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Representations of Secondary Structures

Structure = Bunch of non-crossing base-pairs.
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RNA folding

Input: RNA sequence w , length n := |w |
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I RNA structure S: (Partial) matching of positions in sequence w
I Motifs: Sequence/structure features (e.g. pairs, Stacking pairs, Nearest neighbor. . . )

I Energy model.
Motif→ Free-energy contribution ∆G(·) ∈ R− ∪ {+∞}
Free-Energy Ew(S): Sum over (independently contributing) motifs in S

Problem (RNA-FOLDM problem)

Input: RNA sequence w
Output: set of PKF structures arg minS∈S|w| EM(w ,S) .

RNA-FOLDM(w) solved in time O(n3/ log(n)) [Frid et al. (2010),etc.].
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RNA Design Problem

LetM be an energy model.

Problem (RNA-DESIGNM,Σ.∆ problem)

Input: Secondary structure S + Energy distance ∆ > 0
Output: RNA sequence w ∈ Σ? — called a design for S — such that:

∀S′ ∈ S|w| \ {S} : EM(w ,S′) ≥ EM(w ,S) + ∆

or ∅ if no such sequence exists.

Difficult problem: No obvious DP decomposition
I Existing algorithms: Heuristics or Exponential-time
I Complexity of problem unknown (despite [Schnall Levin et al (2008)])

Reason: Non locality, no theoretical frameworks, too many parameters. . .

⇒ Stick to a simplified model!

Yann Ponty (CNRS – Ecole Polytechnique) Theory of RNA Design Benasque 2015 4 / 16



RNA Design Problem (simplified)

Simplified formulation for Watson-Crick modelW and ∆ = 1:

Problem (RNA-DESIGNΣ problem)

Input: Secondary structure S
Output: RNA sequence w ∈ Σ? — called a design for S — such that:

RNA-FOLDW(w) = {S}

or ∅ if no such sequence exists.

Designable(Σ): All designable structures

Example

( ( . ) ( . . ) ) G G A C A G G U C A C A G G U U C U

a. Target sec. str. S b. Invalid sequence for S c. Design for S
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Our Results: Definitions and notations

Given a secondary structure S:

I UnpairedS = Set of all unpaired positions of S.
I S is saturated⇔ UnpairedS = ∅.

Saturated = Set of all saturated structures.
I Paired degree of base-pair = #Helices on the loop.
I D(S) = Maximal paired degree of nodes in the tree representation of S.

Example

UnpairedS = {4, 8}
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I UnpairedS = Set of all unpaired positions of S.
I S is saturated⇔ UnpairedS = ∅.
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I Paired degree of base-pair = #Helices on the loop.
I D(S) = Maximal paired degree of nodes in the tree representation of S.

Example

[0, 12]

[1, 1] [2, 11]

[3, 6]

[4, 5]

[7, 7] [8, 9] [10, 10]

1

32

1 1
D(S) = 3
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Our Results: Designability over Restricted Alphabets

Σc,u = Alphabet with c pairs of complementary bases and u unpairable bases.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) | ∀n ∈ N};
R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.
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Question: Why not degree 3?

Proof.

In the root:

? ... ? ? ... ? ? ... ? — we can only use C ·G or G · C
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Proof.

In the root:
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Our Results: Designability over Restricted Alphabets

Σc,u = Alphabet with c pairs of complementary bases and u unpairable bases.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) | ∀n ∈ N};
R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.

Question: Why not degree 3?

Proof.

In the root:

C . . . G G . . . C C . . . G — there is an alternative fold
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R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.

Question: Why not degree 3?

Proof.

In an internal node:

. . . ? C . . . G C . . . G ? . . . — either we get a repeat, or. . .
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Our Results: Designability over Restricted Alphabets

Σc,u = Alphabet with c pairs of complementary bases and u unpairable bases.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) | ∀n ∈ N};
R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.

Question: Why not degree 3?

Proof.

In an internal node:

. . . C C . . . G G . . . C G . . . — . . . or, the parent has the reversed base pair of a
child
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Our Results: Designability over Restricted Alphabets

Σc,u = Alphabet with c pairs of complementary bases and u unpairable bases.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) | ∀n ∈ N};
R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.

This can be easily generalized to:

Lemma

For any structure S in Designable(Σc,u), D(S) ≤ 2c.
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Our Results: Designability over the Complete Alphabet

Σ2,0 = {A,U,C,G} + {G− C,A− U} base pairs.

Without unpaired position→ complete characterization:
R4 Designable(Σ2,0) ∩ Saturated = {S | D(S) ≤ 4} ∩ Saturated.

R5 (Necessary) S ∈ Designable(Σ2,0) cannot contain “a pure multiloop of degree
≥ 5” (motif m5) or “a multiloop with unpaired position of degree ≥ 3” (motif m3 ◦).

R6 (Sufficient) Separated = Set of structures that admit a separated (proper) coloring.
Then Separated ⊂ Designable(Σ2,0).
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R6 (Sufficient) Separated = Set of structures that admit a separated (proper) coloring.
Then Separated ⊂ Designable(Σ2,0).
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Our Results: Separated Coloring

From the tree representation TS of structure S, color every paired node of TS :
I black→ G · C;
I white→ C ·G;
I grey→ A · U or U · A.

Proper coloring:
1 each internal node has at most one black, one white and two grey children;
2 a grey node has at most one grey child;
3 a black node does not have a white child; and
4 a white node does not have a black child.

Level of a node = #black nodes − #white nodes on the path to the root.

Separated coloring: Levels of grey nodes ∩ Levels of unpaired nodes = ∅

Yann Ponty (CNRS – Ecole Polytechnique) Theory of RNA Design Benasque 2015 9 / 16



Our Results: Separated Coloring

From the tree representation TS of structure S, color every paired node of TS :
I black→ G · C;
I white→ C ·G;
I grey→ A · U or U · A.

Proper coloring:
1 each internal node has at most one black, one white and two grey children;
2 a grey node has at most one grey child;
3 a black node does not have a white child; and
4 a white node does not have a black child.

Level of a node = #black nodes − #white nodes on the path to the root.

Separated coloring: Levels of grey nodes ∩ Levels of unpaired nodes = ∅

Yann Ponty (CNRS – Ecole Polytechnique) Theory of RNA Design Benasque 2015 9 / 16



Our Results: Separated Coloring

From the tree representation TS of structure S, color every paired node of TS :
I black→ G · C;
I white→ C ·G;
I grey→ A · U or U · A.

Proper coloring:
1 each internal node has at most one black, one white and two grey children;
2 a grey node has at most one grey child;
3 a black node does not have a white child; and
4 a white node does not have a black child.

Level of a node = #black nodes − #white nodes on the path to the root.

Separated coloring: Levels of grey nodes ∩ Levels of unpaired nodes = ∅

Yann Ponty (CNRS – Ecole Polytechnique) Theory of RNA Design Benasque 2015 9 / 16



Our Results: Separated Coloring (example)

Descendant restrictions: Any node→≤ 1 black & ≤ 1 White & ≤ 2 Grey;
Grey→ 0/1 Grey; Black→ 0 White; White→ 0 Black.
( → GC → CG → AU|UA → U)

Root

Levels of grey nodes: 0,1
Levels of leaves: 2,4
Separated coloring

⇒ Design: GAAAAGUUGGUUUUUCCUUCUCAGGUUUUCCUGUUUC
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Our Results: Designability over the complete alphabet

Σ2,0 = {A,U,C,G} + {G− C,A− U} base pairs.

Without unpaired position→ complete characterization:
R4 Designable(Σ2,0) ∩ Saturated = {S | D(S) ≤ 4} ∩ Saturated.

With unpaired positions→ partial characterization:
R5 (Necessary) S ∈ Designable(Σ2,0) cannot contain “a pure multiloop of degree
≥ 5” (motif m5) or “a multiloop with unpaired position of degree ≥ 3” (motif m3 ◦).

R6 (Sufficient) Separated = Set of structures that admit a separated (proper) coloring.
Then Separated ⊂ Designable(Σ2,0).

R7 If S ∈ Designable(Σ2,0), then k -stutter S[k ] ∈ Designable(Σ2,0).

Yann Ponty (CNRS – Ecole Polytechnique) Theory of RNA Design Benasque 2015 11 / 16



Our Results: k -Stutter (example)

Designable structure: ( ( . ) ( . . ) )

Then 2-stutter is designable as well:

( ( ( ( . . ) ) ( ( . . . . ) ) ) )

Proof idea: Use König’s Theorem (size of max. matching = size of min. vertex cover)
to show that an MFE structure of the stutter sequence can’t connect a region to two
different regions.
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Our Results: Structure-Approximating Algorithm

R8 Any structure S without m5 and m3 ◦ can be transformed in Θ(n) time into a
designable structure S′, by adding at most a single base-pair to its helices.

( . . ) ( . . ) ( . . ) ( . . ) ( . . ) ( ( . . ) )
G U U C C U U G A G U U C U

Root RootGreedy
Coloring

Band
Inflation Design

→ GC
→ CG
→ AU|UA
→ U

Main idea: Offset grey vertices and leaves to odd/even levels
→ Coloring is now separated
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Remark: Breaking motifs
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Open Problems and Future Work

1 What’s the complexity of RNA-DESIGN problem? Could it be polynomial?
2 What’s the complexity of RNA-DESIGN problem restricted to designs that use only

one base for all unpaired position?
3 What’s the complexity of determining if a structure has a separated coloring?
4 Extend the results to more complex energy models.

Our results hold for the Base-pair sum model, as long as −δB(G,U) is smaller
than −δB(C,G) and −δB(A,U).

5 Better bound on #arcs added by our structure approximation algorithm.
6 Combinatorics of designable structures.
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