RNA Bioinformatics and Combinatorial Dynamic Programming

...through enumerative combinatorics

Yann Ponty
LIX, CNRS/Ecole Polytechnique, France
AMIB Team-Project, Inria, Saclay, France
PIMS-Simon Fraser University, Burnaby, Canada

Fundamental dogma of molecular biology

Proteins

RNA world: Resolving the chicken vs egg paradox at the origin of life...

A gene big enough to specify an enzyme would be too big to replicate accurately without the aid of an enzyme of the very kind that it is trying to specify. So the system apparently cannot get started.
[...] This is the RNA World. To see how plausible it is, we need to look at why proteins
are good at being enzymes but bad at being replicators; at why DNA is good at replicating but bad at being an enzyme; and finally why RNA might just be good enough at both roles to break out of the Catch-22.
R. Dawkins. The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

RNA world: Resolving the chicken vs egg paradox at the origin of life...

A gene big enough to specify an enzyme would be too big to replicate accurately without the aid of an enzyme of the very kind that it is trying to specify. So the system apparently cannot get started.
[...] This is the RNA World. To see how plausible it is, we need to look at why proteins are good at being enzymes but bad at being replicators; at why DNA is good at replicating but bad at being an enzyme; and finally why RNA might just be good enough at both roles to break out of the Catch-22.
R. Dawkins. The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

RNA folding

RNA is single-stranded and folds on itself, establishing complex 3D structures that are essential to its function(s).

RNA structures are stabilized by base-pairs, each mediated by hydrogen bonds.

Canonical base-pairs

RNA structure(s)

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure Secondary structure

Tertiary structure
Source: 5 s rRNA (PDBID: 1K73:B)

Definition (Secondary Structure)

A secondary structure S for an RNA w is a set of base-pairs $(i, j) \in[1, n]^{2}$ such that:

- Monogamy: Each position $x \in[1, n]$ involved in at most one base-pair;
- Non-crossing base-pairs: $\nexists(i, j),(k, I) \in S$ such that $i<k<j<l$;
- Steric constraints: $\forall(i, j)$, one has $i<j$ and $j-i>\theta$ (where $\theta:=1$ typically).

RNA structure(s)

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure Secondary structure

Tertiary structure
Source: 5 s rRNA (PDBID: 1K73:B)

Definition (Secondary Structure)

A secondary structure S for an RNA w is a set of base-pairs $(i, j) \in[1, n]^{2}$ such that:

- Monogamy: Each position $x \in[1, n]$ involved in at most one base-pair;
- Non-crossing base-pairs: $\nexists(i, j),(k, I) \in S$ such that $i<k<j<l$;

RNA structure(s)

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure Secondary structure

Tertiary structure
Source: 5 s rRNA (PDBID: $1 \mathrm{~K} 73: B$)

Definition (Secondary Structure)

A secondary structure S for an RNA w is a set of base-pairs $(i, j) \in[1, n]^{2}$ such that:

- Monogamy: Each position $x \in[1, n]$ involved in at most one base-pair;
- Non-crossing base-pairs: $\nexists(i, j),(k, l) \in S$ such that $i<k<j<l$;
- Steric constraints: $\forall(i, j)$, one has $i<j$ and $j-i>\theta$ (where $\theta:=1$ typically).

Various representations for a versatile biomolecule

Outer-planar graphs
Hamiltonian-path, $\Delta(G) \leq 3$, 2-connected ${ }^{\star}$

Supporting intuitions
 Different representations
 Common combinatorial structure

*Additional steric constraints

Various representations for a versatile biomolecule

Outer-planar graphs
Hamiltonian-path, $\Delta(G) \leq 3$, 2-connected ${ }^{\star}$

Supporting intuitions

Different representations
Common combinatorial structure

Dot plots
Adjacency matrices*

Various representations for a versatile biomolecule

Outer-planar graphs
Hamiltonian-path, $\Delta(G) \leq 3$, 2-connected ${ }^{\star}$

Supporting intuitions

Different representations
Common combinatorial structure

* Additional steric constraints Adjacency matrices*

Various representations for a versatile biomolecule

Outer-planar graphs
Hamiltonian-path, $\Delta(G) \leq 3$, 2-connected ${ }^{\star}$

Supporting intuitions

Different representations
Common combinatorial structure

* Additional steric constraints

Various representations for a versatile biomolecule

Outer-planar graphs Hamiltonian-path, $\Delta(G) \leq 3,2$-connected ${ }^{\star}$

```
(((((((,.((((\ldots.....)))))((((((\ldots....)))))).\ldots..(((((\ldots.....))))))))))))....
```

Motzkin words*

Non-crossing arc-annotated sequences*

Dot plots Non-crossing arc diagrams* Adjacency matrices*

Supporting intuitions

Different representations
Common combinatorial structure

* Additional steric constraints

Various representations for a versatile biomolecule

Outer-planar graphs Hamiltonian-path, $\Delta(G) \leq 3,2$-connected ${ }^{\star}$

```
((((((((..((((.......)))))((((((\ldots....)))))))\ldots...(((((.......)))))))))))))....
```

Motzkin words*

Positive 1D meanders* over $\mathcal{S}=\{+1,-1,0\}$

Non-crossing arc-annotated sequences*

Dot plots Non-crossing arc diagrams* Adjacency matrices*

Supporting intuitions

Different representations
Common combinatorial structure

* Additional steric constraints

Part 1. Enumerative aspects

Life through the lens of enumerative combinatorics

Enumerative combinatorics can be used to characterize the precise (asymptotic) behavior of abstract models for RNA sequence/structure.

```
Typical problems
* How many secondary structures on n nucleotides?
[Waterman, 1978]
- Expected #structures comnatible with random RNIA? [Zuker and Sankotf, 1984]
* Average distance between extremities? [Clote, Ponty, and Steyaert, 2012b]
```

The symbolic method, a generic framework for enumeration:

| 1 Find a suliaibie decomposition |
| :---: | :---: |
| $2 \quad$ Rephrase into grammar/specification |
| 3 Translate equations \& solve for generating function(s) |
| 4 Singularity analysis yields asymptotics |

Life through the lens of enumerative combinatorics

Enumerative combinatorics can be used to characterize the precise (asymptotic) behavior of abstract models for RNA sequence/structure.

Typical problems

- How many secondary structures on n nucleotides?
- Expected \#structures compatible with random RNA?
- Average distance between extremities?
[Clote, Ponty, and Steyaert, 2012b]

The symbolic method, a generic framework for enumeration:
1 Find a suitable decomposition

[Flajolet and Sedgewick, 2009]

Life through the lens of enumerative combinatorics

Enumerative combinatorics can be used to characterize the precise (asymptotic) behavior of abstract models for RNA sequence/structure.

Typical problems

- How many secondary structures on n nucleotides?
- Expected \#structures compatible with random RNA?
- Average distance between extremities?
[Clote, Ponty, and Steyaert, 2012b]

The symbolic method, a generic framework for enumeration:
1
Find a suitable decomposition
2 Rephrase into grammar/specification

Translate equations \& solve for generating function(s)
Singularity analysis yields asymptotics

[Flajolet and Sedgewick, 2009]

Life through the lens of enumerative combinatorics

Enumerative combinatorics can be used to characterize the precise (asymptotic) behavior of abstract models for RNA sequence/structure.

Typical problems

- How many secondary structures on n nucleotides?
[Waterman, 1978]
- Expected \#structures compatible with random RNA?
- Average distance between extremities?
[Clote, Ponty, and Steyaert, 2012b]

The symbolic method, a generic framework for enumeration:
1
Find a suitable decomposition
2 Rephrase into grammar/specification
3 Translate equations \& solve for generating function(s)
Singularity analysis yields asymptotics

[Flajolet and Sedgewick, 2009]

Life through the lens of enumerative combinatorics

Enumerative combinatorics can be used to characterize the precise (asymptotic) behavior of abstract models for RNA sequence/structure.

Typical problems

- How many secondary structures on n nucleotides?
[Waterman, 1978]
- Expected \#structures compatible with random RNA?
- Average distance between extremities?

The symbolic method, a generic framework for enumeration:

1

2 Rephrase into grammar/specification
3 Translate equations \& solve for generating function(s)

4
Singularity analysis yields asymptotics

[Flajolet and Sedgewick, 2009]

RNA secondary structures

Goal: Generating function $S(z)=\sum_{n \geq 0} s_{n} z^{n}$

where $s_{n}=$ \#Secondary structures of length n

[Waterman, 1978] \& [Vauchaussade de Chaumont and Viennot, 1985]

RNA secondary structures

Goal: Generating function $S(z)=\sum_{n \geq 0} s_{n} z^{n}$

 where $s_{n}=$ \#Secondary structures of length n
[Waterman, 1978] \& [Vauchaussade de Chaumont and Viennot, 1985]

RNA secondary structures

Goal: Generating function $S(z)=\sum_{n \geq 0} s_{n} z^{n}$

 where $s_{n}=$ \#Secondary structures of length n

2	S	$\rightarrow \bullet S\|(T) S\| \varepsilon$
	\mathbf{T}	$\rightarrow \bullet S \mid(T) S$

[Waterman, 1978] \& [Vauchaussade de Chaumont and Viennot, 1985]

RNA secondary structures

Goal: Generating function $S(z)=\sum_{n \geq 0} s_{n} z^{n}$

 where $s_{n}=$ \#Secondary structures of length n

2	S	$\rightarrow \bullet S\|(T) S\| \varepsilon$
	\mathbf{T}	$\rightarrow \bullet S \mid(T) S$

$$
3 \quad S(z) \quad=\frac{1-z+z^{2}-\sqrt{1-2 z-z^{2}-2 z^{3}+z^{4}}}{2 z^{2}}
$$

[Waterman, 1978] \& [Vauchaussade de Chaumont and Viennot, 1985]

RNA secondary structures

Goal: Generating function $S(z)=\sum_{n \geq 0} s_{n} z^{n}$

 where $s_{n}=$ \#Secondary structures of length n

2	S	$\rightarrow \bullet S\|(T) S\| \varepsilon$
	\mathbf{T}	$\rightarrow \bullet S \mid(T) S$

$$
3 \quad S(z) \quad=\frac{1-z+z^{2}-\sqrt{1-2 z-z^{2}-2 z^{3}+z^{4}}}{2 z^{2}}
$$

$4 \quad \rho=\frac{3-\sqrt{5}}{2}=1-\phi$
$s_{n}=\sqrt{\frac{15+7 \sqrt{5}}{8 \pi}} \cdot \frac{\left(\frac{3+\sqrt{5}}{2}\right)^{n}}{n \sqrt{n}}(1+\mathcal{O}(1 / n)) \sim 1.1 \cdot \frac{2.6^{n}}{n \sqrt{n}}$
[Waterman, 1978] \& [Vauchaussade de Chaumont and Viennot, 1985]

Expected \#secondary structures compatible with RNA

Goal: Generating function $S(z)=\sum_{n \geq 0} s_{n} z^{n}$
where $s_{n}=$ \#Compatible (Sequence/Sec. struct.) pairs of length n

[Zuker and Sankoff, 1984]

Expected \#secondary structures compatible with RNA

Goal: Generating function $S(z)=\sum_{n \geq 0} s_{n} z^{n}$
where $s_{n}=$ \#Compatible (Sequence/Sec. struct.) pairs of length n

[Zuker and Sankoff, 1984]

Expected \#secondary structures compatible with RNA

Goal: Generating function $S(z)=\sum_{n \geq 0} s_{n} z^{n}$
where $s_{n}=$ \#Compatible (Sequence/Sec. struct.) pairs of length n

$$
3 \quad S(z) \quad=\frac{1-4 z+6 z^{2}-\sqrt{1-8 z-4 z^{2}-48 z^{3}+36 z^{4}}}{12 z^{2}}
$$

[Zuker and Sankoff, 1984]

Expected \#secondary structures compatible with RNA

Goal: Generating function $S(z)=\sum_{n \geq 0} s_{n} z^{n}$
where $s_{n}=$ \#Compatible (Sequence/Sec. struct.) pairs of length n

$$
3 \quad S(z) \quad=\frac{1-4 z+6 z^{2}-\sqrt{1-8 z-4 z^{2}-48 z^{3}+36 z^{4}}}{12 z^{2}}
$$

$$
\begin{aligned}
& \text { (4) } \rho=\operatorname{lnfSing}\left(1-8 z-4 z^{2}-48 z^{3}+36 z^{4}\right) \quad 1 / \rho \approx 8.164 \\
& s_{n} \in \Theta\left(\frac{\rho^{-n}}{n \sqrt{n}}\right) \rightarrow \quad \text { Expected\#Sec.Str. }=s_{n} / 4^{n} \in \Theta\left(2.04^{n} / n \sqrt{n}\right)
\end{aligned}
$$

[Zuker and Sankoff, 1984]

RNA secondary structures (θ constraint)

Goal: Generating function $S_{\theta}(z)=\sum_{n \geq 0} s_{\theta, n} z^{n}$

where $s_{\theta, n}=$ \#Secondary structures of length n having minimal base-pair distance $=\theta$

RNA secondary structures (θ constraint)

Goal: Generating function $S_{\theta}(z)=\sum_{n \geq 0} s_{\theta, n} z^{n}$

where $s_{\theta, n}=$ \#Secondary structures of length n having minimal base-pair distance $=\theta$

RNA secondary structures (θ constraint)

Goal: Generating function $S_{\theta}(z)=\sum_{n \geq 0} s_{\theta, n} z^{n}$

where $s_{\theta, n}=$ \#Secondary structures of length n having minimal base-pair distance $=\theta$

RNA secondary structures (θ constraint)

Goal: Generating function $S_{\theta}(z)=\sum_{n \geq 0} s_{\theta, n} z^{n}$

where $s_{\theta, n}=$ \#Secondary structures of length n having minimal base-pair distance $=\theta$

3

$$
S_{\theta}(z)=\frac{1-2 z+2 z^{2}-z^{\theta+2}-\sqrt{1-4 z+4 z^{2}-2 z^{\theta+2}+4 z^{\theta+3}-4 z^{\theta+4}+z^{2 \theta+4}}}{(1-z) 2 z^{2}}
$$

RNA secondary structures (θ constraint)

Goal: Generating function $S_{\theta}(z)=\sum_{n \geq 0} s_{\theta, n} z^{n}$

where $s_{\theta, n}=$ \#Secondary structures of length n having minimal base-pair distance $=\theta$

3

$$
S_{\theta}(z)=\frac{1-2 z+2 z^{2}-z^{\theta+2}-\sqrt{1-4 z+4 z^{2}-2 z^{\theta+2}+4 z^{\theta+3}-4 z^{\theta+4}+z^{2 \theta+4}}}{(1-z) 2 z^{2}}
$$

4
$s_{n} \sim K \cdot \frac{\beta^{n}}{n \sqrt{n}}(1+\mathcal{O}(1 / n))$

θ	0	1	3	10
β	3.	2.62	2.29	2.02

5’-3' Distance: Expectation through derivation

$$
\begin{aligned}
& \text { Goal: } S(z, u)=\sum_{n \geq 0} \sum_{d \geq 0} s_{\theta, n, d} z^{n} u^{d} \\
& \text { where } s_{\theta, n, d}=\text { \#Sec. str. of length } n \text {, } \\
& \text { having BP min. dist }=\theta \\
& \text { and 5'-3' distance }=d
\end{aligned}
$$

5'-3' Distance: Expectation through derivation

Goal: $S(z, u)=\sum_{n \geq 0} \sum_{d \geq 0} s_{\theta, n, d} z^{n} u^{d}$

 where $s_{\theta, n, d}=\#$ Sec. str. of length n, having BP min. dist $=\theta$ and 5'-3' distance $=d$$$
\begin{aligned}
& 2 \quad T \rightarrow\left[S_{\geq \theta}\right] T|\bullet T| \varepsilon \quad S \rightarrow\left(S_{\geq \theta}\right) S|\circ S| \varepsilon \\
& S_{\geq \theta} \rightarrow\left(S_{\geq \theta}\right) S\left|\circ S_{\geq \theta}\right|^{\circ}
\end{aligned}
$$

5’-3' Distance: Expectation through derivation

Goal: $S(z, u)=\sum_{n \geq 0} \sum_{d \geq 0} s_{\theta, n, d} z^{n} u^{d}$

where $s_{\theta, n, d}=\#$ Sec. str. of length n, having BP min. dist $=\theta$ and 5'-3' distance $=d$

$$
3 \begin{aligned}
E_{\theta}(z) & =\left.\frac{\partial T(z, u)}{\partial u}\right|_{u=1}=\frac{\left(\begin{array}{c}
2-9 z+14 z^{2}-8 z^{3}+2 z^{5} \\
+z^{\theta \theta 2}\left(-4+10 z-10 z^{2}+2 z^{3}\right)+z^{2 \theta+4}(2-z) \\
-\left(2-5 z+4 z^{2}-2 z^{\theta+2}+z^{\theta+3}\right) \sqrt{\Delta_{\theta}}
\end{array}\right)}{2(1-z)^{2} z^{4}} \\
\Delta_{\theta} & :=1-4 z+4 z^{2}-2 z^{\theta+2}+4 z^{\theta+3}-4 z^{\theta+4}+z^{2 \theta+4}
\end{aligned}
$$

[Clote, Ponty, and Steyaert, 2012b]

5'-3' Distance: Expectation through derivation

Goal: $S(z, u)=\sum_{n \geq 0} \sum_{d \geq 0} s_{\theta, n, d} z^{n} u^{d}$

where $s_{\theta, n, d}=$ \#Sec. str. of length n, having BP min. dist $=\theta$ and $5^{\prime}-3^{\prime}$ distance $=d$
$2 \quad T \rightarrow\left[S_{\geq \theta}\right] T|\bullet T| \varepsilon \quad S \rightarrow\left(S_{\geq \theta}\right) S|\circ S| \varepsilon$

$$
S_{\geq \theta} \rightarrow\left(S_{\geq \theta}\right) S \mid \circ S_{\geq \theta} \sigma^{\circ}{ }^{\dot{\theta}}
$$

3

$$
\begin{aligned}
E_{\theta}(z) & =\left.\frac{\partial T(z, u)}{\partial u}\right|_{u=1}=\frac{\left(\begin{array}{c}
2-9 z+14 z^{2}-8 z^{3}+2 z^{5} \\
+z^{\theta+2}\left(-4+10 z-10 z^{2}+2 z^{3}\right)+z^{2 \theta+4}(2-z) \\
-\left(2-5 z+4 z^{2}-2 z^{\theta+2}+z^{\theta+3}\right) \sqrt{\Delta_{\theta}}
\end{array}\right)}{2(1-z)^{2} z^{4}} \\
\Delta_{\theta} & :=1-4 z+4 z^{2}-2 z^{\theta+2}+4 z^{\theta+3}-4 z^{\theta+4}+z^{2 \theta+4}
\end{aligned}
$$

$4 \quad D_{n} \sim \frac{2-5 \rho+4 \rho^{2}-2 \rho^{\theta+2}+\rho^{\theta+3}}{(1-\rho) \rho^{2}}-1, \rho$ smallest root of $\Delta_{\theta}=0$
[Clote, Ponty, and Steyaert, 2012b]

Intermezzo

"Traduttore tradittore"

I can solve graph problems, why not predict RNA 2ary structures?

How would you like to fold RNA?

Common sense rules:

- Crossing interactions should be allowed
- But restricted to topologically valid structures
- Energy model should be realistic
- Robustness of prediction should be testable

$$
\begin{aligned}
& \text { Satisfying these rules makes the problem NP- } \\
& \text { Hard, but we can still decently approximate it, assuming that ... } \\
& \text {... APX ... greedy ... dynamic programming ... P=NP(?)... }
\end{aligned}
$$

Common sense rules:

- Crossing interactions should be allowed
- But restricted to topologically valid structures
- Energy model should be realistic
- Robustness of prediction should be testable
+ Ninja algorithmic skills
+ Hard work
= Pretty decent algorithm

You guys are going to love my new algorithm!

My model \& algorithm make

so much more sense

than previous efforts

Theorem 35. The easy part

$$
(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} a^{n-k}
$$

And the rest follows trivially

Thanks for listening.

Questions?

Zzzz...

What do you predict for our favorite tRNA?

The one we've studied during our PhDs and our first three postdocs, named all of our first child after...

Part. 2: Predicting how RNA folds

Thermodynamics view

At the nanoscale, RNA folding can be adequately viewed as a Markov process, whose stationary distribution is the Boltzmann distribution.

Definition (Thermodynamic equilibrium)

Each structure S compatible with an RNA w observed with probability:

$$
\left.\mathbb{P}(S \mid w)=\frac{e^{\frac{-E_{w}(S)}{k T}}}{\mathcal{Z}_{w}} \quad \text { and } \quad \mathcal{Z}_{w} \equiv \sum_{S^{\prime}} e^{\frac{-E_{w}\left(S^{\prime}\right)}{R T}} \quad \text { \{Partition function }\right\}
$$

$E_{w}(S)$: free-energy of S over w; R : Boltzmann constant; and T : temperature.

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

- 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
- 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)
- 2010s-???? Embracing the kinetics view

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

- 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
- 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)

- 2010s-???? Embracing the kinetics view

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

- 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
- 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)
- 2010s-???? Embracing the kinetics view

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

- 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
- 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)
- 2010s-???? Embracing the kinetics view

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

- 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
- 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)
- 2010s-???? Embracing the kinetics view

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

- 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
- 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)
- 2010s-???? Embracing the kinetics view

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

- 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
- 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)
- 2010s-???? Embracing the kinetics view

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

- 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
- 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)
- 2010s-???? Embracing the kinetics view

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

- 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
- 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)
- 2010s-???? Embracing the kinetics view

Free-energy

- RNA structure S : (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. pairs,
- Energy model.

Motif \rightarrow Free-energy contribution $\Delta G(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S
Nussinov/Jacobson energy model [Nussinov and Jacobson, 1980]

Rem.: Structure prediction \approx Energy minimization \Leftrightarrow Base-pair maximization $\Leftrightarrow \operatorname{Max}$ (weighted) independent set in circle graph

Free-energy

- RNA structure S : (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. pairs, Stacking pairs, Nearest neighbor. . .)
- Energy model.

Motif \rightarrow Free-energy contribution $\Delta \mathrm{G}(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S
Nussinov/Jacobson energy model (Nussinov and Jacobson, 1980]

Rem.: Structure prediction \approx Energy minimization \Leftrightarrow Base-pair maximization $\Leftrightarrow \operatorname{Max}$ (weighted) independent set in circle graph

Free-energy

- RNA structure S : (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. pairs, Stacking pairs, Nearest neighbor. . .)
- Energy model.

Motif \rightarrow Free-energy contribution $\Delta \mathrm{G}(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S
Nussinov/Jacobson energy model iNussinov and Jacobson, 1980

Rem.: Structure prediction \approx Energy minimization \Leftrightarrow Base-pair maximization $\Leftrightarrow \operatorname{Max}$ (weighted) independent set in circle graph

Free-energy

- RNA structure S : (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. pairs, Stacking pairs, Nearest neighbor...)
- Energy model.

Motif \rightarrow Free-energy contribution $\Delta \mathrm{G}(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S
Nussinov/Jacobson energy model INussinov and Jacobson, 1980

Rem.: Structure prediction \approx Energy minimization \Leftrightarrow Base-pair maximization $\Leftrightarrow \operatorname{Max}$ (weighted) independent set in circle graph

Free-energy

- RNA structure S : (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. pairs, Stacking pairs, Nearest neighbor...)
- Energy model.

Motif \rightarrow Free-energy contribution $\Delta G(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S

Nussinov/Jacobson energy model [Nussinov and Jacobson, 1980]

Pairs: $\Delta \mathrm{G}(x, y)= \begin{cases}-1(-3 /-2 /-1) & \text { if }(x, y)=(G \equiv C) /(A=U) /(G-U) \\ +\infty & \text { otherwise. }\end{cases}$
Rem.: Structure prediction
\approx Energy minimization \Leftrightarrow Base-pair maximization $\Leftrightarrow \operatorname{Max}$ (weighted) independent set in circle graph

Dynamic programming (DP) for RNA folding

Theorem (Nussinov and Jacobson [1980])

Max \#base-pairs/min weight structure is computable in $\mathcal{O}\left(n^{3}\right) / \mathcal{O}\left(n^{2}\right)$ time/memory

$E_{i, k}$: Free-energy contribution of base-pair (i, k).

$$
\left(-1 /+\infty \text { or } \Delta \mathrm{G}\left(s_{i} \xlongequal{\rightleftharpoons} s_{k}\right)\right)
$$

$N_{i, j}$: Max \#base-pairs over interval [i,j]

$$
\begin{aligned}
& \boldsymbol{N}_{i, t}=0, \quad \forall t \in[i, i+\theta] \\
& \boldsymbol{N}_{i, j}=\min \left\{\begin{array}{lr}
\boldsymbol{N}_{i+1, j} & \{i \text { unpaired }\} \\
\min _{k=i+\theta+1} E_{i, k}+\boldsymbol{N}_{i+1, k-1}+\boldsymbol{N}_{k+1, j} & \{i \text { paired to } k\}
\end{array}\right.
\end{aligned}
$$

Dynamic programming (DP) for RNA folding

Theorem (Nussinov and Jacobson [1980])

Max \#base-pairs/min weight structure is computable in $\mathcal{O}\left(n^{3}\right) / \mathcal{O}\left(n^{2}\right)$ time/memory

$E_{i, k}$: Free-energy contribution of base-pair (i, k).

$$
\left(- 1 / + \infty \text { or } \Delta \mathrm { G } \left(s_{i} \xlongequal{\left.\left.\stackrel{?}{=} s_{k}\right)\right)}\right.\right.
$$

$\boldsymbol{C}_{i, j}$: Number of secondary structures compatible with interval $[i, j]$

$$
\begin{aligned}
& \boldsymbol{C}_{i, t}=1, \quad \forall t \in[i, i+\theta] \\
& \boldsymbol{C}_{i, j}=\sum\left\{\begin{array}{rr}
\quad \boldsymbol{C}_{i+1, j} & \{i \text { unpaired }\} \\
\sum_{k=i+\theta+1}^{j} \mathbb{1}_{\text {comp. }(i, k)} \times \boldsymbol{C}_{i+1, k-1} \times \boldsymbol{C}_{k+1, j} & \{i \text { paired to } k\}
\end{array}\right.
\end{aligned}
$$

Dynamic programming (DP) for RNA folding

Theorem (Nussinov and Jacobson [1980])

Max \#base-pairs/min weight structure is computable in $\mathcal{O}\left(n^{3}\right) / \mathcal{O}\left(n^{2}\right)$ time/memory

$E_{i, k}$: Free-energy contribution of base-pair (i, k).

$$
\left(- 1 / + \infty \text { or } \Delta \mathrm { G } \left(s_{i} \xlongequal{\left.\left.\stackrel{?}{=} s_{k}\right)\right)}\right.\right.
$$

$\mathcal{Z}_{i, j}=\sum_{\substack{\text { with } w_{[i, j}}} e^{-\frac{E_{w}(S)}{R T}}=$ Partition function of structures compatible with interval $[i, j]$

$$
\begin{aligned}
& \mathcal{Z}_{i, t}=1, \quad \forall t \in[i, i+\theta] \\
& \mathcal{Z}_{i, j}=\sum\left\{\begin{array}{lr}
& \{i \text { unpaired }\} \\
\sum_{k=i+\theta+1}^{j} e^{\frac{-E_{i, k}}{R T}} \times \mathcal{Z}_{i+1, k-1} \times \mathcal{Z}_{k+1, j} & \{i \text { paired to } k\}
\end{array}\right.
\end{aligned}
$$

Dynamic programming (DP) for RNA folding

Many extensions:

- Nearest-neighbor/Turner energy model
- Comparative folding
- Equilibrium base-pairing probabilities
[McCaskill, 1990]
- Moments of additive features
[Miklós et al., 2005; Panty and Saule, 2011]
- Δ kcal. mol $^{-1}$ suboptimal structures of MFE
[Wuchty et al., 1999]
- Basic crossing structures
- Exact sampling in Boltzmann distr.
[Rivas and Eddy, 1999]. . .
[Ding and Lawrence, 2003; Ponty, 2008]
- Moments of additive features [Miklós et al., 2005; Panty and Saute, 2011]
- Maximum expected accuracy structure
[Do et al., 2006]
z - Distance-classified partitioning of Boltzmann ens.
[Freyhult et al., 2007]
Made possible by:
- Completeness/Unambiguity of decomposition
\exists energy-preserving bijection between derivations of DP scheme and search space
- Objective function additive with respect to DP scheme
\Rightarrow Combinatorial Dynamic Programming

Part. 3: Combinatorial Dynamic Programming

Reasoning structurally about dynamic programming

- I : Instance (aka problem)
- Q : State space for dyn. prog. scheme (LHS terms, I initial state)
- Δ_{q} : Search space for state q
- \mathcal{D}_{q} : Derivations of DP scheme from state $q \in Q_{i}$
- Semantics function $\Phi: \mathcal{D}_{q} \rightarrow \Delta_{I}$

$$
V_{q}=\bigoplus\left\{\begin{array}{c}
E_{1, q} \otimes V_{q_{1,1}} \otimes V_{q_{1,2}} \otimes \ldots \\
E_{2, q} \otimes V_{q_{2,1}} \otimes V_{q_{2,2}} \otimes \ldots \\
\vdots \\
E_{k, q} \otimes V_{q_{k, 1}} \otimes V_{q_{k, 2}} \otimes \ldots
\end{array}\right.
$$

Reasoning structurally about dynamic programming

- I : Instance (aka problem)
- Q : State space for dyn. prog. scheme (LHS terms, / initial state)
- Δ_{q} : Search space for state q
- \mathcal{D}_{q} : Derivations of DP scheme from state $q \in Q_{i}$
- Semantics function Φ : $\mathcal{D}_{q} \rightarrow \Delta_{\perp}$

Reasoning structurally about dynamic programming

- I : Instance (aka problem)
- Q : State space for dyn. prog. scheme (LHS terms, I initial state)
- Δ_{q} : Search space for state q
- \mathcal{D}_{q} : Derivations of DP scheme from state $q \in Q_{i}$
- Semantics function $\Phi: \mathcal{D}_{q} \rightarrow \Delta_{\text {I }}$

Reasoning structurally about dynamic programming

- I : Instance (aka problem)
- Q : State space for dyn. prog. scheme (LHS terms, I initial state)
- Δ_{q} : Search space for state q
- \mathcal{D}_{q} : Derivations of DP scheme from state $q \in Q_{i}$
- Semantics function $\Phi: \mathcal{D}_{q} \rightarrow \Delta_{I}$

Combinatorics help in the design of DP schemes

MFold DP scheme [Zuker and Stiegler, 1981]

Unambiguous (pairwise non-overlapping generated search spaces) Completeness? Use generating functions...

Combinatorics help in the design of DP schemes

Reminder: Generating function of secondary structures [Waterman, 1978]

$$
S(z):=\sum_{n \geq 0} s_{n} z^{n}=\frac{1-z+z^{2}-\sqrt{1-2 z-z^{2}-2 z^{3}+z^{4}}}{2 z^{2}}
$$

- DP scheme unambiguous (Φ injective);
- Completeness can be established by cardinality argument $\left(\left|\Phi\left(\mathcal{D}_{n}\right)\right|=s_{n}\right)$

Combinatorics help in the design of DP schemes

Reminder: Generating function of secondary structures [Waterman, 1978]

$$
S(z):=\sum_{n \geq 0} s_{n} z^{n}=\frac{1-z+z^{2}-\sqrt{1-2 z-z^{2}-2 z^{3}+z^{4}}}{2 z^{2}}
$$

- DP scheme unambiguous (Φ injective);
- Completeness can be established by cardinality argument $\left(\left|\Phi\left(\mathcal{D}_{n}\right)\right|=s_{n}\right)$

$$
A(z)=\left\{\begin{array}{cc}
\operatorname{Seq}(z) & B(z)=\left\{\begin{array}{c}
B(z) C(z) \\
z^{2} A(z) \\
\operatorname{Seq}(z) B(z)
\end{array}\right. \\
z \operatorname{Seq}(z) z^{2} A(z)+z^{2} A(z) \operatorname{Seq}(z) z & C(z)=\left\{\begin{array}{c}
C(z) z \\
+z \operatorname{Seq}(z) z^{2} A(z) \operatorname{Seq}(z) z
\end{array}\right. \\
B(z) C(z) & \\
z^{2} A(z)
\end{array}\right\}
$$

$$
A(z)=\frac{1-z-z^{2}-\sqrt{1-2 z-z^{2}-2 z^{3}+z^{4}}}{2 z^{2}}
$$

$$
=W(z)-1 \quad \text { (OMG! The empty secondary structure is missing...) }
$$

Motivation

Observation: Large diversity of pictures for the Boltzmann ensemble, associated with specific functions.

How to extract functional information from the Boltzmann ensemble?
Idea: Observe the distribution of additive structural parameters.
(Examples: \#BPs, Free-energy, \#Multiloops. . .)
However, exact computation is costly + Mean, Variance... often sufficient.
... How to efficiently compute the moments of the distribution?

Distribution of discrete additive features

Discrete feature function $\alpha: \mathcal{D}_{l} \rightarrow[0, M]$, additively associated with derivations.
Random variable $\boldsymbol{A} \in \mathcal{D}_{l}$: Uniformly/Boltzmann-distributed random derivation.
Problem: Compute explicit distribution of V, defined as:

$$
\forall m \in[0, M]: \mathbb{P}(\alpha(A)=m \mid I) \equiv \sum_{\substack{d \in \mathcal{D}_{l} \\ \alpha(d)=m}} \frac{1}{\left|\mathcal{D}_{l}\right|}=\frac{\left|\left\{d \in \mathcal{D}_{l} \mid \alpha(d)=m\right\}\right|}{\left|\mathcal{D}_{l}\right|}
$$

Naive solution: Explicit convolution products

$$
\forall q \in Q, \quad v_{q}=\sum\left\{\begin{array}{c}
v_{q_{1,1}} \times V_{q_{1,2}} \times \cdots \\
V_{q_{2,1}} \times V_{q_{2,2}} \times \cdots \\
\vdots \\
v_{q_{k, 1}} \times V_{q_{k, 2}} \times \cdots
\end{array}\right.
$$

Distribution of discrete additive features

Discrete feature function $\alpha: \mathcal{D}_{l} \rightarrow[0, M]$, additively associated with derivations.
Random variable $\boldsymbol{A} \in \mathcal{D}_{l}$: Uniformly/Boltzmann-distributed random derivation.
Problem: Compute explicit distribution of V, defined as:

$$
\forall m \in[0, M]: \mathbb{P}(\alpha(A)=m \mid I) \equiv \sum_{\substack{d \in \mathcal{D}_{l}, m \\ \alpha(d)=m}} \frac{1}{\left|\mathcal{D}_{l}\right|}=\frac{\left|\left\{d \in \mathcal{D}_{l} \mid \alpha(d)=m\right\}\right|}{\left|\mathcal{D}_{l}\right|}
$$

Naive solution: Explicit convolution products \rightarrow Time: $\mathcal{O}\left(M^{2} k|Q|\right) / M e m .: ~ \Theta(M|Q|)$

$$
\forall m \in[0, M], \forall q \in Q, \quad V_{q}^{m}=\sum\left\{\begin{array}{c}
\sum_{\sum_{1}} V_{q_{1,1}}^{m_{1}} \times V_{q_{1,2}}^{m_{2}} \times \cdots \\
\sum_{m_{1}+m_{2}+\ldots=m-\delta_{q, 1}} V_{q_{2,1}}^{m_{2}} \times V_{q_{2,2}}^{m_{2}} \times \cdots=m-\delta_{q, 2} \\
\vdots \\
\sum_{m_{1}+m_{2}+\ldots=m-\delta_{q, k}} V_{q_{k, 1}}^{m_{2}} \times V_{q_{k, 2}}^{m_{2}} \times \cdots
\end{array}\right.
$$

Distribution of discrete additive features

Discrete feature function $\alpha: \mathcal{D}_{I} \rightarrow[0, M]$, additively associated with derivations.
Random variable $\boldsymbol{A} \in \mathcal{D}_{\text {l }}$: Uniformly/Boltzmann-distributed random derivation.
Problem: Compute explicit distribution of V, defined as:

$$
\forall m \in[0, M]: \mathbb{P}(\alpha(A)=m \mid I) \equiv \sum_{\substack{d \in \mathcal{D}_{l} \\ \alpha(d)=m}} \frac{1}{\left|\mathcal{D}_{l}\right|}=\frac{\left|\left\{\boldsymbol{d} \in \mathcal{D}_{l} \mid \alpha(d)=m\right\}\right|}{\left|\mathcal{D}_{1}\right|}
$$

Naive solution: Explicit convolution products \rightarrow Time: $\mathcal{O}\left(M^{2} k|Q|\right) / M e m .: ~ \Theta(M|Q|)$ Interpolation [Waldispühl and Ponty, 2011] :

- Consider polynomials $V_{q}(z)=\sum_{m=0}^{M} V_{q}^{m} \cdot z^{m}$;
- Evaluation of $V_{q}(z)$ possible in $\Theta(k|Q|) / \Theta(|Q|)$ for any given $z \in \mathbb{R}^{+}$;

$$
\forall q \in Q, \quad V_{q}(z)=\sum\left\{\begin{array}{c}
z^{\alpha(\delta q, 1)} \times V_{q_{1,1}}(z) \times V_{q_{1,2}}(z) \times \cdots \\
\vdots \\
z^{\alpha(\delta q, k)} \times V_{q_{k, 1}}(z) \times v_{q_{k, 2}}(z) \times \cdots
\end{array}\right.
$$

- Compute $V_{q_{0}}(z)$ on $M+1$ distinct values $\left(z_{1}, z_{2}, \cdots, z_{M+1}\right)$;
$>$ Interpolate coeff. $V_{q}^{m} \rightarrow$ DFT [Senter, Sheikh, Dotu, Ponty, and Clote, 2012]: $\Theta(M \log (M))$

Distribution of discrete additive features

Discrete feature function $\alpha: \mathcal{D}_{1} \rightarrow[0, M]$, additively associated with derivations.
Random variable $\boldsymbol{A} \in \mathcal{D}_{\text {l }}$: Uniformly/Boltzmann-distributed random derivation.
Problem: Compute explicit distribution of V, defined as:

$$
\forall m \in[0, M]: \mathbb{P}(\alpha(A)=m \mid I) \equiv \sum_{\substack{d \in \mathcal{D}_{l}, \alpha(d)=m}} \frac{1}{\left|\mathcal{D}_{l}\right|}=\frac{\left|\left\{d \in \mathcal{D}_{l} \mid \alpha(d)=m\right\}\right|}{\left|\mathcal{D}_{l}\right|}
$$

Naive solution: Explicit convolution products \rightarrow Time: $\mathcal{O}\left(M^{2} k|Q|\right) /$ Mem.: $\Theta(M|Q|)$
Interpolation [Waldispühl and Ponty, 2011] :
\rightarrow Time: $\mathcal{O}(M k|Q|) /$ Mem.: $\Theta(|Q|)$

- Consider polynomials $V_{q}(z)=\sum_{m=0}^{M} V_{q}^{m} \cdot z^{m}$;
- Evaluation of $V_{q}(z)$ possible in $\Theta(k|Q|) / \Theta(|Q|)$ for any given $z \in \mathbb{R}^{+}$;
- Compute $V_{q_{0}}(z)$ on $M+1$ distinct values $\left(z_{1}, z_{2}, \cdots, z_{M+1}\right)$;
- Interpolate coeff. $V_{q}^{m} \rightarrow$ DFT [Senter, Sheikh, Dotu, Ponty, and Clote, 2012]: $\Theta(M \log (M))$.

Computing the moments of additive features

Discrete feature function $\alpha: \mathcal{D}_{1} \rightarrow[0, M]$, additively associated with derivations. Random variable $\boldsymbol{A} \in \mathcal{D}_{l}$: Uniformly/Boltzmann-distributed random derivation.

Problem: Given an instance I, compute $1^{\text {st }}, \ldots, p^{\text {th }}$ moment of \boldsymbol{A} :

$$
\mathbb{E}\left(\alpha(A)^{p} \mid I\right)=\sum_{d \in \mathcal{D}_{I}} \mathbb{P}(d \mid I) \cdot \alpha(d)=\frac{\sum_{d \in \mathcal{D}_{l}} \alpha(d)^{p}}{\left|\mathcal{D}_{l}\right|} \longrightarrow \mathcal{X}_{i, j}
$$

Computing the moments of additive features

Discrete feature function $\alpha: \mathcal{D}_{1} \rightarrow[0, M]$, additively associated with derivations. Random variable $\boldsymbol{A} \in \mathcal{D}_{l}$: Uniformly/Boltzmann-distributed random derivation.

Problem: Given an instance I, compute $1^{\text {st }}, \ldots, p^{\text {th }}$ moment of \boldsymbol{A} :

$$
\mathbb{E}\left(\alpha(A)^{p} \mid I\right)=\sum_{d \in \mathcal{D}_{1}} \mathbb{P}(d \mid I) \cdot \alpha(d)=\frac{\sum_{d \in \mathcal{D}_{1}} \alpha(d)^{p}}{\left|\mathcal{D}_{l}\right|} \longrightarrow \mathcal{X}_{i, j}
$$

Why?

- $1^{\text {st }}$ moment: Average free-energy, \# base-pairs $\mu:=\mathbb{E}(A)$
- $2^{\text {nd }}$ moment: Variance/standard dev., correlations...

Computing the moments of additive features

Discrete feature function $\alpha: \mathcal{D}_{1} \rightarrow[0, M]$, additively associated with derivations.
Random variable $\boldsymbol{A} \in \mathcal{D}_{l}$: Uniformly/Boltzmann-distributed random derivation.
Problem: Given an instance I, compute $1^{\text {st }}, \ldots, p^{\text {th }}$ moment of \boldsymbol{A} :

$$
\mathbb{E}\left(\alpha(A)^{p} \mid I\right)=\sum_{d \in \mathcal{D}_{l}} \mathbb{P}(d \mid I) \cdot \alpha(d)=\frac{\sum_{d \in \mathcal{D}_{l}} \alpha(d)^{p} \longrightarrow \mathcal{X}_{i, j}}{\left|\mathcal{D}_{l}\right|} \longrightarrow \quad \text {. }
$$

Why?

- $1^{\text {st }}$ moment: Average free-energy, \# base-pairs $\mu:=\mathbb{E}(A)$
- $2^{\text {nd }}$ moment: Variance/standard dev., correlations...

Pointing derivations (formal derivative) [Ponty and Saule, 2011]: $\rightarrow \Theta\left(2^{p} k|Q|\right) / \Theta(p|Q|)$

- Transform equation to generate derivations pointed on \#RHS \rightarrow LHS transitions.
- Weight each pointed transition with contribution to α.

Counting in this decomposition
\Leftrightarrow Compute $\mathcal{X}_{i, j}$

Conclusion

We need your help!

- Crossing interactions (pseudoknots): Finding the right parameter
- Kinetics: Markov process. . . computing energy barrier is hard!
- RNA Inverse folding/Design: Complexity unknown, largely open!
- Constructing combinatorial DP scheme for classic problems

Folding including crossing interactions

		Base-pairs	Stacking-Pairs	Nearest-Neighbor
00000000000000	Comp.	P [Nussinov and Jacobson, 1980]	P [leong et al., 2003]	P [Zuker and Stiegler, 1981]
Non-crossing	Approx.	-	-	-
	Comp.	???	NP-Hard [leong et al., 2003]	NP-Hard [leong et al., 2003]
Planar	Approx.	2-approx. ₹[leong et al., 2003]	2-approx. [leong et al., 2003]	???
	Comp.	P [Tabaska et al., 1998]	NP-Hard [Lyngsø, 2004; Sheikh, Backofen, and Ponty, 2012] (any* Δ model)	NP-Hard [Lyngsø and Pedersen, 2000; Akutsu, 2000]
General	Approx.	-	ε-approx. $\in \mathcal{O}\left(n^{4^{1 / \varepsilon}}\right)$ [Lyngso, 2004; Sheikh, Backofen, and Ponty, 2012] $1 / 5$ (any Δ model)	APX-Hard [Sheikh, Backofen, and Ponty, 2012]

Idea: Parameterized complexity approach.

- Bounded map genus \rightarrow Avoid finite set of substructures!
\rightarrow Bounded tree-width \rightarrow Promising. . . but what geometric relevance?
- Bounded page number \rightarrow Already hard for two pages
- Bounded wave number

Folding including crossing interactions

		Base-pairs	Stacking-Pairs	Nearest-Neighbor
0000000600000	Comp.	P [Nussinov and Jacobson, 1980]	$\begin{gathered} \mathrm{P} \\ \text { [leong et al., 2003] } \end{gathered}$	\qquad
Non-crossing	Approx.	-	-	-
	Comp.	???	NP-Hard [leong et al., 2003]	NP-Hard [leong et al., 2003]
Planar	Approx.	$\begin{gathered} \text { 2-approx. } \\ \approx[\text { leoong et al., 2003] } \end{gathered}$	2-approx. [leong et al., 2003]	???
	Comp.	P [Tabaska et al., 1998]	NP-Hard [Lyngsø, 2004; Sheikh, Backofen, and Ponty, 2012] (any* Δ model)	NP-Hard [Lyngsø and Pedersen, 2000; Akutsu, 2000]
General	Approx.	-	ε-approx. $\in \mathcal{O}\left(n^{4^{1 / \varepsilon}}\right)$ [Lyngso, 2004; Sheikh, Backofen, and Ponty, 2012] $1 / 5$ (any Δ model)	APX-Hard [Sheikh, Backofen, and Ponty, 2012]

Idea: Parameterized complexity approach.

- Bounded map genus \rightarrow Avoid finite set of substructures!
- Bounded tree-width \rightarrow Promising...but what geometric relevance?
\rightarrow Bounded page number \rightarrow Already hard for two pages

Folding including crossing interactions

		Base-pairs	Stacking-Pairs	Nearest-Neighbor
0000000600000	Comp.	P [Nussinov and Jacobson, 1980]	$\begin{gathered} \mathrm{P} \\ \text { [leong et al., 2003] } \end{gathered}$	\qquad
Non-crossing	Approx.	-	-	-
	Comp.	???	NP-Hard [leong et al., 2003]	NP-Hard [leong et al., 2003]
Planar	Approx.	$\begin{gathered} \text { 2-approx. } \\ \approx[\text { leoong et al., 2003] } \end{gathered}$	2-approx. [leong et al., 2003]	???
	Comp.	P [Tabaska et al., 1998]	NP-Hard [Lyngsø, 2004; Sheikh, Backofen, and Ponty, 2012] (any* Δ model)	NP-Hard [Lyngsø and Pedersen, 2000; Akutsu, 2000]
General	Approx.	-	ε-approx. $\in \mathcal{O}\left(n^{4^{1 / \varepsilon}}\right)$ [Lyngso, 2004; Sheikh, Backofen, and Ponty, 2012] $1 / 5$ (any Δ model)	APX-Hard [Sheikh, Backofen, and Ponty, 2012]

Idea: Parameterized complexity approach.

- Bounded map genus \rightarrow Avoid finite set of substructures!
- Bounded tree-width \rightarrow Promising...but what geometric relevance?
- Bounded page number \rightarrow Already hard for two pages
- Bounded wave number

Folding including crossing interactions

		Base-pairs	Stacking-Pairs	Nearest-Neighbor
0000000600000	Comp.	P [Nussinov and Jacobson, 1980]	$\begin{gathered} \mathrm{P} \\ \text { [leong et al., 2003] } \end{gathered}$	\qquad
Non-crossing	Approx.	-	-	-
	Comp.	???	NP-Hard [leong et al., 2003]	NP-Hard [leong et al., 2003]
Planar	Approx.	$\begin{gathered} \text { 2-approx. } \\ \approx[\text { leoong et al., 2003] } \end{gathered}$	2-approx. [leong et al., 2003]	???
	Comp.	P [Tabaska et al., 1998]	NP-Hard [Lyngsø, 2004; Sheikh, Backofen, and Ponty, 2012] (any* Δ model)	NP-Hard [Lyngsø and Pedersen, 2000; Akutsu, 2000]
General	Approx.	-	ε-approx. $\in \mathcal{O}\left(n^{4^{1 / \varepsilon}}\right)$ [Lyngso, 2004; Sheikh, Backofen, and Ponty, 2012] $1 / 5$ (any Δ model)	APX-Hard [Sheikh, Backofen, and Ponty, 2012]

Idea: Parameterized complexity approach.

- Bounded map genus \rightarrow Avoid finite set of substructures!
- Bounded tree-width \rightarrow Promising...but what geometric relevance?
- Bounded page number \rightarrow Already hard for two pages
- Bounded wave number

We need your help!

- Crossing interactions (pseudoknots): Finding the right parameter
- Kinetics: Markov process. . . computing energy barrier is hard!
- RNA Inverse folding/Design: Complexity unknown, largely open!
- Constructing combinatorial DP scheme for classic problems

Thank you for your attention

References I

Tatsuya Akutsu. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl. Math., 104(1-3):45-62, 2000. ISSN 0166-218X. doi: 10.1016/S0166-218X(00)00186-4.

Peter Clote, Stefan Dobrev, Ivan Dotu, Evangelos Kranakis, Danny Krizanc, and Jorge Urrutia. On the page number of rna secondary structures with pseudoknots. J Math Biol, 65(6-7):1337-1357, Dec 2012a. doi: 10.1007/s00285-011-0493-6. URL
http://dx.doi.org/10.1007/s 00285-011-0493-6.
Peter Clote, Yann Ponty, and Jean-Marc Steyaert. Expected distance between terminal nucleotides of rna secondary structures. Journal of Mathematical Biology, 65(3):581-599, 2012b.
Liang Ding, Xingran Xue, Sal Lamarca, Mohammad Mohebbi, Abdul Samad, Russell L. Malmberg, and Liming Cai. Ab initio prediction of rna nucleotide interactions with backbone k-tree model. In Fabrice Jossinet, Yann Ponty, and Jérôme Waldispühl, editors, Proceedings of 1st Workshop on Computational Methods for Structural RNAs (CMSR'14), volume 1, pages 25-42, Strasbourg, France, September 2014. doi:
$10.15455 /$ CMSR.2014.0003. URL http://dx.doi.org/10.15455/CMSR.2014.0003.
Y. Ding and E. Lawrence. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Research, 31(24):7280-7301, 2003.

Chuong B. Do, Daniel A. Woods, and Serafim Batzoglou. Contrafold: Rna secondary structure prediction without physics-based models. Bioinformatics, 22 (14):e90-e98, Jul 2006. doi: 10.1093 /bioinformatics/btl246. URL http://dx.doi.org/10.1093/bioinformatics/bt1246.

Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
E. Freyhult, V. Moulton, and P .Clote. Boltzmann probability of RNA structural neighbors and riboswitch detection. Bioinformatics, 23(16):2054-2062, 2007.

Samuel leong, Ming yang Kao, Tak wah Lam, Wing kin Sung, and Siu ming Yiu. Predicting rna secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs. Journal Of Computational Biology, 10(6):981-995, 2003.
R. B. Lyngs \varnothing and C. N. S. Pedersen. RNA pseudoknot prediction in energy-based models. Journal of Computational Biology, 7(3-4):409-427, 2000.

Rune Lyngsø. Complexity of pseudoknot prediction in simple models. In Proceedings of ICALP, 2004.
J.S. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29:1105-1119, 1990.

István Miklós, Irmtraud M. Meyer, and Borbála Nagy. Moments of the boltzmann distribution for RNA secondary structures. Bull Math Biol, 67(5):1031-1047, Sep 2005. doi: 10.1016/j.bulm.2004.12.003. URL http://dx.doi.org/10.1016/j.bulm. 2004.12.003.
R. Nussinov and A.B. Jacobson. Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc Natl Acad Sci U S A, 77:6903-13, 1980.

Yann Ponty. Efficient sampling of RNA secondary structures from the boltzmann ensemble of low-energy: The boustrophedon method. Journal of Mathematical Biology, 56(1-2):107-127, Jan 2008.

Yann Ponty and Cédric Saule. A combinatorial framework for designing (pseudoknotted) RNA algorithms. In Teresa M. Przytycka and Marie-France Sagot, editors, Algorithms in Bioinformatics - 11th International Workshop, WABI 2011, Saarbrücken, Germany, September 5-7, 2011. Proceedings, volume 6833 of Lecture Notes in Computer Science, pages 250-269. Springer, 2011. doi: 10.1007/978-3-642-23038-7_22. URL http://dx.doi.org/10.1007/978-3-642-23038-7_22.

References II

Christian M. Reidys, Fenix W D. Huang, Jørgen E. Andersen, Robert C. Penner, Peter F. Stadler, and Markus E. Nebel. Topology and prediction of rna pseudoknots. Bioinformatics, 27(8):1076-1085, Apr 2011. doi: 10.1093/bioinformatics/btr090. URL
http://dx.doi.org/10.1093/bioinformatics/btro90.
E. Rivas and S.R. Eddy. A dynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of Molecular Biology, 285: 2053-2068, 1999.
David Sankoff. Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM Journal on Applied Mathematics, 45(5):pp. 810-825, 1985. ISSN 00361399. URL http://шшн. j stor. org/stable/2101630.
Evan Senter, Saad Sheikh, Ivan Dotu, Yann Ponty, and Peter Clote. Using the fast fourier transform to accelerate the computational search for rna conformational switches. PLoS One, 7(12):e50506, 2012. doi: 10.1371/journal.pone.0050506. URL http://dx.doi.org/10.1371/journal.pone. 0050506.
Lioudmila V. Sharova, Alexei A. Sharov, Timur Nedorezov, Yulan Piao, Nabeebi Shaik, and Minoru S H. Ko. Database for mrna half-life of 19977 genes obtained by dna microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res, 16(1):45-58, Feb 2009. doi: $10.1093 / \mathrm{dnares} / \mathrm{dsn030}$. URL http://dx.doi.org/10.1093/dnares/dsn030.
Saad Sheikh, Rolf Backofen, and Yann Ponty. Impact of the energy model on the complexity of rna folding with pseudoknots. In Juha Karkkainen and Jens Stoye, editors, Combinatorial Pattern Matching, volume 7354 of Lecture Notes in Computer Science, pages 321-333. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-31264-9. doi: 10.1007/978-3-642-31265-6_26. URL http://dx.doi.org/10.1007/978-3-642-31265-6_26.
J. E. Tabaska, R. B. Cary, H. N. Gabow, and G. D. Stormo. An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics, 14 (8):691-699, 1998.

Chris Thachuk, Ján Manuch, Arash Rafiey, Leigh-Anne Mathieson, Ladislav Stacho, and Anne Condon. An algorithm for the energy barrier problem without pseudoknots and temporary arcs. Pac Symp Biocomput, pages 108-119, 2010.
M. Vauchaussade de Chaumont and X.G. Viennot. Enumeration of RNA secondary structures by complexity. In V. Capasso, E. Grosso, and S.L. Paven-Fontana, editors, Mathematics in Medecine and Biology, volume 57 of Lecture Notes in Biomathematics, pages 360-365, 1985.
G. Vernizzi, P. Ribeca, H. Orland, and A. Zee. Topology of pseudoknotted homopolymers. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 73(3):031902, 2006.
Jérôme Waldispühl and Yann Ponty. An unbiased adaptive sampling algorithm for the exploration of rna mutational landscapes under evolutionary pressure. J Comput Biol, 18(11):1465-1479, Nov 2011. doi: $10.1089 / \mathrm{cmb} .2011 .0181$. URL http://dx.doi. org/10.1089/cmb. 2011. 0181.
M. S. Waterman. Secondary structure of single stranded nucleic acids. Advances in Mathematics Supplementary Studies, 1(1):167-212, 1978.
S. Wuchty, W. Fontana, I.L. Hofacker, and P. Schuster. Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers, 49: 145-164, 1999.
M. Zuker and D. Sankoff. Rna secondary structures and their prediction. Bull Math Bio, 46:591-621, 1984.
M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequencesusing thermodynamics and auxiliary information. Nucleic Acids Res., 9:133-148, 1981.

