Combinatorial RNA Design: Designability and Structure-Approximating Algorithm Towards a theory of RNA design

Jozef Haleš¹ Ján Maňuch^{1,4} Yann Ponty^{2,3} Ladislav Stacho¹

¹ Simon Fraser University, Canada
 ² Pacific Institute for Mathematical Sciences, Canada
 ³ CNRS – Ecole Polytechnique, France
 ⁴ University of British Columbia, Canada

Benasque 2015

Results appear in Combinatorial Pattern Matching'15 proceedings

Representations of Secondary Structures

Structure = Bunch of **non-crossing** base-pairs.

Representations of Secondary Structures

Structure = Bunch of **non-crossing** base-pairs.

arc diagram

Representations of Secondary Structures

Structure = Bunch of **non-crossing** base-pairs.

arc diagram

tree representation

Input: RNA sequence w, length n := |w|

- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. pairs, Stacking pairs, Nearest neighbor...)
- Energy model.

Motif \rightarrow Free-energy contribution $\Delta G(\cdot) \in \mathbb{R}^- \cup \{+\infty\}$

Free-Energy $E_w(S)$: Sum over (independently contributing) motifs in S

Problem (RNA-FOLD_M **problem)**

Input: RNA sequence w Output: set of PKF structures $\arg \min_{S \in S_{|w|}} E_{\mathcal{M}}(w, S)$.

RNA-FOLD_M(w) solved in time $O(n^3/\log(n))$ [Frid et al. (2010),etc.].

Yann Ponty (CNRS - Ecole Polytechnique)

Input: RNA sequence w, length n := |w|

- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. pairs, Stacking pairs, Nearest neighbor...)
- Energy model.

Motif \rightarrow Free-energy contribution $\Delta G(\cdot) \in \mathbb{R}^- \cup \{+\infty\}$

Free-Energy E_w(S): Sum over (independently contributing) motifs in S

Problem (RNA-FOLD_M problem)

Input: RNA sequence w Output: set of PKF structures $\arg \min_{S \in S_{|w|}} E_{\mathcal{M}}(w, S)$.

RNA-FOLD_M(w) solved in time $O(n^3/\log(n))$ [Frid et al. (2010),etc.].

Yann Ponty (CNRS - Ecole Polytechnique)

Input: RNA sequence *w*, length n := |w|

- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. pairs, Stacking pairs, Nearest neighbor...)
- Energy model.

Motif \rightarrow Free-energy contribution $\Delta G(\cdot) \in \mathbb{R}^- \cup \{+\infty\}$

Free-Energy E_w(S): Sum over (independently contributing) motifs in S

Problem (RNA-FOLD_M problem)

Input: RNA sequence w Output: set of PKF structures $\arg \min_{S \in S_{|w|}} E_{\mathcal{M}}(w, S)$.

RNA-FOLD_M(w) solved in time $O(n^3/\log(n))$ [Frid et al. (2010),etc.].

Yann Ponty (CNRS - Ecole Polytechnique)

Input: RNA sequence *w*, length n := |w|

- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. pairs, Stacking pairs, Nearest neighbor...)
- Energy model.

Motif \rightarrow Free-energy contribution $\Delta G(\cdot) \in \mathbb{R}^- \cup \{+\infty\}$

Free-Energy E_w(S): Sum over (independently contributing) motifs in S

Problem (RNA-FOLD_M problem)

Input: RNA sequence w Output: set of PKF structures $\arg \min_{S \in S_{|w|}} E_{\mathcal{M}}(w, S)$.

RNA-FOLD_M(w) solved in time $O(n^3/\log(n))$ [Frid et al. (2010),etc.].

Yann Ponty (CNRS – Ecole Polytechnique)

Input: RNA sequence w, length n := |w|

- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. pairs, Stacking pairs, Nearest neighbor...)
- Energy model.

Motif \rightarrow Free-energy contribution $\Delta G(\cdot) \in \mathbb{R}^- \cup \{+\infty\}$

Free-Energy $E_w(S)$: Sum over (independently contributing) motifs in S

Problem (RNA-FOLD_M **problem)**

Input: RNA sequence w **Output:** set of PKF structures $\arg \min_{S \in S_{|w|}} E_{\mathcal{M}}(w, S)$.

RNA-FOLD_M(w) solved in time $O(n^3/\log(n))$ [Frid et al. (2010),etc.].

Yann Ponty (CNRS – Ecole Polytechnique)

Input: RNA sequence w, length n := |w|

- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. pairs, Stacking pairs, Nearest neighbor...)
- Energy model.

Motif \rightarrow Free-energy contribution $\Delta G(\cdot) \in \mathbb{R}^- \cup \{+\infty\}$

Free-Energy $E_w(S)$: Sum over (independently contributing) motifs in S

Problem (RNA-FOLD_{\mathcal{M}} **problem)**

Input: RNA sequence w Output: set of PKF structures $\arg \min_{S \in S_{|w|}} E_{\mathcal{M}}(w, S)$.

RNA-FOLD_M(w) solved in time $O(n^3/\log(n))$ [Frid et al. (2010),etc.].

RNA Design Problem

Let $\ensuremath{\mathcal{M}}$ be an energy model.

Problem (RNA-DESIGN_{M,Σ,Δ} problem)

Input: Secondary structure S + Energy distance $\Delta > 0$ *Output:* RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

$$\forall S' \in \mathcal{S}_{|w|} \setminus \{S\} : E_{\mathcal{M}}(w, S') \geq E_{\mathcal{M}}(w, S) + \Delta$$

or Ø if no such sequence exists.

Difficult problem: No obvious DP decomposition

- Existing algorithms: Heuristics or Exponential-time
- Complexity of problem unknown (despite [Schnall Levin et al (2008)])
 Reason: Non locality, no theoretical frameworks, too many parameters...

\Rightarrow Stick to a simplified model!

RNA Design Problem (simplified)

Simplified formulation for Watson-Crick model \mathcal{W} and $\Delta = 1$:

Problem (RNA-DESIGN₂ **problem)**

Input: Secondary structure *S Output:* RNA sequence $w \in \Sigma^*$ — called a design for *S* — such that:

 $\mathsf{RNA}\operatorname{-FOLD}_{\mathcal{W}}(w) = \{S\}$

or \varnothing if no such sequence exists.

Designable(Σ): All designable structures

RNA Design Problem (simplified)

Simplified formulation for Watson-Crick model W and $\Delta = 1$:

Problem (RNA-DESIGN₂ **problem)**

Input: Secondary structure *S Output:* RNA sequence $w \in \Sigma^*$ — called a design for *S* — such that:

 $\mathsf{RNA}\operatorname{-FOLD}_{\mathcal{W}}(w) = \{S\}$

or Ø if no such sequence exists.

Designable(Σ): All designable structures

Our Results: Definitions and notations

Given a secondary structure S:

- Unpaired_S = Set of all unpaired positions of S.
- S is saturated ⇔ Unpaired_S = Ø. Saturated = Set of all saturated structures.
- ▶ **Paired degree of base-pair** = #Helices on the loop.
- D(S) = Maximal *paired degree* of nodes in the tree representation of S.

Our Results: Definitions and notations

Given a secondary structure S:

- Unpaired_S = Set of all unpaired positions of S.
- S is saturated ⇔ Unpaired_S = Ø. Saturated = Set of all saturated structures.
- ▶ **Paired degree of base-pair** = #Helices on the loop.
- D(S) = Maximal *paired degree* of nodes in the tree representation of S.

Our Results: Definitions and notations

Given a secondary structure S:

- Unpaired_S = Set of all unpaired positions of S.
- S is saturated ⇔ Unpaired_S = Ø. Saturated = Set of all saturated structures.
- Paired degree of base-pair = #Helices on the loop.
- D(S) = Maximal *paired degree* of nodes in the tree representation of S.

$\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R3** Designable($\Sigma_{1,1}$) = {*S* | *D*(*S*) ≤ 2}.

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases. **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$ **R2** Designable $(\Sigma_{1,0}) = (\text{Saturated} \cap \{S \mid D(S) \le 2\}) \cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$ **R3** Designable $(\Sigma_{1,1}) = \{S \mid D(S) \le 2\}.$

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$

R3 Designable($\Sigma_{1,1}$) = {*S* | *D*(*S*) ≤ 2}.

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

R1 For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$

- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

Question: Why not degree 3?

Proof.

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

R1 For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$

- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

R1 For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$

- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

R1 For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$

- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

R1 For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$

- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

Question: Why not degree 3?

Proof.

In an internal node:

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

R1 For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$

- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

R1 For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$

- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

This can be easily generalized to:

Lemma

For any structure S in Designable($\Sigma_{c,u}$), $D(S) \leq 2c$.

 $\Sigma_{2,0} = \{A,U,C,G\}$ + $\{G-C,A-U\}$ base pairs.

Without unpaired position \rightarrow complete characterization:

R4 Designable($\Sigma_{2,0}$) \cap Saturated = { $S \mid D(S) \leq 4$ } \cap Saturated.

- **R5** (Necessary) $S \in \text{Designable}(\Sigma_{2,0})$ cannot contain "*a* **pure** multiloop of degree ≥ 5 " (motif m_5) or "*a* multiloop with unpaired position of degree ≥ 3 " (motif $m_{3 \circ}$).
- **R6** (Sufficient) Separated = Set of structures that admit a separated (proper) coloring. Then Separated \subset Designable($\Sigma_{2,0}$).

 $\Sigma_{2,0} = \{A,U,C,G\}$ + $\{G-C,A-U\}$ base pairs.

Without unpaired position \rightarrow complete characterization:

R4 Designable($\Sigma_{2,0}$) \cap Saturated = { $S \mid D(S) \leq 4$ } \cap Saturated.

R5 (Necessary) S ∈ Designable(Σ_{2,0}) cannot contain "a pure multiloop of degree ≥ 5" (motif m₅) or "a multiloop with unpaired position of degree ≥ 3" (motif m_{3 o}).
R6 (Sufficient) Separated = Set of structures that admit a separated (proper) coloring. Then Separated ⊂ Designable(Σ₀).

 $\Sigma_{2,0} = \{A,U,C,G\}$ + $\{G-C,A-U\}$ base pairs.

Without unpaired position \rightarrow complete characterization:

R4 Designable($\Sigma_{2,0}$) \cap Saturated = { $S \mid D(S) \leq 4$ } \cap Saturated.

With unpaired positions \rightarrow partial characterization:

- **R5** (Necessary) $S \in \text{Designable}(\Sigma_{2,0})$ cannot contain "*a* **pure** multiloop of degree ≥ 5 " (motif m_5) or "*a* multiloop with unpaired position of degree ≥ 3 " (motif $m_{3,0}$).
- **R6** (Sufficient) Separated = Set of structures that admit a separated (proper) coloring. Then Separated \subset Designable($\Sigma_{2,0}$).

 $\Sigma_{2,0} = \{A,U,C,G\}$ + $\{G-C,A-U\}$ base pairs.

Without unpaired position \rightarrow complete characterization:

R4 Designable($\Sigma_{2,0}$) \cap Saturated = { $S \mid D(S) \leq 4$ } \cap Saturated.

With unpaired positions \rightarrow partial characterization:

- **R5** (Necessary) $S \in \text{Designable}(\Sigma_{2,0})$ cannot contain "*a pure multiloop of degree* ≥ 5 " (motif m_5) or "*a multiloop with unpaired position of degree* ≥ 3 " (motif $m_3 \circ$).
- **R6** (Sufficient) Separated = Set of structures that admit a separated (proper) coloring. Then Separated \subset Designable($\Sigma_{2,0}$).

Our Results: Separated Coloring

From the tree representation T_S of structure S, color every paired node of T_S :

- ▶ black → G · C;
- white $\rightarrow C \cdot G$;
- grey $\rightarrow A \cdot U$ or $U \cdot A$.

Proper coloring:

- each internal node has at most one black, one white and two grey children;
- 2 a grey node has at most one grey child;
- a black node does not have a white child; and
- a white node does not have a black child.

Level of a node = #black nodes – #white nodes on the path to the root.

Separated coloring: Levels of grey nodes \cap Levels of unpaired nodes = \emptyset

Our Results: Separated Coloring

From the tree representation T_S of structure S, color every paired node of T_S :

- ▶ black → G · C;
- white $\rightarrow C \cdot G$;
- grey $\rightarrow A \cdot U$ or $U \cdot A$.

Proper coloring:

- each internal node has at most one black, one white and two grey children;
- 2 a grey node has at most one grey child;
- 3 a black node does not have a white child; and
- a white node does not have a black child.

Level of a node = #black nodes - #white nodes on the path to the root.

Separated coloring: Levels of grey nodes \cap Levels of unpaired nodes = \emptyset

Our Results: Separated Coloring

From the tree representation T_S of structure S, color every paired node of T_S :

- ▶ black → G · C;
- white $\rightarrow C \cdot G$;
- grey $\rightarrow A \cdot U$ or $U \cdot A$.

Proper coloring:

- each internal node has at most one black, one white and two grey children;
- 2 a grey node has at most one grey child;
- a black node does not have a white child; and
- a white node does not have a black child.

Level of a node = #black nodes – #white nodes on the path to the root.

Separated coloring: Levels of grey nodes \cap Levels of unpaired nodes $= \emptyset$

Levels of grey nodes: 0,1 Levels of leaves: 2,4 Separated coloring

Levels of grey nodes: 0,1 Levels of leaves: 2,4 Separated coloring

⇒ Design: GAAAAGUUGGUUUUUCCUUCUCAGGUUUUCCUGUUUC

Yann Ponty (CNRS - Ecole Polytechnique)

 $\Sigma_{2,0} = \{A,U,C,G\}$ + $\{G-C,A-U\}$ base pairs.

Without unpaired position \rightarrow complete characterization:

R4 Designable($\Sigma_{2,0}$) \cap Saturated = { $S \mid D(S) \leq 4$ } \cap Saturated.

With unpaired positions \rightarrow partial characterization:

- **R5** (Necessary) $S \in \text{Designable}(\Sigma_{2,0})$ cannot contain "*a pure* multiloop of degree ≥ 5 " (motif m_5) or "*a multiloop with unpaired position of degree* ≥ 3 " (motif $m_3 \circ$).
- **R6** (Sufficient) Separated = Set of structures that admit a separated (proper) coloring. Then Separated \subset Designable($\Sigma_{2,0}$).
- **R7** If $S \in \text{Designable}(\Sigma_{2,0})$, then *k*-stutter $S^{[k]} \in \text{Designable}(\Sigma_{2,0})$.

Our Results: *k*-Stutter (example)

Designable structure:

Then 2-stutter is designable as well:

Proof idea: Use König's Theorem (size of max. matching = size of min. vertex cover) to show that an MFE structure of the stutter sequence can't connect a region to two different regions.

Our Results: *k*-Stutter (example)

Designable structure:

Then 2-stutter is designable as well:

Proof idea: Use König's Theorem (size of max. matching = size of min. vertex cover) to show that an MFE structure of the stutter sequence can't connect a region to two different regions.

Our Results: *k*-Stutter (example)

Designable structure:

Then 2-stutter is designable as well:

Proof idea: Use König's Theorem (size of max. matching = size of min. vertex cover) to show that an MFE structure of the stutter sequence can't connect a region to two different regions.

Our Results: Structure-Approximating Algorithm

R8 Any structure *S* without m_5 and m_3 can be transformed in $\Theta(n)$ time into a designable structure *S'*, by adding at most a single base-pair to its helices.

Main idea: Offset grey vertices and leaves to odd/even levels \rightarrow Coloring is now **separated**

Our Results: Structure-Approximating Algorithm

R8 Any structure *S* without m_5 and m_3 can be transformed in $\Theta(n)$ time into a designable structure *S'*, by adding at most a single base-pair to its helices.

Main idea: Offset grey vertices and leaves to odd/even levels \rightarrow Coloring is now **separated**

Our Results: Structure-Approximating Algorithm

R8 Any structure *S* without m_5 and m_3 can be transformed in $\Theta(n)$ time into a designable structure *S'*, by adding at most a single base-pair to its helices.

Main idea: Offset grey vertices and leaves to odd/even levels \rightarrow Coloring is now separated

Yann Ponty (CNRS - Ecole Polytechnique)

Remark: Breaking motifs

Remark: Breaking motifs

What's the complexity of RNA-DESIGN problem? Could it be polynomial?

- What's the complexity of RNA-DESIGN problem restricted to designs that use only one base for all unpaired position?
- O What's the complexity of determining if a structure has a separated coloring?
- Extend the results to more complex energy models. Our results hold for the **Base-pair sum** model, as long as $-\delta_B(G, U)$ is smaller than $-\delta_B(C, G)$ and $-\delta_B(A, U)$.
- In the sector of the sector
- 6 Combinatorics of designable structures.

- What's the complexity of RNA-DESIGN problem? Could it be polynomial?
- What's the complexity of RNA-DESIGN problem restricted to designs that use only

one base for all unpaired position?

(.) (.) (.) G U C C A G A G U

- What's the complexity of determining if a structure has a separated coloring?
- Extend the results to more complex energy models. Our results hold for the **Base-pair sum** model, as long as -δ_B(G, U) is smaller than -δ_B(C, G) and -δ_B(A, U).
- Is Better bound on #arcs added by our structure approximation algorithm.
- 6 Combinatorics of designable structures.

- What's the complexity of RNA-DESIGN problem? Could it be polynomial?
- What's the complexity of RNA-DESIGN problem restricted to designs that use only one base for all unpaired position?
- What's the complexity of determining if a structure has a separated coloring?
- Extend the results to more complex energy models. Our results hold for the **Base-pair sum** model, as long as $-\delta_B(G, U)$ is smaller than $-\delta_B(C, G)$ and $-\delta_B(A, U)$.
- Better bound on #arcs added by our structure approximation algorithm.
- 6 Combinatorics of designable structures.

- What's the complexity of RNA-DESIGN problem? Could it be polynomial?
- What's the complexity of RNA-DESIGN problem restricted to designs that use only one base for all unpaired position?
- What's the complexity of determining if a structure has a separated coloring?
- Sector the results to more complex energy models. Our results hold for the **Base-pair sum** model, as long as $-\delta_B(G, U)$ is smaller than $-\delta_B(C, G)$ and $-\delta_B(A, U)$.
- Better bound on #arcs added by our structure approximation algorithm.
- Combinatorics of designable structures.

- What's the complexity of RNA-DESIGN problem? Could it be polynomial?
- What's the complexity of RNA-DESIGN problem restricted to designs that use only one base for all unpaired position?
- What's the complexity of determining if a structure has a separated coloring?
- Sector 2.1 Extend the results to more complex energy models. Our results hold for the **Base-pair sum** model, as long as $-\delta_B(G, U)$ is smaller than $-\delta_B(C, G)$ and $-\delta_B(A, U)$.
- Better bound on #arcs added by our structure approximation algorithm.
- Combinatorics of designable structures.

- What's the complexity of RNA-DESIGN problem? Could it be polynomial?
- What's the complexity of RNA-DESIGN problem restricted to designs that use only one base for all unpaired position?
- What's the complexity of determining if a structure has a separated coloring?
- Sector 2.1 Extend the results to more complex energy models. Our results hold for the **Base-pair sum** model, as long as $-\delta_B(G, U)$ is smaller than $-\delta_B(C, G)$ and $-\delta_B(A, U)$.
- Setter bound on #arcs added by our structure approximation algorithm.
- Ombinatorics of designable structures.