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RNA world: Resolving the chicken vs egg paradox at the origin of life. . .

Gene Enzyme

encodes

replicates

RNA

encodes

replicates

A gene big enough to specify an enzyme would be too big to replicate accurately
without the aid of an enzyme of the very kind that it is trying to specify. So the system
apparently cannot get started.

[. . . ] This is the RNA World. To see how plausible it is, we need to look at why proteins
are good at being enzymes but bad at being replicators; at why DNA is good at
replicating but bad at being an enzyme; and finally why RNA might just be good
enough at both roles to break out of the Catch-22.

R. Dawkins. The Ancestor’s Tale: A Pilgrimage to the Dawn of Evolution
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RNA folding
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Canonical base-pairs
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RNA is single-stranded and
folds on itself, establishing
complex 3D structures
that are essential to its
function(s).

RNA structures are stabi-
lized by base-pairs, each
mediated by hydrogen
bonds.
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RNA structure(s)
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Source: 5s rRNA (PDBID: 1K73:B)

Definition (Secondary Structure)

A secondary structure S for an RNA w is a set of base-pairs (i, j) ∈ [1, n]2 such that:
I Monogamy: Each position x ∈ [1, n] involved in at most one base-pair;
I Non-crossing base-pairs: @(i, j), (k , l) ∈ S such that i < k < j < l ;
I Steric constraints: ∀(i, j), one has i < j and j − i > θ (where θ := 1 typically).
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Various representations for a versatile biomolecule
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Motzkin words?

Positive 1D meanders? over S = {+1,−1, 0}
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Non-crossing arc-annotated sequences?

Diversity supports intuitions

Different representations
Common combinatorial structure

?Additional steric constraints
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Non-crossing arc-annotated sequences?

Diversity supports intuitions

Different representations
Common combinatorial structure

?Additional steric constraints
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Various representations for a versatile biomolecule
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Crossing interactions

MFE structure, part. func.. . . computed exactly in Θ(n3) time in the absence of:
I Non-canonical base-pairs:

Any base-pair other than {(A-U), (C-G), (G-U)}
OR interacting in a non-standard way (WC/WC-Cis) [Leontis 01].

Canonical CG base-pair (WC/WC-Cis) Non-canonical base-pair (Sugar/WC-Trans)

I (Pseudo?)knots: Crossing sets of nested stable base-pairs

G A G C C U U U A U A C A G U A A U G U A U A U C G A A A A A U C C U C U A A U U C A G G G A A C A C C U A A G G C A A U C C U G A G C U A A G C U C U U A G U A A U A A G A G A A A G U G C A A C G A C U A U U C C G A U A G G A A G U A G G G U C A A G U G A C U C G A A A U G G G G A U U A C C C U U C U A G G G U A G U G A U A U A G U C U G A A C A U A U A U G G A A A C A U A U A G A A G G A U A G G A G U A A C G A A C C U A U C C G U A A C A U A A U U G

1 2 12 22 32 42 52 57 67 77 87 97 107 117 127 137 147 157 167 177 187 197 207 217 227 229

Group I Ribozyme (PDBID: 1Y0Q:A)
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1 2 12 22 32 42 52 57 67 77 87 97 107 117 127 137 147 157 167 177 187 197 207 217 227 229

Group I Ribozyme (PDBID: 1Y0Q:A)

Crossing interactions, once
ignored, are now ubiquitous!

Example: Group II Intron (PDB ID: 3IGI)
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(Pseudo)-knots: They Walk Amongst Us. . .

. . . and are responsible for (some of) the shortcomings of predictive tools.
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Software: RNAFold Database: RFAM Release 10.1

Many of those families feature pseudoknots (RFAM consensus or predictions)

⇒ Include pseudoknots to folding space of structure prediction algorithms
Looks tough (this talk) but restricting the search space helps (Orland’s talk)
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Problem statement
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I RNA structure S: (Partial) matching of positions in sequence w
I Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops. . . )
I Energy model:

Motif→ Free-energy contribution ∆(·) ∈ R− ∪ {+∞}
Free-Energy Ew (S): Sum over (independently contributing) motifs in S

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 8 / 22



Problem statement

C G G A U G U U A C A G C G A G C A U G U G C C C G

1 10 20 26

C

G

G

A

U

G

U

U

A
C
A

G

C

G
A

G
C A

U

GU
G

C
C

C

G

1

10

20

26

I RNA structure S: (Partial) matching of positions in sequence w
I Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops. . . )
I Energy model:

Motif→ Free-energy contribution ∆(·) ∈ R− ∪ {+∞}
Free-Energy Ew (S): Sum over (independently contributing) motifs in S

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 8 / 22



Problem statement

C G G A U G U U A C A G C G A G C A U G U G C C C G

1 10 20 26

C

G

G

A

U

G

U

U

A
C
A

G

C

G
A

G
C A

U

GU
G

C
C

C

G

1

10

20

26

I RNA structure S: (Partial) matching of positions in sequence w
I Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops. . . )
I Energy model:

Motif→ Free-energy contribution ∆(·) ∈ R− ∪ {+∞}
Free-Energy Ew (S): Sum over (independently contributing) motifs in S

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 8 / 22



Problem statement

C G G A U G U U A C A G C G A G C A U G U G C C C G

1 10 20 26

C

G

G

A

U

G

U

U

A
C
A

G

C

G
A

G
C A

U

GU
G

C
C

C

G

1

10

20

26

I RNA structure S: (Partial) matching of positions in sequence w
I Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops. . . )
I Energy model:

Motif→ Free-energy contribution ∆(·) ∈ R− ∪ {+∞}
Free-Energy Ew (S): Sum over (independently contributing) motifs in S

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 8 / 22



Problem statement

C G G A U G U U A C A G C G A G C A U G U G C C C G

1 10 20 26

C

G

G

A

U

G

U

U

A
C
A

G

C

G
A

G
C A

U

GU
G

C
C

C

G

1

10

20

26

I RNA structure S: (Partial) matching of positions in sequence w
I Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops. . . )
I Energy model:

Motif→ Free-energy contribution ∆(·) ∈ R− ∪ {+∞}
Free-Energy Ew (S): Sum over (independently contributing) motifs in S

ES = 2 ·∆

 U

G

+ 4 ·∆

 G

C

+ 2 ·∆

 C

G



Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 8 / 22



Problem statement

C G G A U G U U A C A G C G A G C A U G U G C C C G

1 10 20 26

C

G

G

A

U

G

U

U

A
C
A

G

C

G
A

G
C A

U

GU
G

C
C

C

G

1

10

20

26

I RNA structure S: (Partial) matching of positions in sequence w
I Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops. . . )
I Energy model:

Motif→ Free-energy contribution ∆(·) ∈ R− ∪ {+∞}
Free-Energy Ew (S): Sum over (independently contributing) motifs in S

ES = ∆

(
C

G

G

C

)
+ ∆

(
G

C

G

C

)
+ ∆

(
U

G

G

C

)
+ ∆

(
U

G

G

C

)
+ ∆

(
U

G

G

C

)

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 8 / 22



Problem statement

C G G A U G U U A C A G C G A G C A U G U G C C C G

1 10 20 26

C

G

G

A

U

G

U

U

A
C
A

G

C

G
A

G
C A

U

GU
G

C
C

C

G

1

10

20

26

I RNA structure S: (Partial) matching of positions in sequence w
I Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops. . . )
I Energy model:

Motif→ Free-energy contribution ∆(·) ∈ R− ∪ {+∞}
Free-Energy Ew (S): Sum over (independently contributing) motifs in S

ES = ∆

(
C

G

G

C

)
+ ∆

(
G

C

G

C

)
+ ∆

(
U

G

G

C

)
+ ∆

(
U

G

G

C

)
+ ∆

(
U

G

G

C

)
+ ∆

(
U

U

A
C
A

G

)
+ ∆

(
G

A

U
G

A

G

C
C

)
+ ∆

(
C A

U

GU
G

)

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 8 / 22



Problem statement

C G G A U G U U A C A G C G A G C A U G U G C C C G

1 10 20 26

C

G

G

A

U

G

U

U

A
C
A

G

C

G
A

G
C A

U

GU
G

C
C

C

G

1

10

20

26
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I Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops. . . )
I Energy model:

Motif→ Free-energy contribution ∆(·) ∈ R− ∪ {+∞}
Free-Energy Ew (S): Sum over (independently contributing) motifs in S

Definition (RNA-PK-FOLD(E) problem)

Input: RNA sequence w ∈ {A,C,G,U}∗.
Output: Matching S∗, having Minimal Free-Energy (MFE) Ew (S∗).

Are there efficient algorithms to predict MFE with arbitrary (pseudo)knots?
With restricted pseudoknots? On which energy models?
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NP-hardness: Characterizing the difficulty of algorithmic problems

Question(s): Is RNA-PK-FOLD(E) intrinsically difficult?

Is RNA-PK-FOLD(E) as hard as some reference hard problem(s)?
⇔Would solving RNA-PK-FOLD(E) in polynomial time (P)

lead to a polynomial-time algorithm for other hard problems?

NP-Complete problems

NP-Complete problems

3-PARTITION 3-SAT

PROTEIN FOLDING TSP

MULT SEQ ALIGN . . .

RNA-PK-FOLD(E)

Encoded as RNA

Poly. time/space

Decoded as solution
Poly. time/space
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Energy models

Three models, based on interacting positions (i, j):
I Base-pair model B: Nucleotides (wi ,wj ) at (i, j)

→ ∆B(wi ,wj )

I Nearest-neighbor model N : Nucl. at (i, j) and (i+1, j-1) + partners (or ∅)
→ ∆N (wi ,wj ,wi+1,wj−1,wmi+1 ,wmj−1 )

I Stacking pairs model S: Nucl. at (i, j) and (i+1, j-1) only if latter paired
→ ∆S(wi ,wj ,wi+1,wj−1)

5’

3’

Base-pairs (B)

a h i p q

b g j o r

c f k n s

d e l m t

a h p q

g j o r

c f k n

d e m t

Solved in O(n3) [Tabaska 98]
(Max-weighted matching)

Unrealistic!
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Energy models

Three models, based on interacting positions (i, j):
I Base-pair model B: Nucleotides (wi ,wj ) at (i, j)

→ ∆B(wi ,wj )

I Nearest-neighbor model N : Nucl. at (i, j) and (i+1, j-1) + partners (or ∅)
→ ∆N (wi ,wj ,wi+1,wj−1,wmi+1 ,wmj−1 )

I Stacking pairs model S: Nucl. at (i, j) and (i+1, j-1) only if latter paired
→ ∆S(wi ,wj ,wi+1,wj−1)

5’

3’

Nearest neighbor(N )

a h i p q

b g j o r

c f k n s

d e l m t

a h

b g j p q

a h i p q

g j o r

c f k n s

d e m t

d e k n

l m t

NP-hard [Lyngsø 00, Akutsu 00]
Too expressive?
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5’

3’

Stacking pairs (S)

a h i p q

b g j o r

c f k n s

d e l m t

p q

o r

c f

d e

Captures stablest motifs
Still NP-hard [Lyngsø 04]
. . . but PTAS [Lyngsø 04]
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State of the art
Base-pairs Stacking-Pairs Nearest-Neighbor

Comp. P
[Nussinov 80]

P
[Ieong 03]

P
[Zuker 81]

Non-crossing Approx. – – –

Comp. ??? NP-Hard
[Ieong 03]

NP-Hard
[Ieong 03]

Planar Approx. 2-approx.
≈[Ieong 03]

2-approx.
[Ieong 03]

???

Comp. P
[Tabaska 98]

NP-Hard
[Lyngsø 04]

NP-Hard
[Lyngsø 00, Akutsu 00]

General Approx. – ε-approx. ∈ O(n41/ε
)

[Lyngsø 04]
???

Missing:
I Qualitative difference between Stacking-pairs and Nearest-Neighbor models?
I Influence ofM on hardness/approx. ratio (only unit-valued studied)

Biologists demand (Biology deserves) honest hardness results:
I Energy model as input: Pandora’s box (e.g. RNA folding on infinite alphabet!)
I Model as parameter: Is problem hard. . .

Sometimes (∃M)? → Dishonest
Always (∀M)? Almost surely (w. p. 1)? → Honest
Under reasonable assumptions + ∀ parameterization? → Almost honest
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(Almost!)-honest hardness of RNA-PK-FOLD(S)

For any stacking energy model S, such that:
I Only G/C, A/U and G/U pairs are allowed
I Any other X/Y pair forbidden

⇒ ∆S(X ,Y , ∗, ∗) = +∞

(Such BPs are rarely observed [Stombaugh 09]→ Unstable)

I Arbitrary energies associated with valid stackings

⇒ ∆S(X ,Y ,X ′,Y ′) < 0

Theorem

RNA-PK-FOLD(S) is NP-hard.
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Example

X =

 2
4

2 3 2 1
x1 x2 x3 x4 x5 x6


(K = 7)

C C A C C C C A C C A C C C A C C A C A G G G G G G G A G G G G G G GwX =

G G G

G G G G A C C A C

A A

C C A C C C C A C C A C C C

G G G G G G G

Cx1 Cx2 Cx3 Cx4 Cx5 Cx6 GK GK

1 2 3

5 10

20

25

2 2 3
x1 x3 x4

4 2 1
x2 x5 x6

K

A B

C D
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Proof

Definition (3-PARTITION problem)

Input: Sequence of integers X = {xi}n
i=1, summing to n/3 · K , K ∈ N.

Output: True iff X can be split into m := n/3 triplets {(xaj , xbj , xcj )}
m
j=1 s. t.

xaj + xbj + xcj = K ,∀j ∈ [1,m].

Proof. Reduction from 3-PARTITION:
I Let wX := Cx1 ACx2 ACx3 A · · ·ACxn AGK AGK A · · ·AGK︸ ︷︷ ︸

m times

and δ := ∆S(C,G,C,G)

I Best matching S∗ for wX has free-energy E(S∗)wX ≤ E∗ := δ · (K − 3) ·m.
I If X 3-partitionable, then matching induced by partition gives E(S∗)wX = E∗.
I If E(S∗)wX = E∗, then S∗ saturates each GK block, using three blocks (Ca,Cb,Cc).
I Since |wX | ∈ O(n · P(n)), then RNA-PK-FOLD(S) ∈ P⇒ 3-PARTITION ∈ P.

Reminder: 3-PARTITION is strongly NP-Hard [Garey 75], i.e. still hard if xi < P(n).
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Honest O(n3) 5-approximation for RNA-PK-FOLD(S)

I Existence of polynomial time approximation scheme (in O(n41/ε
)) [Lyngsø 04]

I Base-pair maximization (unit cost)⇒ Arbitrary energies???

Algorithm:
1 Build weighted adjacency graph G = (V ,E)

I Vertices: Pairs of consecutive pos. (i, i + 1)
I Edges: (i, i + 1)→ (j − 1, j) with weight −∆S(wi ,wj ,wi+1,wj−1)

2 Compute maximal-weighted matching m′.
3 Loop over p = (i, i + 1), (j, j − 1) ∈ m′, ordered by decreasing weight:

I Add result to output m, remove any p′ ∈ m′ conflicting with p
4 Return m

G G G A A U C C C A U U

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 15 / 22



Honest O(n3) 5-approximation for RNA-PK-FOLD(S)

I Existence of polynomial time approximation scheme (in O(n41/ε
)) [Lyngsø 04]

I Base-pair maximization (unit cost)⇒ Arbitrary energies???

Algorithm:
1 Build weighted adjacency graph G = (V ,E)

I Vertices: Pairs of consecutive pos. (i, i + 1)
I Edges: (i, i + 1)→ (j − 1, j) with weight −∆S(wi ,wj ,wi+1,wj−1)

2 Compute maximal-weighted matching m′.
3 Loop over p = (i, i + 1), (j, j − 1) ∈ m′, ordered by decreasing weight:

I Add result to output m, remove any p′ ∈ m′ conflicting with p
4 Return m

G G G A A U C C C A U U

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 15 / 22



Honest O(n3) 5-approximation for RNA-PK-FOLD(S)

I Existence of polynomial time approximation scheme (in O(n41/ε
)) [Lyngsø 04]

I Base-pair maximization (unit cost)⇒ Arbitrary energies???

Algorithm:
1 Build weighted adjacency graph G = (V ,E)

I Vertices: Pairs of consecutive pos. (i, i + 1)
I Edges: (i, i + 1)→ (j − 1, j) with weight −∆S(wi ,wj ,wi+1,wj−1)

2 Compute maximal-weighted matching m′.
3 Loop over p = (i, i + 1), (j, j − 1) ∈ m′, ordered by decreasing weight:

I Add result to output m, remove any p′ ∈ m′ conflicting with p
4 Return m

G G G A A U C C C A U U

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 15 / 22



Honest O(n3) 5-approximation for RNA-PK-FOLD(S)

I Existence of polynomial time approximation scheme (in O(n41/ε
)) [Lyngsø 04]

I Base-pair maximization (unit cost)⇒ Arbitrary energies???

Algorithm:
1 Build weighted adjacency graph G = (V ,E)

I Vertices: Pairs of consecutive pos. (i, i + 1)
I Edges: (i, i + 1)→ (j − 1, j) with weight −∆S(wi ,wj ,wi+1,wj−1)

2 Compute maximal-weighted matching m′.
3 Loop over p = (i, i + 1), (j, j − 1) ∈ m′, ordered by decreasing weight:

I Add result to output m, remove any p′ ∈ m′ conflicting with p
4 Return m

G G G A A U C C C A U U

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 15 / 22



Honest O(n3) 5-approximation for RNA-PK-FOLD(S)

I Existence of polynomial time approximation scheme (in O(n41/ε
)) [Lyngsø 04]

I Base-pair maximization (unit cost)⇒ Arbitrary energies???

Algorithm:
1 Build weighted adjacency graph G = (V ,E)

I Vertices: Pairs of consecutive pos. (i, i + 1)
I Edges: (i, i + 1)→ (j − 1, j) with weight −∆S(wi ,wj ,wi+1,wj−1)

2 Compute maximal-weighted matching m′.
3 Loop over p = (i, i + 1), (j, j − 1) ∈ m′, ordered by decreasing weight:

I Add result to output m, remove any p′ ∈ m′ conflicting with p
4 Return m

G G G A A U C C C A U U

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 15 / 22



Honest O(n3) 5-approximation for RNA-PK-FOLD(S)

I Existence of polynomial time approximation scheme (in O(n41/ε
)) [Lyngsø 04]

I Base-pair maximization (unit cost)⇒ Arbitrary energies???

Algorithm:
1 Build weighted adjacency graph G = (V ,E)

I Vertices: Pairs of consecutive pos. (i, i + 1)
I Edges: (i, i + 1)→ (j − 1, j) with weight −∆S(wi ,wj ,wi+1,wj−1)

2 Compute maximal-weighted matching m′.
3 Loop over p = (i, i + 1), (j, j − 1) ∈ m′, ordered by decreasing weight:

I Add result to output m, remove any p′ ∈ m′ conflicting with p
4 Return m

G G G A A U C C C A U U

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 15 / 22



Honest O(n3) 5-approximation for RNA-PK-FOLD(S)

I Existence of polynomial time approximation scheme (in O(n41/ε
)) [Lyngsø 04]

I Base-pair maximization (unit cost)⇒ Arbitrary energies???

Algorithm:
1 Build weighted adjacency graph G = (V ,E)

I Vertices: Pairs of consecutive pos. (i, i + 1)
I Edges: (i, i + 1)→ (j − 1, j) with weight −∆S(wi ,wj ,wi+1,wj−1)

2 Compute maximal-weighted matching m′.
3 Loop over p = (i, i + 1), (j, j − 1) ∈ m′, ordered by decreasing weight:

I Add result to output m, remove any p′ ∈ m′ conflicting with p
4 Return m

G G G A A U C C C A U U

Yann Ponty (CNRS/Polytechnique, France) Energy models and RNA pseudoknotted folding Sep 30th – MBI workshop’15 15 / 22



Honest O(n3) 5-approximation for RNA-PK-FOLD(S)

I Existence of polynomial time approximation scheme (in O(n41/ε
)) [Lyngsø 04]

I Base-pair maximization (unit cost)⇒ Arbitrary energies???

Algorithm:
1 Build weighted adjacency graph G = (V ,E)

I Vertices: Pairs of consecutive pos. (i, i + 1)
I Edges: (i, i + 1)→ (j − 1, j) with weight −∆S(wi ,wj ,wi+1,wj−1)

2 Compute maximal-weighted matching m′.
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I Add result to output m, remove any p′ ∈ m′ conflicting with p
4 Return m
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Complexity: At most O(n3) (Max-weighted matching)

Approx. ratio: Initial matching m′ has total energy smaller than OPT.
Loop 3: Each stacking pair p conflicts with ≤ 4 pairs in m′, having greater energy.

⇒ Returned matching has free-energy ≤ 1/5 of OPT (∀S → Honest)
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Half-time summary

Base-pairs Stacking-Pairs Nearest-Neighbor

Comp. P
[Nussinov 80]

P
[Ieong 03]

P
[Zuker 81]

Non-crossing Approx. – – –

Comp. ??? NP-Hard
[Ieong 03]

NP-Hard
[Ieong 03]

Planar Approx. 2-approx.
≈[Ieong 03]

2-approx.
[Ieong 03]

???

Comp. P
[Tabaska 98]

NP-Hard
[Lyngsø 04]

(any∗ ∆ model)

NP-Hard
[Lyngsø 00, Akutsu 00]

General Approx. –
ε-approx. ∈ O(n41/ε

)

[Lyngsø 04]
1/5 (any ∆ model)

???

How hard is it to approximate the nearest neighbor model?
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(Dishonest!) Inapproximability of Nearest-Neighbor model

Theorem

For some nearest-neighbor model N , one has RNA-PK-FOLD(N ) /∈ APX .

Proof. Consider the RNA seq. built from some 3-PARTITION instance X :

wX = Cx1 ACx2 A · · ·ACx3m A GK UGK U · · ·GK U︸ ︷︷ ︸
m times

U2m

and the energy model:

∆∗N : (A) C C G G −→ −1, ∀i < j,

(B) C X Y G −→ −1, ∀i < j,∀X 6= C,∀Y ,
(i +1 and j−1 must both base-pair somewhere, possibly together)

(C) A X Y U −→ −1, ∀i < j,∀(X ,Y ),
(i +1 and j−1 must both base-pair somewhere, possibly together)

(D) −→ +∞, ∀i < j,

i i+1 j-1 j

i i+1 j-1 j

i i+1 j-1 j

Any other motif

Claim: The energy of any matching of wX is either 0 (no base-pair), −|wX | < 0 (⇒ X
is 3-partitionable) or +∞ (any other case).
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Three choices

Matching S∗ is:
I Empty→ ∆N (S∗) = 0
I Invalid: Some base-pair breaks some rule→ ∆N (S∗) =∞
I Induces a 3-partition matching

X =

 2
4

2 3 2 1
x1 x2 x3 x4 x5 x6


(K = 7)

C C A C C C C A C C A C C C A C C A C A G G G G G G G U G G G G G G G U U U U UwX =
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Final summary

Base-pairs Stacking-Pairs Nearest-Neighbor

Comp. P
[Nussinov 80]

P
[Ieong 03]

P
[Zuker 81]

Non-crossing Approx. – – –

Comp. ??? NP-Hard
[Ieong 03]

NP-Hard
[Ieong 03]

Planar Approx. 2-approx.
≈[Ieong 03]

2-approx.
[Ieong 03]

???

Comp. P
[Tabaska 98]

NP-Hard
[Lyngsø 04]

(any∗ ∆ model)

NP-Hard
[Lyngsø 00, Akutsu 00]

General Approx. –
ε-approx. ∈ O(n41/ε

)

[Lyngsø 04]
1/5 (any ∆ model)

APX-Hard
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Conclusion

Incorporating pseudoknots is generally hard:
I Dishonest inapproximability result for nearest-neighbor model
I Almost honest general hardness result for stacking model
I Honest 5-approximation for stacking model

Still hope for tractable exact algorithms accounting for PKs:
I Parametrized approaches (aka you get what you pay for. . . )
I Topologically restricted sets of RNAs

Thanks for listening
Questions?

Job offers: PhD & Postdoc on RNA kinetics@Inria/Ecole Polytechnique

Funding
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