Parameterized-complexity algorithms for the RNA sequence/structure alignment problem

P. Rinaudo* † ‡ Y. Ponty* • ° D. Barth † A. Denise* ‡

* AMIB project, INRIA Saclay, France

†LRI, Université Paris-Sud, France

[‡]PRISM, Université Versailles St-Quentin, France

° PIMS, Simon Fraser University

LIX/CNRS, Ecole Polytechnique, France

Discrete Maths Seminar@SFU

RNA structure: From 3D to 2D

- ► RNA = Sequence of nucleotides {A, C, G, U}
- ► Interactions = Pairs (Canonical/Non-canonical) of nucleotides
- ► Structure = Set of base-pairs ≈ Function (conserved)

RNA structure representations

Arc-annotated sequences

Arc-annotated sequence = Sequence + Interactions

Primary Structure

- ► Represents nucleotides sequence
- ▶ No interaction

Boring...

Secondary Structure

- Scaffold/blueprint for 3D
- Only includes non-crossing canonical interactions (WC/WC cis, GC/AU/GU)
- ► Any nucleotide has < 1 partner

Better...

Secondary Structure with Pseudoknots

- Includes all canonical crossing interactions
- ▶ Any nucleotide has ≤ 1 partner

Wow...

Pseudoknots play a major part in the architecture of some RNAs Yet they are hard to handle algorithmically!

Extended secondary structure

- Captures any interaction (canonical and non-canonical)
- Possibly, multiple partners per position

Now we're talking!

Problem: Find minimal-cost alignment (assignment subject to constraints)

Problem: Find minimal-cost alignment (assignment subject to constraints)

Sequence structure alignment for ncRNA search and homology-modelling

Structure prediction by homology modelling

Sequence structure alignment for ncRNA search and homology-modelling

n =Structure Length, m =Sequence Length

Secondary Structure – Sequence	$O(n \cdot m^3)$
Pseudoknots – Sequence	MAX-SNP-Hard
Extended Secondary Structure – Sequence	MAX-SNP-Hard

Jiang et al. 2001

n =Structure Length, m =Sequence Length

Secondary structure – Sequence	$O(n \cdot m^3)$
Pseudoknots – Sequence	MAX-SNP-Hard
Extended Secondary Structure – Sequence	MAX-SNP-Hard

Jiang et al. 2001

n = Structure Length, *m* = Sequence Length

Secondary Structure – Sequence	$O(n \cdot m^3)$
Pseudoknots – Sequence	MAX-SNP-Hard
Extended Secondary Structure – Sequence	MAX-SNP-Hard

Jiang et al. 2001

n =Structure Length, m =Sequence Length

Secondary Structure – Sequence	$O(n \cdot m^3)$
Pseudoknots – Sequence	MAX-SNP-Hard
Extended Secondary Structure – Sequence	MAX-SNP-Hard

Jiang et al. 2001

Complexity of struct.-seq. alignment: Polynomial classes

n =Structure Length, m =Sequence Length, b =#Bands

Standard Pseudoknots	$O(n \cdot m^b)$
Standard Embedded Pseudoknots	$O(n \cdot m^{b+1})$
Simple Non-standard Pseudoknots	$O(n \cdot m^{b+1})$
Standard Triple Helices	$O(n \cdot m^3)$

Han et al. 2008

Complexity of struct.-seq. alignment: Polynomial classes

n =Structure Length, m =Sequence Length, b =#Bands

Standard Pseudoknots	$O(n \cdot m^b)$
Standard Embedded Pseudoknots	$O(n \cdot m^{b+1})$
Simple Non-standard Pseudoknots	$O(n \cdot m^{b+1})$
Standard Triple Helices	$O(n \cdot m^3)$

Han et al. 2008

n =Structure Length, m =Sequence Length, b =#Bands

Standard Pseudoknots	$O(n \cdot m^b)$
Standard Embedded Pseudoknots	$O(n \cdot m^{b+1})$
Simple Non-standard Pseudoknots	$O(n \cdot m^{b+1})$
Standard Triple Helices	$O(n \cdot m^3)$

Wong et al. 2011

n =Structure Length, m =Sequence Length, b =#Bands

Standard Pseudoknots	$O(n \cdot m^b)$
Standard Embedded Pseudoknots	$O(n \cdot m^{b+1})$
Simple Non-standard Pseudoknots	$O(n \cdot m^{b+1})$
Standard Triple Helices	$O(n \cdot m^3)$

Wong et al. 2012

n =Structure Length, m =Sequence Length, b =#Bands

Standard Pseudoknots	$O(n \cdot m^b)$
Standard Embedded Pseudoknots	$O(n \cdot m^{b+1})$
Simple Non-standard Pseudoknots	$O(n \cdot m^{b+1})$
Standard Triple Helices	$O(n \cdot m^3)$

+ Other $O(n.m^4)/O(n.m^6)$ classes based on folding DP schemes

[Möhl/Will/Backofen 2009]

Message#1

No such a thing as free cupcakes

Just ask Marni about it...

Message#2

One class ⇒ One algorithm

Is that really necessary...?

What will you do with this RNA?

Message#3

Despite huge time/memory consumptions, existing algorithms disregard most non-canonical motifs/modules.

Message#1

No such a thing as free cupcakes

Just ask Marni about it...

One class ⇒ One algorithm

Is that really necessary...?

What will you do with this RNA?

Message#3

Despite huge time/memory consumptions, existing algorithms disregard most non-canonical motifs/modules.

Message#1

No such a thing as free cupcakes

Just ask Marni about it...

One class ⇒ One algorithm

Is that really necessary...?

What will you do with this RNA?

Message#3

Despite huge time/memory consumptions, existing algorithms disregard most non-canonical motifs/modules.

Outline of general parameterized approach

Structure-centric alignment \Rightarrow Constraints

Adjacent positions in structure

→ Precedence

Paired positions

 \rightarrow Both partners needed to assign score

Sets of structure-side positions (bags $\{\mathcal{B}_i\}$), in a tree such that:

- Every position in the structure appears at least once
- \blacktriangleright Each interacting pair of positions simultaneously appear in \ge 1 bag
- ▶ If $x \in \mathcal{B} \cap \mathcal{B}'$, than x is in every bag \mathcal{B}'' on the path from \mathcal{B} to \mathcal{B}'

Structure-centric alignment \Rightarrow Constraints

Adjacent positions in structure

 \rightarrow Precedence

Paired positions

 \rightarrow Both partners needed to assign score

Sets of structure-side positions (bags $\{B_i\}$), in a tree such that:

- Every position in the structure appears at least once
- ► Each interacting pair of positions simultaneously appear in ≥ 1 bag
- ▶ If $x \in \mathcal{B} \cap \mathcal{B}'$, than x is in every bag \mathcal{B}'' on the path from \mathcal{B} to \mathcal{B}'

Structure-centric alignment \Rightarrow Constraints

Adjacent positions in structure

 $\rightarrow \text{Precedence}$

Paired positions

 \rightarrow Both partners needed to assign score

Sets of structure-side positions (bags $\{\mathcal{B}_i\}$), in a tree such that:

- Every position in the structure appears at least once
- ightharpoonup Each interacting pair of positions simultaneously appear in \geq 1 bag
- ▶ If $x \in \mathcal{B} \cap \mathcal{B}'$, than x is in every bag \mathcal{B}'' on the path from \mathcal{B} to \mathcal{B}'

Structure-centric alignment ⇒ Constraints

Adjacent positions in structure

 \rightarrow Precedence

Paired positions

 \rightarrow Both partners needed to assign score

Sets of structure-side positions (bags $\{B_i\}$), in a tree such that:

- Every position in the structure appears at least once
- ightharpoonup Each interacting pair of positions simultaneously appear in \geq 1 bag
- ▶ If $x \in \mathcal{B} \cap \mathcal{B}'$, than x is in every bag \mathcal{B}'' on the path from \mathcal{B} to \mathcal{B}'

Structure-centric alignment ⇒ Constraints

Adjacent positions in structure

 \rightarrow Precedence

Paired positions

 \rightarrow Both partners needed to assign score

Sets of structure-side positions (bags $\{\mathcal{B}_i\}$), in a tree such that:

- Every position in the structure appears at least once
- ightharpoonup Each interacting pair of positions simultaneously appear in \geq 1 bag
- ▶ If $x \in \mathcal{B} \cap \mathcal{B}'$, than x is in every bag \mathcal{B}'' on the path from \mathcal{B} to \mathcal{B}'

Structure-centric alignment ⇒ Constraints

► Adjacent positions in structure

 \rightarrow Precedence

Paired positions

 \rightarrow Both partners needed to assign score

Sets of structure-side positions (bags $\{B_i\}$), in a tree such that:

- Every position in the structure appears at least once
- ightharpoonup Each interacting pair of positions simultaneously appear in \geq 1 bag
- ▶ If $x \in \mathcal{B} \cap \mathcal{B}'$, than x is in every bag \mathcal{B}'' on the path from \mathcal{B} to \mathcal{B}'

Structure-centric alignment ⇒ Constraints

Adjacent positions in structure

 $\rightarrow \text{Precedence}$

Paired positions

 \rightarrow Both partners needed to assign score

Sets of structure-side positions (bags $\{B_i\}$), in a tree such that:

- Every position in the structure appears at least once
- lacktriangle Each interacting pair of positions simultaneously appear in \geq 1 bag
- ▶ If $x \in \mathcal{B} \cap \mathcal{B}'$, than x is in every bag \mathcal{B}'' on the path from \mathcal{B} to \mathcal{B}'

Width k =Size of biggest bag minus one.

2	3	10	costs
1′	2′	3′	
1′	2′	4′	
3′	4′	9′	
7′	9′	10'	
8′	9′	10′	

2	3	10	costs
1′	2′	3′	
1′	2′	4′	
3′	4′	9′	
7′	9′	10′	
8′	9′	10'	

2	3	10	costs
1′	2′	3′	
1′	2′	4′	
3′	4′	9′	X
7′	9′	10′	
8′	9′	10′	

Encoding structure-sequence alignments

Fixed-parameter tractable algorithm [Rinaudo et al. 2012]

Theorem

- Structure of length n
- ► Sequence of length *m*
- ▶ Tree decomposition of structure, having width *k*
- \Rightarrow Best structure-sequence alignment can be computed in $\mathcal{O}\left(n.m^{k+1}\right)$ time and $\mathcal{O}\left(n.m^{k}\right)$ space

Dynamic programming equation:

$$\mathsf{Cost}(\mathit{I},\mathit{f}) = \min_{\substack{f' = (\mu',\delta') \in \mathcal{F}|_{X_\mathit{I}} \\ \mathit{f'} \text{ compatible with } \mathit{f}}} \left\{ \phi(\mathit{X}_\mathit{I},\mathit{f'}) + \sum_{\mathit{s} \text{ child of } \mathit{I}} \mathsf{Cost}(\mathit{s},\mathit{f'}|_{\mathit{X}_{\mathit{s},\mathit{I}}}) \right\},$$

where $\phi(X_l, f')$: local cost contribution of alignment f' to a bag X_l

Algorithm: In depth-first order, Compute/Memorize Cost (+Best assignment)

Fixed-parameter tractable algorithm

	2,10,11	
ï	2,3,10	ï
Ĭ	3,6,10	ľ

2	3	10	costs
3′	?	9′	

	2,10,11	
ï	2,3,10	Ĩ
	3,6,10	ľ

2	3	10	costs
3′	?	9′	
<u> </u>			

	2,10,11	
ï	2,3,10	ï
	3,6,10	ľ

2	3	10	costs
4′	?	9′	+ coût
3′	?	9′	+ coût d'un ga

	2,10,11	
ľ	2,3,10	
•	3,6,10	ľ

3	10	costs
?	9′	+ coût
?	9′	d'un ga + coût
?	9′	d'un ga
	? ? ?	? 9'

Fixed-parameter tractable algorithm [Rinaudo et al. 2012]

Theorem

- Structure of length n
- Sequence of length m
- ▶ **Smooth** tree decomposition of width *k* (+affine costs)
- \Rightarrow Best structure-sequence alignment computed in $\mathcal{O}(n.m^k)$ time/space

$$C_f^l = \min \left\{ \begin{array}{ll} \min \limits_{f'=(\mu',\delta') \in \mathcal{F}|_{X_l}} \Delta_l(f') \\ \text{s.t. } t' = f \text{ on } X_{l,r} \\ \alpha_B + \beta_B + D_{f''}^l \end{array} \right. \quad D_f^l = \min \left\{ \begin{array}{ll} \min \limits_{f'=(\mu',\delta') \in \mathcal{F}|_{X_l}} \Delta_l(f') \\ \text{s.t. } t' = f \text{ on } X_{l,r} \\ \alpha_B + D_{f''}^l \end{array} \right. \\ C_f^l = \min \left\{ \begin{array}{ll} \min \limits_{f'=(\mu',\delta') \in \mathcal{F}|_{X_l}} \Delta_l(f') \\ \text{s.t. } t' = f \text{ on } X_{l,r} \\ \text{s.t. } t' = f \text{ on } X_{l,r} \end{array} \right. \quad D_f^l = \min \left\{ \begin{array}{ll} \min \limits_{f'=(\mu',\delta') \in \mathcal{F}|_{X_l}} \Delta_l(f') \\ \text{s.t. } t' = f \text{ on } X_{l,r} \\ \alpha_B + \beta_B + D_{f''}^l \end{array} \right. \\ \text{where } \Delta_l(f) := \phi(X_l, f) + \sum \limits_{f'|_{X_S}|_l} C_{f|_{X_S}|_l}^s$$

Fixed-parameter tractable algorithm

Building tree-decompositions

(aka solving an NP-hard problem in three easy steps...)

Division de la structure en primitives

Dividing structure into primitives parts

Conflict graph

Vertices = Interactions

Edges = Pairs of crossing interactions

1,13

Dividing structure into primitives parts

Primitive Structures

Primitives structures ⇔ Connected components of conflict graph

Dividing structure into primitives parts

Primitive Structures

Primitives structures ⇔ Connected components of conflict graph

Goal: Find embedding as waves such that

- Number of stems is minimized
- No twisted alternating cycles (≠ planarity)
- ► Base-paired positions ⇒ Different stems

Goal: Find embedding as waves such that

- Number of stems is minimized
- No twisted alternating cycles (≠ planarity)
- ► Base-paired positions ⇒ Different stems

Building a wave embedding: A greedy heuristic

(1,3) (1,4) (2,5) (3,6) (1,7) (4,8) (6,8)

Primitive tree-decompositions are re-assembled hierarchically

Final tree width \leq Biggest tree-width of a primitive part +1

Final decomposition has width 4

Results

Message #4

Generic, one-size-fits-all, FPT algorithm based on Dynamic-Programming

Message #5

Same/better complexities than preexisting *ad-hoc* algorithms. Pratical competitive time/memory consumption (prototype).

Message #6

- ► (Free!) extension of previous classes
- ⇒ Handles previously ignored tertiary motifs/modules

Results

Message #4

Generic, one-size-fits-all, FPT algorithm based on Dynamic-Programming

Message #5

Same/better complexities than preexisting *ad-hoc* algorithms. Pratical competitive time/memory consumption (prototype).

Message #6

- ► (Free!) extension of previous classes
- ⇒ Handles previously ignored tertiary motifs/modules.

Results

Message #4

Generic, one-size-fits-all, FPT algorithm based on Dynamic-Programming

Message #5

Same/better complexities than preexisting *ad-hoc* algorithms. Pratical competitive time/memory consumption (prototype).

Message #6

- ► (Free!) extension of previous classes.
- ⇒ Handles previously ignored tertiary motifs/modules.

New classes of structures [Rinaudo et al. 2012]

Class of Structures	Time comp.	Multiple interactions	Ref.
Recursive Classical Structures	$O(n \cdot m^{k+2})$	√	_
Secondary Structures (Pseudoknot-free)	$O(n \cdot m^3)$		[Jiang et al 02]
Embedded Standard Pseudoknots	$O(n \cdot m^{k+1})$		[Han et al 08]
Standard Structures	$O(n \cdot m^k)$	\checkmark	-
Standard Pseudoknots	$O(n \cdot m^k)$		[Han et al 08]
2-Level Recursive Simple Non-Standard PKs	$O(n \cdot m^{k+2})$		[Wong et al 11]
Simple Non-Standard Structures	$O(n \cdot m^{k+1})$	\checkmark	_
Simple Non-Standard Pseudoknots	$O(n \cdot m^{k+1})$		[Wong et al 11]
Extended Triple Helices	$O(n \cdot m^3)$	\checkmark	_
Triple Helices	$O(n \cdot m^3)$	√	[Wong et al 12]

New classes of structures [Rinaudo et al. 2012]

Class of Structures	Time comp.	Multiple interactions	Ref.
Recursive Classical Structures	$O(n \cdot m^{k+2})$	√	_
Secondary Structures (Pseudoknot-free)	$O(n \cdot m^3)$		[Jiang et al 02]
Embedded Standard Pseudoknots	$O(n \cdot m^{k+1})$		[Han et al 08]
Standard Structures	$O(n \cdot m^k)$	\checkmark	_
Standard Pseudoknots	$O(n \cdot m^k)$		[Han et al 08]
2-Level Recursive Simple Non-Standard PKs	$O(n \cdot m^{k+2})$		[Wong et al 11]
Simple Non-Standard Structures	$O(n \cdot m^{k+1})$	\checkmark	_
Simple Non-Standard Pseudoknots	$O(n \cdot m^{k+1})$	•	[Wong et al 11]
Extended Triple Helices	$O(n \cdot m^3)$	\checkmark	_
Triple Helices	$O(n \cdot m^3)$	V	[Wong et al 12]

New classes of structures [Rinaudo et al. 2012]

Recursive Classical Structures	$O(n \cdot m^{k+2})$
Standard Structures	$O(n \cdot m^k)$
Simple Non-Standard Structures	$O(\hat{n} \cdot m^{k+1})$
Extended Triple Helices	$O(n \cdot m^3)$

Perspectives

- Finalizing a generic implementation and applications.
- Improving alignment quality:
 - ⇒ Suboptimal alignments: Trivial! (unambiguous DP scheme)
 - ⇒ Good cost functions (e.g. isostericity, Boltz. prob., ML...).

```
AC 1.78 3.49
                                                              A 1,00
C -1.70 1,59
AG -0.62 -0.10 1.32
AU 0.06 0.07 -0.67 1.79
                                                              G -0.86 -1.58 1.60
CA 0.40 0.30 0.54 -1.92 1.78
                                                              U -1.02 -0.40 -0.94 1,28
CC -0.33 -0.61 0.41 -1.17 0.76 1.41
CG -1.80 -3.00 0.90 -1.40 0.90 0.78 1.13
CU 1.43 1.75 -0.03 0.75 -0.70 0.39 -0.56 3.38
GA -0.11 0.36 -1.71 -0.53 -1.48 -1.32 -2.31 -0.94 3.25
GC -0.62 0.36 -0.90 0.13 -1.82 -0.37 -0.96 -0.74 -0.25 1.03
GG -1.20 -0.43 0.88 -1.38 1.24 0.95 0.72 -0.40 1.33 -1.03 2.99
GU 0.49 0.32 -1.34 -0.33 -3.21 -1.64 -2.59 1.65 2.63 -0.62 0.60 2.93
UA 1.50 -2.70 -1.16 0.09 -0.14 -0.63 -1.16 -1.61 -1.28 -0.91 -2.27 -2.86 2.06
UC -0.17 0.57 -1.47 -3.13 -1.78 -0.82 -3.14 -1.25 -0.53 0.77 -1.37 -2.61 -0.77 3.83
UG -0.41 0.76 0.16 -2.44 0.75 -0.10 -0.14 -1.02 -1.67 -1.51 -0.75 -2.80 0.05 1.15 2.24
UU -0.57 -0.82 0.17 -0.49 -1.58 -0.64 -0.74 0.18 -1.24 -0.70 -0.76 -0.36 -0.54 1.86 2.09 2.66
     AA AC AG AU CA CC CG CU GA GC GG GU UA UC UG UU
```

▶ Improve runtime/memory ⇒ Heuristics.

Perspectives

- ► Finalizing a generic implementation and applications.
- Improving alignment quality:
 - ⇒ Suboptimal alignments: Trivial! (unambiguous DP scheme)
 - ⇒ Good cost functions (e.g. isostericity, Boltz. prob., ML...).

► Improve runtime/memory ⇒ Heuristics.

Perspectives

- Finalizing a generic implementation and applications.
- Improving alignment quality:
 - ⇒ Suboptimal alignments: Trivial! (unambiguous DP scheme)
 - ⇒ Good cost functions (e.g. isostericity, Boltz. prob., ML...).

```
AC 1.78 3.49
                                                              A 1,00
C -1.70 1,59
AG -0.62 -0.10 1.32
AU 0.06 0.07 -0.67 1.79
                                                              G -0.86 -1.58 1.60
CA 0.40 0.30 0.54 -1.92 1.78
                                                              U -1.02 -0.40 -0.94 1,28
CC -0.33 -0.61 0.41 -1.17 0.76 1.41
CG -1.80 -3.00 0.90 -1.40 0.90 0.78 1.13
CU 1.43 1.75 -0.03 0.75 -0.70 0.39 -0.56 3.38
GA -0.11 0.36 -1.71 -0.53 -1.48 -1.32 -2.31 -0.94 3.25
GC -0.62 0.36 -0.90 0.13 -1.82 -0.37 -0.96 -0.74 -0.25 1.03
GG -1.20 -0.43 0.88 -1.38 1.24 0.95 0.72 -0.40 1.33 -1.03 2.99
GU 0.49 0.32 -1.34 -0.33 -3.21 -1.64 -2.59 1.65 2.63 -0.62 0.60 2.93
UA 1.50 -2.70 -1.16 0.09 -0.14 -0.63 -1.16 -1.61 -1.28 -0.91 -2.27 -2.86 2.06
UC -0.17 0.57 -1.47 -3.13 -1.78 -0.82 -3.14 -1.25 -0.53 0.77 -1.37 -2.61 -0.77 3.83
UG -0.41 0.76 0.16 -2.44 0.75 -0.10 -0.14 -1.02 -1.67 -1.51 -0.75 -2.80 0.05 1.15 2.24
UU -0.57 -0.82 0.17 -0.49 -1.58 -0.64 -0.74 0.18 -1.24 -0.70 -0.76 -0.36 -0.54 1.86 2.09 2.66
     AA AC AG AU CA CC CG CU GA GC GG GU UA UC UG UU
```

▶ Improve runtime/memory ⇒ Heuristics.

Thanks for listening

(aka hey wake up, it's finally over!)

