_{g_1},g_2) + c_1(b_{g_1},g_2) + x, \\ c_1(a_{g_1},g_2) + c_0(b_{g_1},g_2) + x, & c_1(a_{g_1},g_2) + c_1(b_{g_1},g_2) + 2x, \end{cases}$	$ \begin{array}{l} c_0(a_{g_1},a_{g_2})+c_0(b_{g_1},b_{g_2})+c_0(a_{g_1},b_{g_2})+c_1(b_{g_1},a_{g_2})+y,\\ c_0(a_{g_1},a_{g_2})+c_0(b_{g_1},b_{g_2})+c_0(a_{g_1},b_{g_2})+c_0(b_{g_1},a_{g_2})+2y, \end{array} $
 e(g1) = Spec and e(g2) = Spec: 	$c_0(a_{g_1}, g_2) + c_0(b_{g_1}, g_2),$ $c_0(a_{g_1}, g_2) + c_1(b_{g_1}, g_2) + x,$
$c_1(g_1,g_2) = \min \begin{cases} c_1(a_{g_1},b_{g_2}) + c_1(b_{g_1},a_{g_2}) + 0, & c_1(a_{g_1},b_{g_2}) + c_0(b_{g_1},a_{g_2}) + y + 0, \\ c_0(a_{g_1},b_{g_2}) + c_1(b_{g_1},a_{g_2}) + y + 0, & c_0(a_{g_1},b_{g_2}) + c_0(b_{g_1},a_{g_2}) + 2y + 0, \\ c_1(a_{g_1},a_{g_2}) + c_1(b_{g_1},b_{g_2}) + 0, & c_1(a_{g_1},a_{g_2}) + c_0(b_{g_1},b_{g_2}) + y + 0, \\ c_0(a_{g_1},a_{g_2}) + c_1(b_{g_1},b_{g_2}) + y + 0, & c_0(a_{g_1},a_{g_2}) + c_0(b_{g_1},b_{g_2}) + y + 0, \end{cases}$	$ c_0(g_1,g_2) = \min \left\{ \begin{array}{ll} c_1(a_{g_1},g_2) + c_0(g_1,g_2) + x, & c_1(g_1,g_2) + c_1(g_1,g_2) + zx, \\ c_1(g_1,g_2) + c_0(g_1,g_2), & c_0(g_1,g_2) + c_1(g_1,g_2) + x, \\ c_1(g_1,a_{g_2}) + c_0(g_1,g_2) + x, & c_1(g_1,a_{g_2}) + c_1(g_1,g_{g_2}) + 2x. \end{array} \right. $
$c_0(g_1, g_2) = \min \begin{cases} c_0(a_{g_1}, b_{g_2}) + c_0(b_{g_1}, a_{g_2}) + 0, & c_1(a_{g_1}, b_{g_2}) + c_0(b_{g_1}, a_{g_2}) + x + 0, \\ c_0(a_{g_1}, b_{g_2}) + c_1(b_{g_1}, a_{g_2}) + x + 0, & c_1(a_{g_1}, b_{g_2}) + c_1(b_{g_1}, a_{g_2}) + x + x + 0, \\ c_0(a_{g_1}, a_{g_2}) + c_0(b_{g_1}, b_{g_2}) + 0, & c_1(a_{g_1}, a_{g_2}) + c_0(b_{g_1}, b_{g_2}) + x + 0, \\ c_0(a_{g_1}, a_{g_2}) + c_1(b_{g_1}, b_{g_2}) + x + 0, & c_1(a_{g_1}, a_{g_2}) + c_0(b_{g_1}, b_{g_2}) + x + 0, \\ c_0(a_{g_1}, a_{g_2}) + c_1(b_{g_1}, b_{g_2}) + x + 0, & c_1(a_{g_1}, a_{g_2}) + c_0(b_{g_1}, b_{g_2}) + x + 0, \end{cases}$	

Deco (Berard *et al* (2012)): unambiguous dynamic programming scheme for the most parsimonious adjacency forest in $O(|G_1||G_2|)$.

Deco Dynamic Programming Scheme

A peek (Bérard et al., 2012)

$$\begin{array}{l} \textbf{7. If } e(g_1) = \text{Spec and } e(g_2) = \text{Spec:} \\ c_1(a(g_1), b(g_2)) + c_1(b(g_1), a(g_2)), c_1(a(g_1), b(g_2)) + c_0(b(g_1), a(g_2)) + ABreak, \\ c_0(a(g_1), b(g_2)) + c_1(b(g_1), a(g_2)) + ABreak, \\ c_0(a(g_1), b(g_2)) + c_0(b(g_1), a(g_2)) + 2ABreak, \\ c_1(a(g_1), a(g_2)) + c_1(b(g_1), b(g_2)) + 2ABreak, \\ c_1(a(g_1), a(g_2)) + c_1(b(g_1), b(g_2)) + ABreak, c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + ABreak, \\ c_0(a(g_1), a(g_2)) + c_1(b(g_1), b(g_2)) + ABreak, c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + ABreak, \\ c_0(a(g_1), a(g_2)) + c_1(b(g_1), a(g_2)) + ABreak, c_0(a(g_1), a(g_2)) + c_0(b(g_1), a(g_2)) + 2ABreak, \\ c_0(a(g_1), b(g_2)) + c_1(b(g_1), a(g_2)) + ABreak, c_0(a(g_1), b(g_2)) + ABreak, c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2ABreak, \\ c_0(a(g_1), b(g_2)) + c_0(b(g_1), a(g_2)) + c_0(b(g_1), a(g_2)) + 2ABreak, \\ c_0(a(g_1), b(g_2)) + c_0(b(g_1), a(g_2)) + AGrain, c_1(a(g_1), b(g_2)) + C_0(b(g_1), a(g_2)) + 2AGrain, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + c_0(b(g_1), a(g_2)) + c_0(b(g_1), a(g_2)) + 2AGrain, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + AGrain, c_1(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2AGrain, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + AGrain, c_1(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2AGrain, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + AGrain, c_1(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2AGrain, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + AGrain, c_1(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2AGrain, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + AGrain, c_1(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2AGrain, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + AGrain, c_1(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2AGrain, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + AGrain, c_1(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2AGrain, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + AGrain, c_1(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2AGrain, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + AGrain, c_1(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2AGrain, \\ c_0(a(g_1), a(g_2)) + c$$

Deco (Berard *et al* (2012)): unambiguous dynamic programming scheme for the most parsimonious adjacency forest in $\mathcal{O}(|G_1||G_2|)$.

• For fun: Because, who doesn't just *love* algorithms?? :)

- For fun: Because, who doesn't just *love* algorithms?? :)
- For money: Operations research, network design...

- For fun: Because, who doesn't just *love* algorithms?? :)
- For money: Operations research, network design...
- For love (of exhaustivity): Real negative results (vs heuristics)

- For fun: Because, who doesn't just *love* algorithms?? :)
- For money: Operations research, network design...
- For love (of exhaustivity): Real negative results (vs heuristics)
- To predict the unobservable: RNA folding, phylogeny...

- For fun: Because, who doesn't just love algorithms?? :)
- For money: Operations research, network design...
- For love (of exhaustivity): Real negative results (vs heuristics)
- To predict the unobservable: RNA folding, phylogeny...

But optimal solution may be isolated/poorly representative

Part I. A Boltzmann-Gibbs framework to correct syntenic conflicts

[Chauve-P-Zanetti, BMC Bioinformatics 2015]

Boltzmann-Gibbs distribution

Analysis

Average properties

Ancestral adjacencies Synthenic inconsistencies Recurrent patterns ...

Max. expected accuracy predictions

Robustness assessment

Bolzmann-Gibbs prob. of forest F

$$\mathbb{P}(F) = \frac{e^{-\frac{Score(F)}{kT}}}{\mathcal{Z}} := \sum_{F'} e^{-\frac{Score(F)}{kT}}$$

kT: Pseudo-temperature (how *deep* within subopts should you look?)

An hypergraph framework

Remark: The DeCo DP scheme is unambiguous and complete

Automatic algorithmic corollaries

- Partition function \mathcal{Z} in $\mathcal{O}(|G_1||G_2|)$: (min, +, C) $\rightarrow (\sum, \times, e^{-\frac{C}{kT}})$
- Sampling: Chose transition w.p. prop. to its contribution to Z.
- Adjacency dot-plot: O(|G₁||G₂|) inside/outside algorithm.

Ancestral adjacency probabilities

- Boltzmann-Gibbs: Tradeoff between scoring and combinatorics;
- Pseudo-temperature kT: Restricted to cooptimals (kT → 0) up to the fully uniform distribution (kT → +∞);
- Adjacencies probabilities not necessarily monotonous on kT;
- Syntenic conflicts: >2 neighbors predicted in genomes.

Dataset: 6,074 Deco instances from 36 genomes (Ensembl 2012) Parsimony: syntenic inconsistencies for 5,817/112,188 genes (Selecting subset of adjacencies while removing syntenic issues = NP-Hard)

Proba.	Ancestral genes		Ancestral adjacencies			Syntenic conflicts			
Cutoff	kT=0.5	kT=0.1	kT = 0.01	kT=0.5	kT=0.1	kT = 0.01	kT=0.5	kT=0.1	kT=0.01
≥ 0.1	122,593	120,495	120,531	137,133	116,671	116,873	31,415	14,655	14,863
≥ 0.2	121,896	119,792	119,864	130,928	113,835	114,109	26,415	12,631	12,871
≥ 0.3	120,869	118,871	118,913	122,073	110,472	110,676	19,729	10,259	10,471
≥ 0.4	118,240	117,883	117,990	111,224	107,492	107,845	11,569	8,439	8,738
≥ 0.5	113,023	116,476	116,810	100,265	103,963	105,015	5,658	6,578	7,373
≥ 0.6	104,970	114,699	114,902	88,943	100,064	100,511	3,044	5,081	5,387
≥ 0.7	92,647	112,834	112,924	75,063	96,546	96,789	1,363	4,104	4,301
≥ 0.8	75,408	110,272	110,503	58,665	92,181	92,621	492	3,290	3,496
≥ 0.9	45,753	107,769	107,863	34,005	88,132	88,373	65	2,717	2,886
= 1	13	16,470	106,903	7	10,798	87,048	0	0	2,690

 \Rightarrow Boltzmann-Gibbs provides a tractable notion of support that may be used to correct syntenic conflicts

Dataset: 6,074 Deco instances from 36 genomes (Ensembl 2012) Parsimony: syntenic inconsistencies for 5,817/112,188 genes (Selecting subset of adjacencies while removing syntenic issues = NP-Hard)

Proba.	. Ancestral genes		Ancestral adjacencies			Syntenic conflicts			
Cutoff	kT=0.5	kT=0.1	kT = 0.01	kT=0.5	kT=0.1	kT = 0.01	kT=0.5	kT=0.1	kT=0.01
≥ 0.1	122,593	120,495	120,531	137,133	116,671	116,873	31,415	14,655	14,863
≥ 0.2	121,896	119,792	119,864	130,928	113,835	114,109	26,415	12,631	12,871
≥ 0.3	120,869	118,871	118,913	122,073	110,472	110,676	19,729	10,259	10,471
≥ 0.4	118,240	117,883	117,990	111,224	107,492	107,845	11,569	8,439	8,738
≥ 0.5	113,023	116,476	116,810	100,265	103,963	105,015	5,658	6,578	7,373
≥ 0.6	104,970	114,699	114,902	88,943	100,064	100,511	3,044	5,081	5,387
≥ 0.7	92,647	112,834	112,924	75,063	96,546	96,789	1,363	4,104	4,301
≥ 0.8	75,408	110,272	110,503	58,665	92,181	92,621	492	3,290	3,496
≥ 0.9	45,753	107,769	107,863	34,005	88,132	88,373	65	2,717	2,886
= 1	13	16,470	106,903	7	10,798	87,048	0	0	2,690

 \Rightarrow Boltzmann-Gibbs provides a tractable notion of support that may be used to correct syntenic conflicts

Dataset: 6,074 Deco instances from 36 genomes (Ensembl 2012) Parsimony: syntenic inconsistencies for 5,817/112,188 genes (Selecting subset of adjacencies while removing syntenic issues = NP-Hard)

Proba.	Ancestral genes			Ancestral adjacencies			Syntenic conflicts		
Cutoff	kT=0.5	kT=0.1	kT = 0.01	kT=0.5	kT=0.1	kT = 0.01	kT=0.5	kT=0.1	kT=0.01
≥ 0.1	122,593	120,495	120,531	137,133	116,671	116,873	31,415	14,655	14,863
≥ 0.2	121,896	119,792	119,864	130,928	113,835	114,109	26,415	12,631	12,871
≥ 0.3	120,869	118,871	118,913	122,073	110,472	110,676	19,729	10,259	10,471
≥ 0.4	118,240	117,883	117,990	111,224	107,492	107,845	11,569	8,439	8,738
≥ 0.5	113,023	116,476	116,810	100,265	103,963	105,015	5,658	6,578	7,373
≥ 0.6	104,970	114,699	114,902	88,943	100,064	100,511	3,044	5,081	5,387
≥ 0.7	92,647	112,834	112,924	75,063	96,546	96,789	1,363	4,104	4,301
≥ 0.8	75,408	110,272	110,503	58,665	92,181	92,621	492	3,290	3,496
≥ 0.9	45,753	107,769	107,863	34,005	88,132	88,373	65	2,717	2,886
= 1	13	16,470	106,903	7	10,798	87,048	0	0	2,690

 \Rightarrow Boltzmann-Gibbs provides a tractable notion of support that may be used to correct syntenic conflicts

Part II. Testing the robustness of parsimony predictions to uncertain event costs

[Rajaraman-Chauve-P, ISBRA'15]

Event costs/parameters

- Adjacency gain: x
- Adjacency break: y

W.l.o.g., $x^2 + y^2 = 1$.

Signature of a scenario

(g, b): Number of gains(g) and breaks(b).

$$Cost((g, b)) = x \cdot g + y \cdot b.$$

Extended signatures for a given adjacency

(g, b, d): d = 1 if adjacency present, 0 otherwise.

$$Cost((g, b, d)) = x \cdot g + y \cdot b + 0 \cdot d.$$

Event costs/parameters

- Adjacency gain: x
- Adjacency break: y

W.l.o.g., $x^2 + y^2 = 1$.

Signature of a scenario

(g, b): Number of gains(g) and breaks(b).

$$Cost((g, b)) = x \cdot g + y \cdot b.$$

Extended signatures for a given adjacency

(g, b, d): d = 1 if adjacency present, 0 otherwise.

$$Cost((g, b, d)) = x \cdot g + y \cdot b + 0 \cdot d.$$

Unit-costs for evolutionary events: How bad can they be?

Signature robustness

How stable is the parsimonious signature at cost (x, y)?

Unit-costs for evolutionary events: How bad can they be?

Signature robustness

How stable is the parsimonious signature at cost (x, y)?

Adjacency robustness

How stable is an adjacency predicted in a parsimonious scenario at cost (x, y)?

Convex polytopes and parameter partitions

Cones partition the parameter space.

Convex polytopes and parameter partitions

Cones partition the parameter space.

Tracking non-scoring parameters

Construct the polytope on extended signatures (g, b, d). Intersection of cones with z = 0 gives parameter space partition.

A peek (Bérard et al., 2012)

$$\begin{array}{l} \textbf{7. If } e(g_1) = \text{Spec and } e(g_2) = \text{Spec:} \\ c_1(a(g_1), b(g_2)) + c_1(b(g_1), a(g_2)), c_1(a(g_1), b(g_2)) + c_0(b(g_1), a(g_2)) + \text{ABreak}, \\ c_0(a(g_1), b(g_2)) + c_1(b(g_1), a(g_2)) + \text{ABreak}, \\ c_0(a(g_1), b(g_2)) + c_0(b(g_1), a(g_2)) + \text{ABreak}, \\ c_1(a(g_1), a(g_2)) + c_1(b(g_1), b(g_2)) + \text{ABreak}, \\ c_1(a(g_1), a(g_2)) + c_1(b(g_1), b(g_2)) + \text{ABreak}, \\ c_0(a(g_1), a(g_2)) + c_1(b(g_1), a(g_2)) + \text{ABreak}, \\ c_0(a(g_1), a(g_2)) + c_1(b(g_1), a(g_2)) + \text{ABreak}, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), a(g_2)) + \text{ABreak}, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), a(g_2)) + \text{ABreak}, \\ c_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + \text{ABreak}, \\ c_0(a(g_1), a(g_2)) + c_1(b(g_1), b(g_2)) + \text{ABreak}, \\ c_0(a$$

8. If $e(g_1) = GDup$ and $e(g_2) = GDup$:

 $(\min, +)$ algebra.

Polytope Propagation for DeCo

Translating the DP scheme

DeCo	2D	3D		
Gain cost	(1,0)	(1, 0, 0)		
Break cost	(0, 1)	(0, 1, 0)		
Adjacency	-	(0, 0, 1)		
0	(0, 0)	(0, 0, 0)		
∞	Empty polytope			
+	Minkowski sum			
min	Convex hull			

Compute cones using elementary linear algebra. **Complexity:** $\tilde{O}(N^{d-1})$ time, $O(N^{d-1})$ space. $N = n_1 \times n_2$ = size of DP table, d = dimension.

Data and Experiments

- 50,389 extant mammalian adjacencies over 36 species.
- 6,074 input instances, using 5,039 Ensembl gene trees.
- Default DeCo results: 96,482 ancestral adjacencies predicted.
- 16,039 universally parsimonious adjacencies have a gene involved in > 2 adjacencies (*conflict*).

Results: Signature robustness

- \bullet > 50% of instances are fully robust.
- 975 instances not robust to any change.
- ~ 80% of instances parsimonious at some (x, y) cost scheme are also parsimonious at (1, 1).

Results: Adjacency robustness

• $\sim 85\%$ of ancestral adjacencies are fully robust, but ...

Results: Adjacency robustness

- $\bullet~\sim 85\%$ of ancestral adjacencies are fully robust, but \dots
- $\sim 45\%$ of conflicting parsimonious adjacencies are fully robust.

Inferences

- The DeCo model is robust, i.e. \pm independent of parameters;
- Predicted numbers of adjacency gain/ break events are very low, consistent with rarity of genome rearrangement events;
- Number of syntenic conflicts remains high; may be an artefact of errors in gene tree reconstruction or reconciliation;
- Boltzmann probability discriminates erroneous predictions;
- Generic dynamic programming principles/applications.

Inferences

- The DeCo model is robust, i.e. \pm independent of parameters;
- Predicted numbers of adjacency gain/ break events are very low, consistent with rarity of genome rearrangement events;
- Number of syntenic conflicts remains high; may be an artefact of errors in gene tree reconstruction or reconciliation;
- Boltzmann probability discriminates erroneous predictions;
- Generic dynamic programming principles/applications.

Closing points

- Simultaneously explore robustness to > 1 ancestral adjacency;
- Explore relation to Pareto-optimality (Bansal et al. 2013);
- Add lateral transfers

Acknowledgements

DeClone generalizes DeCo to other algebras: https://github.com/yannponty/DeClone

Convex hull computations in DeClone rely on a Quickhull implementation by Anatoliy V. Tomilov at the Ural Federal University.

Thank you!

