Analytic properties of RNA secondary structures and their representations Asymptotics of RNA Shapes

Yann Ponty

Bioinformatics Team
École Polytechnique/CNRS/INRIA AMIB - France

April 15, 2014

RNA structure

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG gaguacug gagugcg CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure

Secondary structure

Tertiary structure
Source: 5s rRNA (PDBID: 1K73:B)

Definition

Secondary structures of RNA = Maximal non-crossing subset of canonical base-pairs.

RNA structure

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA cacGgaigauaigcc CACCAGCGUUCCGGG gaguacug gagugcg CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure

Secondary ${ }^{+}$structure

Tertiary structure
Source: 5s rRNA (PDBID: 1K73:B)

Definition

Secondary structures of RNA =
Maximal non-crossing subset of canonical base-pairs.

Outline

(1) Foreword

- Introduction
- Motivation
(2) Enumerative/analytic combinatorics 101
- Generating functions
- DSV/symbolic method
- Singularity analysis
(3) RNA shapes
- Presentation
- Motivation
- π shapes

4 Conclusion

Various representations for a versatile molecule

Outer planar graph
(((((((..((((.......)))))((((((......))))))...(((((......))))))))))))...

Well-parenthesized expression

Mountain view

Non intersecting arcs

Common combinatorial structure

Different objects yet

Dot plot

Circular diagram

Why use combinatorics?

Boltzmann ensemble is a (weighted) combinatorial class.

यमिध खिसे है

Studying it as such cleans out the details and helps:

- Assess asymptotic properties of sec. str.
- Investigate worst and average-case complexities
- Obtain better algorithms for RNA

Generating functions

Let |. | be a size function over objects (Sequences, trees, ...). Combinatorial classes are (infinite) sets \mathcal{C} of objects whose restrictions \mathcal{C}_{n} to objects of size n are of finite cardinality.

Definition (Generating functions)

Let \mathcal{C} be a combinatorial class and $c_{n}=\left|\mathcal{C}_{n}\right|$ the number of objects of size n in \mathcal{C}, then the generating function of \mathcal{C} is $C(z) \mathrm{s}$. t.

$$
C(z)=\sum_{s \in C} z^{|s|}=\sum_{n \geq 0} c_{n} z^{n}
$$

Closed forms for $C(z)$ are often easy to find \ldots

Example (DNA)

$\mathcal{D}:=\{a, c, g, t\}^{*} \Rightarrow d_{n}=4^{n}$
and $C(z)=1+4 z+16 z^{2}+64 z^{3}+\ldots=\sum_{n \geq 0} 4^{n} z^{n}=\frac{1}{1-4 z}$
\ldots and very often much simpler than finding closed-form for $c_{n}!!!$

DSV/symbolic method

From a class specification, one can directly establish the gen. fun. Historically on languages, stems from Schützenberger's observation Gen. fun. are commutative images of languages

Grammar	Generating function	Coefficients
$C \rightarrow \varepsilon$	$C(z)=z^{0}=1$	$c_{n}=\mathbb{1}_{\{0\}}(n)$
$C \rightarrow t$	$C(z)=z^{1}=z$	$c_{n}=\mathbb{1}_{\{1\}}(n)$
$C \rightarrow A \mid B$	$C(z)=A(z)+B(z)$	$c_{n}=a_{n}+b_{n}$
$C \rightarrow A \cdot B$	$C(z)=A(z) \cdot B(z)$	$c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$

Remark: Disjoint unions and unambiguous concatenations.

Example (DNA)

DNA $=\{a, c, g, t\}^{*} \Leftrightarrow D \rightarrow a . D|c . D| g . D|t . D| \varepsilon$

$$
\Rightarrow D(z)=z \cdot D(z)+z \cdot D(z)+z \cdot D(z)+z \cdot D(z)+1
$$

DSV/symbolic method

From a class specification, one can directly establish the gen. fun. Historically on languages, stems from Schützenberger's observation Gen. fun. are commutative images of languages

Grammar	Generating function	Coefficients
$C \rightarrow \varepsilon$	$C(z)=z^{0}=1$	$c_{n}=\mathbb{1}_{\{0\}}(n)$
$C \rightarrow t$	$C(z)=z^{1}=z$	$c_{n}=\mathbb{1}_{\{1\}}(n)$
$C \rightarrow A \mid B$	$C(z)=A(z)+B(z)$	$c_{n}=a_{n}+b_{n}$
$C \rightarrow A . B$	$C(z)=A(z) \cdot B(z)$	$c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$

Remark: Disjoint unions and unambiguous concatenations.

Example (DNA)

DNA $=\{a, c, g, t\}^{*} \Leftrightarrow D \rightarrow a . D|c . D| g . D|t . D| \varepsilon$

$$
\Rightarrow D(z)=4 z \cdot D(z)+1
$$

DSV/symbolic method

From a class specification, one can directly establish the gen. fun. Historically on languages, stems from Schützenberger's observation Gen. fun. are commutative images of languages

Grammar	Generating function	Coefficients
$C \rightarrow \varepsilon$	$C(z)=z^{0}=1$	$c_{n}=\mathbb{1}_{\{0\}}(n)$
$C \rightarrow t$	$C(z)=z^{1}=z$	$c_{n}=\mathbb{1}_{\{1\}}(n)$
$C \rightarrow A \mid B$	$C(z)=A(z)+B(z)$	$c_{n}=a_{n}+b_{n}$
$C \rightarrow A \cdot B$	$C(z)=A(z) \cdot B(z)$	$c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$

Remark: Disjoint unions and unambiguous concatenations.

Example (DNA)

DNA $=\{a, c, g, t\}^{*} \Leftrightarrow D \rightarrow a . D|c . D| g . D|t . D| \varepsilon$

$$
\Rightarrow D(z)=\frac{1}{1-4 z}
$$

Analytic combinatorics: Main principles

Disclaimer

What follows, although true in this context, is embarassingly simplistic. A rigorous presentation can (and should) be

Analytic Combinatorics

Philippe Flajolet and
Robert Selscwick sought in the Flajolet/Sedgewick Bible.

A singularity is a point $z=\rho$ where $C(z)$ is no longer analytic. Asymptotics of coeff c_{n} are driven by the singularities of $C(z)$.

$1^{\text {st }}$ principle

Location of the dominant (smallest) singularity ρ dictates the exponential growth $\Rightarrow \frac{c_{n}}{\rho^{-n}}=o\left(\alpha^{n}\right), \forall \alpha>1$.

Example (DNA)

$D(z)=1 /(1-4 z) \Rightarrow \rho=1 / 4 \Rightarrow d_{n} \sim 4^{n} P(n)$.

Analytic combinatorics: Basic transfer theorem

$2^{\text {nd }}$ principle

Nature of ρ dictates subexponential part $P(n)$ s.t. $c_{n} \sim \rho^{-n} P(n)$.
Basic scale: If one can rewrite $C(z)$ as

$$
C(z)=f(z)+g(z)(1-z / \rho)^{\alpha}
$$

where f and g are analytic $\forall|z|<|\rho|$ and non-null at ρ, then

$$
c_{n} \equiv\left[z^{n}\right] C(z) \sim \frac{g(\rho) \rho^{-n}}{\Gamma(-\alpha) n^{\alpha+1}}
$$

Example (DNA)

$$
\begin{gathered}
D(z)=\frac{1}{1-4 z} \Rightarrow c_{n} \sim 4^{n} \\
(\rho=1 / 4, \alpha=-1, f(z)=0, \text { and } g(z)=1)
\end{gathered}
$$

General methodology

Asymptotic estimates are obtained using a 4 steps meta-algorithm:
1 Find the right model
\square

General methodology

Asymptotic estimates are obtained using a 4 steps meta-algorithm:
Find the right model
2 Translate into grammar
$3 \quad$ Translate into system and solve g. f.
$4 \quad$ Singularity analysis yields asymptotics

General methodology

Asymptotic estimates are obtained using a 4 steps meta-algorithm:
Find the right model
2
Translate into grammar
Translate into system and solve g. f.

Singularity analysis yields asymptotics

General methodology

Asymptotic estimates are obtained using a 4 steps meta-algorithm:
1 Find the right model
2 Translate into grammar
3 Translate into system and solve g. f.
4
Singularity analysis yields asymptotics

Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

$$
2 \quad M \quad \rightarrow \quad \bullet M \quad|\quad(M) M \quad| \varepsilon
$$

Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

2	M	\rightarrow	$\bullet M$	$(M) M$	ε
3	$M(z)$	$=$	$z \cdot M(z)$	$+z \cdot M(z) \cdot z \cdot M(z)+1$	
		$=\frac{1-z \pm \sqrt{1-2 z-3 z^{2}}}{2 z^{2}}$			

Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

2	M	\rightarrow	$\bullet M$	\mid	$(M) M$	ε

$$
\begin{aligned}
& 3 \quad M(z)=z \cdot M(z) \quad+z \cdot M(z) \cdot z \cdot M(z)+1 \\
& =\left\{\begin{array}{l}
\frac{1-z+\sqrt{1-2 z-3 z^{2}}}{2 z^{2}}=\frac{1}{z^{2}}-\frac{1}{z}-1-z-2 z^{2}+\mathcal{O}\left(z^{3}\right) \\
\frac{1-\mathbf{z -} \sqrt{1-2 z-3 z^{2}}}{2 z^{2}}=\mathbf{1}+\mathbf{z}+2 \mathbf{z}^{2}+4 \mathbf{z}^{3}+9 \mathbf{z}^{4}+\mathcal{O}\left(\mathbf{z}^{5}\right)
\end{array}\right.
\end{aligned}
$$

Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

1 ¢					
2	M	\rightarrow	- M	(M) M	ε
3	$M(z)$		$z \cdot M(z)$	$+z \cdot M(z) \cdot z \cdot M(z)+1$	
		$=\frac{1-z-\sqrt{1-2 z-3 z^{2}}}{2 z^{2}}$			

$4 \quad \rho=1 / 3, M(z)=\frac{1-z}{2 z^{2}}-g(z) \cdot \sqrt{1-z / \rho}$, and $g(z):=\frac{\sqrt{1+z}}{2 z^{2}}$

$$
\Rightarrow s_{n} \equiv\left[z^{n}\right] M(z) \sim \frac{g(\rho) \rho^{-n}}{\Gamma(-\alpha) n^{\alpha+1}}=\frac{3 \sqrt{3}}{2 \sqrt{\pi}} \cdot \frac{3^{n}}{n \sqrt{n}}(1+\mathcal{O}(1 / n))
$$

RNA secondary structures

Consider RNA secondary structures
[Waterman 78 + Viennot/Vauchaussade de Chaumont 78]

RNA secondary structures

Consider RNA secondary structures
[Waterman 78 + Viennot/Vauchaussade de Chaumont 78]

$$
2 \quad S \quad \rightarrow \bullet S\left|\left(S_{>0}\right) S\right| \varepsilon
$$

RNA secondary structures

Consider RNA secondary structures
[Waterman 78 + Viennot/Vauchaussade de Chaumont 78]

$$
\begin{array}{lll}
2 & S & \rightarrow \bullet S|(T) S| \varepsilon \\
\mathbf{T} & \rightarrow \bullet S \mid(T) S
\end{array}
$$

RNA secondary structures

Consider RNA secondary structures
[Waterman 78 + Viennot/Vauchaussade de Chaumont 78]

$$
2 \begin{array}{ll}
S & \rightarrow \bullet S|(\mathbf{T}) S| \varepsilon \\
\mathbf{T} & \rightarrow \bullet S \mid(\mathbf{T}) S
\end{array}
$$

$3 \quad S(z)=\frac{1-z+z^{2}-\sqrt{1-2 z-z^{2}-2 z^{3}+z^{4}}}{2 z^{2}}$

RNA secondary structures

Consider RNA secondary structures

[Waterman 78 + Viennot/Vauchaussade de Chaumont 78]

$$
\begin{array}{lll}
2 & S & \rightarrow \bullet S|(T) S| \varepsilon \\
& \mathbf{T} & \rightarrow \bullet S \mid(T) S
\end{array}
$$

$$
3 \quad S(z) \quad=\frac{1-z+z^{2}-\sqrt{1-2 z-z^{2}-2 z^{3}+z^{4}}}{2 z^{2}}
$$

$4 \quad \rho=\frac{3-\sqrt{5}}{2}=1-\phi$

$$
\left[z^{n}\right] S(z)=\sqrt{\frac{15+7 \sqrt{5}}{8 \pi}} \cdot \frac{\left(\frac{3+\sqrt{5}}{2}\right)^{n}}{n \sqrt{n}}(1+\mathcal{O}(1 / n)) \sim 1.1 \cdot \frac{2.6^{n}}{\sqrt{n}}
$$

RNA secondary structures

Let us generalize the θ constraint

RNA secondary structures

Let us generalize the θ constraint

$$
2 \quad S \rightarrow U\left(S_{\geq \theta}\right) S|U \quad U \rightarrow \bullet U| \varepsilon
$$

RNA secondary structures

Let us generalize the θ constraint

$$
2 \quad \begin{array}{ll}
S & \rightarrow U(\mathbf{T}) S|U \quad U \rightarrow \bullet U| \varepsilon \\
\mathbf{T} & \rightarrow U(\mathbf{T}) S \mid \bullet^{\theta} U
\end{array}
$$

RNA secondary structures

Let us generalize the θ constraint

$$
2 \quad \begin{array}{ll}
S & \rightarrow U(\mathbf{T}) S|U \quad U \rightarrow \bullet U| \varepsilon \\
\mathbf{T} & \rightarrow U(\mathbf{T}) S \mid \bullet \cdot U
\end{array}
$$

$$
3 \quad S(z)=\frac{1-2 z+2 z^{2}-z^{\theta+2}-\sqrt{1-4 z+4 z^{2}-2 z^{\theta+2}+4 z^{\theta+3}-4 z^{\theta+4}+z^{2 \theta+4}}}{(1-z) 2 z^{2}}
$$

RNA secondary structures

Let us generalize the θ constraint

$$
2 \quad \begin{array}{ll}
S & \rightarrow U(\mathbf{T}) S|U \quad U \rightarrow \bullet U| \varepsilon \\
\mathbf{T} & \rightarrow U(\mathbf{T}) S \mid \bullet \cup
\end{array}
$$

$3 \quad S(z)=\frac{1-2 z+2 z^{2}-z^{\theta+2}-\sqrt{1-4 z+4 z^{2}-2 z^{\theta+2}+4 z^{\theta+3}-4 z^{\theta+4}+z^{2 \theta+4}}}{(1-z) 2 z^{2}}$
4

$$
s_{n} \sim K \cdot \frac{\beta^{n}}{n \sqrt{n}}(1+\mathcal{O}(1 / n)) \begin{array}{c|c|c|c|c}
\theta & 0 & 1 & 3 & 10 \\
\hline \beta & 3 . & 2.62 & 2.29 & 2.02 \\
\hline
\end{array}
$$

Half-time report

Message \#1

Finding the right decomposition (DP) is a combinatorial task.

Message \#2
 Applying autom atic theorems gives precise asymptotic equivalents.

Message \#3
 There is a large exponential number of structures of size n :
 Homopolymer model: $\Omega\left(2^{n}\right)$ Stickiness model: $\mathcal{O}\left(1.8^{n} / n^{3 / 2}\right)$

Half-time report

Message \#1

Finding the right decomposition (DP) is a combinatorial task.

Message \#2

Applying automatic theorems gives precise asymptotic equivalents.

Half-time report

Message \#1

Finding the right decomposition (DP) is a combinatorial task.

Message \#2

Applying automatic theorems gives precise asymptotic equivalents.

Half-time report

Message \#1

Finding the right decomposition (DP) is a combinatorial task.

Message \#2

Applying automatic theorems gives precise asymptotic equivalents.

Message \#3

There is a large exponential number of structures of size n : Homopolymer model: $\Omega\left(2^{n}\right) \quad$ Stickiness model: $\mathcal{O}\left(1.8^{n} / n^{3 / 2}\right)$

Outline

(1) Foreword

2 Enumerative/analytic combinatorics 101

(3) RNA shapes

- Presentation
- Motivation
- π shapes

4 Conclusion

Presentation

Definition (RNA shapes [Giegerich et al])

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the underlying backbone structure.

Example

Presentation

Definition (RNA shapes [Giegerich et al])

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the underlying backbone structure.

Example

Presentation

Definition (RNA shapes [Giegerich et al])

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the underlying backbone structure.

Example

Motivation

RNA shapes allow for a hierarchical search in the Boltzmann ensemble

10000 samples $\Rightarrow 1727$ Secondary structures...

Motivation

RNA shapes allow for a hierarchical search in the Boltzmann ensemble

10000 samples $\Rightarrow 1727$ Secondary structures...

... $406 \pi^{\prime}$-shapes. . .

Motivation

RNA shapes allow for a hierarchical search in the Boltzmann ensemble

10000 samples $\Rightarrow 1727$ Secondary structures. . .

... $406 \pi^{\prime}$-shapes. . .

... but only 9π-shapes!

Motivation

RNA shapes allow for a hierarchical search in the Boltzmann ensemble

Can we reasonably consider all possible shapes compatible with input structure?

How many shapes will we investigate?
... $406 \pi^{\prime}$-shapes. ..

... but only 9π-shapes!

π-shapes

Objective: Count π-shapes with $2 n$ parentheses.

1π-shapes are bracket words avoiding the [[...]] motif.

π-shapes

Objective: Count π-shapes with $2 n$ parentheses.

1 -shapes are bracket words avoiding the [[...]] motif.

$$
2 S \rightarrow\left[S_{/\{[\ldots]\}}\right] S \mid\left[S_{/\{[\ldots]\}}\right]
$$

π-shapes

Objective: Count π-shapes with $2 n$ parentheses.

1 -shapes are bracket words avoiding the [[...]] motif.

$$
2 S \rightarrow[\mathbf{T}] S|[\mathbf{T}] \quad \mathbf{T} \rightarrow[\mathbf{T}] S| \varepsilon
$$

π-shapes

Objective: Count π-shapes with $2 n$ parentheses.

1π-shapes are bracket words avoiding the [[...]] motif.

$$
2 S \rightarrow[\mathbf{T}] S|[\mathbf{T}] \quad \mathbf{T} \rightarrow[\mathbf{T}] S| \varepsilon
$$

$$
3 \quad S(z)=\frac{1-z^{2}-\sqrt{1-2 z^{2}-3 z^{4}}}{2 z^{2}}
$$

π-shapes

Objective: Count π-shapes with $2 n$ parentheses.

1π-shapes are bracket words avoiding the [[...]] motif.

$$
2 S \rightarrow[\mathbf{T}] S|[\mathbf{T}] \quad \mathbf{T} \rightarrow[\mathbf{T}] S| \varepsilon
$$

3

$$
S(z)=\frac{1-z^{2}-\sqrt{1-2 z^{2}-3 z^{4}}}{2 z^{2}}
$$

$$
4 \quad s_{2 n} \sim \frac{\sqrt{3}}{2 \sqrt{\pi}} \cdot \frac{3^{n}}{n \sqrt{\pi}}(1+\mathcal{O}(1 / n)) \quad \text { and } \quad s_{2 n+1}=0
$$

Remark: Doesn't this look familiar???

Limitations

Number of π-shapes of size n

\#

Number of π-shapes compatible with RNA of size n

Reasons:

Shapes of size $\leq n$ should be considered
Forming a hairpin loop [] takes at least $\theta+2$ bases
$2 \quad S \rightarrow[T] S|[T] \quad T \rightarrow[T] S| \varepsilon$
$3 \quad S(z)=\frac{1-z^{2}-\sqrt{1-2 z^{2}-3 z^{4}}}{2 z^{2}}$
4 For n even: $s_{2 n} \sim \frac{3 \sqrt{3}}{4 \sqrt{\pi}} \cdot \frac{3^{n}}{n \sqrt{\pi}}(1+\mathcal{O}(1 / n)) \approx 0.48 \cdot \frac{3^{n}}{n \sqrt{n}}$

Limitations

Number of π-shapes of size n

$$
\neq
$$

Number of π-shapes compatible with RNA of size n

Reasons:

(1) Shapes of size $\leq n$ should be considered

Forming a hairpin loop [] takes at least $\theta+2$ bases

$$
\begin{gathered}
2 \quad S \rightarrow[T] S \mid[T] \\
R \rightarrow \square S \mid \varepsilon
\end{gathered}
$$

3

$$
R(z)=\frac{1-z^{2}-\sqrt{1-2 z^{2}-3 z^{4}}}{2 z^{2}(\mathbf{1}-\mathbf{z})}
$$

$$
\text { (4) } \quad r_{2 n} \sim \frac{3 \sqrt{3}}{4 \sqrt{\pi}} \cdot \frac{3^{n}}{n \sqrt{n}}(1+\mathcal{O}(1 / n)) \Rightarrow r_{n} \approx 2.07 \cdot \frac{1.73^{n}}{n \sqrt{n}}
$$

Limitations

Number of π-shapes of size n

$$
\neq
$$

Number of π-shapes compatible with RNA of size n

Reasons:

(1) Shapes of size $\leq n$ should be considered
(2) Forming a hairpin loop [] takes at least $\theta+2$ bases

$$
\begin{gathered}
2 \mathrm{~S} \rightarrow[T] S|[T] \quad T \rightarrow[T] S| \bullet^{\theta} \\
R \rightarrow \square S \mid \varepsilon
\end{gathered}
$$

$3 \quad R(z)=\frac{1-z^{\theta+2}-\sqrt{1-2 z^{\theta+2}-4 z^{\theta+4}+z^{2 \theta+4}}}{2 z^{2}(1-z)}$

4

$$
\theta=3 \Rightarrow r_{n} \approx 2.44 \frac{1.32^{n}}{n \sqrt{n}}
$$

A surprising bijection

Theorem

$\# \pi$ shapes of size $n=\#$ Motzkin words of length $2 n+2$

Proof.

$$
\begin{align*}
S(z)=\frac{1-z^{2}-\sqrt{1-2 z^{2}-3 z^{4}}}{2 z^{2}} \quad M(z) & =\frac{1-z-\sqrt{1-2 z-3 z}}{2 z^{2}} \\
S(z)=1+z^{2} M\left(z^{2}\right) \quad \Rightarrow \quad s_{n} & =m_{2 n+2}
\end{align*}
$$

These two classes are in bijection. \rightarrow How? Can we exploit it?

Explicit bijection

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{aligned}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise } \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon .
\end{array}\right.
\end{aligned}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Explicit bijection

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{aligned}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise } \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon .
\end{array}\right.
\end{aligned}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Explicit bijection

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{aligned}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise } \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon .
\end{array}\right.
\end{aligned}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Explicit bijection

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{aligned}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise } \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon .
\end{array}\right.
\end{aligned}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Explicit bijection

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{aligned}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise } \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon .
\end{array}\right.
\end{aligned}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Explicit bijection

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{aligned}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise } \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon .
\end{array}\right.
\end{aligned}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Explicit bijection

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{aligned}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise } \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon .
\end{array}\right.
\end{aligned}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Limits of the bijection

Impacts of θ on shapes and Motzkin are drastically different.

Theorem

Expectations of number of term. loops in Motzkin words and π-shapes scale like $m_{n}^{t} \sim \frac{n}{6}+\mathcal{O}(1)$ and $s_{2 n+2}^{t} \sim \frac{2 n}{3}+\mathcal{O}(1)$

π^{\prime}-shapes

Objective: Count π^{\prime}-shapes compatible with RNA of length n.
$1 \pi^{\prime}$-shapes = bracket words avoiding motifs [[...]] and $\bullet \bullet$

$$
\begin{array}{ll}
2 & R \rightarrow \square R|S \quad S \rightarrow U[T] S| U \quad U \rightarrow \diamond \mid \varepsilon \\
& T \rightarrow U[T] \cup[T] S|\diamond[T]|[T] \diamond|\diamond[T] \diamond| \bullet \theta
\end{array}
$$

$3 \quad \theta=3, R(z)=\frac{1+2 z^{2}+2 z^{3}+z^{4}-z^{5}-z^{6}-\sqrt{1-4 z^{3}-2 z^{4}-2 z^{5}+2 z^{6}-7 z^{8}-z^{10}+2 z^{11}+z^{12}}}{2 z^{2}\left(1-z^{2}\right)}$

4

$$
r_{n} \sim 1.27 \frac{1.81^{n}}{n \sqrt{n}}
$$

Summary

Model	Asymptotic number
Sec. str. on n-Combinatorial	$1.1 \cdot \frac{2.6^{n}}{n \sqrt{n}}$
Sec. str. on n - Empirical	$0.04 \cdot \frac{1.4^{n}}{n \sqrt{n}}$
π-shapes of size n	$1.38 \cdot \frac{1.73^{n}}{n \sqrt{n}}$
π-shapes compatible with sec. str. on n	$2.44 \cdot \frac{1.32^{n}}{n \sqrt{n}}$
π-shapes - Empirical	$0.21 \cdot \frac{1.1^{n}}{n \sqrt{n}}$
π^{\prime}-shapes of size n	$0.99 \cdot \frac{2.41^{n}}{n \sqrt{n}}$
π^{\prime}-shapes compatible with sec. str. on n	$1.28 \cdot \frac{1.81^{n}}{n \sqrt{n}}$

5’-3' Distance: Theory vs Empirical evidences

[Clote-P-Steyaert 12]

5’-3' Distance: Theory vs Empirical evidences

[Clote-P-Steyaert 12]
$2 \quad T \rightarrow\left[S_{\geq \theta}\right] T|\bullet T| \varepsilon \quad S \rightarrow\left(S_{\geq \theta}\right) S|\circ S| \varepsilon$

5’-3' Distance: Theory vs Empirical evidences

[Clote-P-Steyaert 12]

$$
\begin{aligned}
& 2 \\
& T \rightarrow\left[S_{\geq \theta}\right] T|\bullet T| \varepsilon \quad S \rightarrow\left(S_{\geq_{\theta}}\right) S|\circ S| \varepsilon \\
& S_{\geq \theta} \rightarrow\left(S_{\geq \theta}\right) S \mid \circ S_{\geq \theta} 0^{\theta}
\end{aligned}
$$

$$
3 \begin{gathered}
2-9 z+14 z^{2}-8 z^{3}+2 z^{5} \\
E_{\theta}(z)=\frac{+z^{\theta+2}\left(-4+10 z-10 z^{2}+2 z^{3}\right)+z^{2 \theta+4}(2-z)}{-\left(2-5 z+4 z^{2}-2 z^{\theta \theta 2}+z^{\theta+3}\right) \sqrt{\Delta_{\theta}}} \\
2(1-z)^{2} z^{4}
\end{gathered}
$$

5’-3' Distance: Theory vs Empirical evidences

[Clote-P-Steyaert 12]

$$
3 \begin{gathered}
2-9 z+14 z^{2}-8 z^{3}+2 z^{5} \\
E_{\theta}(z)=\frac{+z^{\theta+2}\left(-4+10 z-10 z^{2}+2 z^{3}\right)+z^{2 \theta+4}(2-z)}{-\left(2-5 z+4 z^{2}-2 z^{\theta \theta 2}+z^{\theta+3}\right) \sqrt{\Delta_{\theta}}} 2(1-z)^{2} z^{4}
\end{gathered}
$$

$$
4 \quad D_{n} \sim \frac{2-5 \rho+4 \rho^{2}-2 \rho^{\rho+2}+\rho^{\theta+3}}{(1-\rho) \rho^{2}}-1, \rho \text { smallest sol. of } \Delta_{\theta}=0
$$

$$
\begin{aligned}
& 2 \\
& T \rightarrow\left[S_{\geq \theta}\right] T|\bullet T| \varepsilon \quad S \rightarrow\left(S_{\geq_{\theta}}\right) S|\circ S| \varepsilon \\
& S_{\geq \theta} \rightarrow\left(S_{\geq \theta}\right) S \mid \circ S_{\geq \theta} 0^{\theta}
\end{aligned}
$$

5’-3' Distance: Theory vs Empirical evidences

Empirical distribution of 5'-3' distance (Strand database) \Rightarrow Linear correlation Length/Distance [Clote-P-Steyaert 12]. . .

Analytic combinatorics: Limiting distribution

$3^{\text {rd }}$ principle (Drmota-Lalley-Woods)

Strongly connected grammar/specification + Technical conditions
\Rightarrow Dominant singularity in $\sqrt{1-z / \rho}$
\Rightarrow \#Occurrences of any letter t follows Normal distribution
Expectation: $\mathbb{E}(\# t) \in \Theta(\mu \cdot n)$ Variance: $\mathbb{V}(\# t) \in \Theta\left(\sigma^{2} \cdot n\right)$
$+\mu$ and σ are easy to compute symbolically or numerically.
Results robust to weights. . .
... or almost connected specifications (subcritical composition)...
...generalizes to higher dimensions (joint distribution)...
. . . but any limiting distrib. can be induced by general grammars!

Example (RNA)

Generated by a strongly connected grammar (Nussinov)
\Rightarrow \#Base pairs, \#Unpaired bases. . . are Normally distributed

Pseudoknots and partition function

Recursive Pseudoknots, Akutsu-style [Saule et al 10] [Nebel Weinberg 12]


```
2
\(S \rightarrow(S) S|\bullet S| \Phi\left(\operatorname{Seq}\left(a \cdot a^{\prime} \mid b . b^{\prime}\right)\right) S S \mid \varepsilon\)
```


Strongly connected grammar

\Rightarrow Partition function approach will always predict PKs for large structures...
... but PK-free structures exist.

Conclusion

- For context-free objects, finding gen. fun. is easy... and precise asymptotics estimates follow readily
- Bijection between Motkzin words and π-shapes
- Way less many shapes than sec. str.!
- Homopolymer model overestimates number of shapes Need for a probabilistic model for base-pairing But stickiness is not enough...
Hammer (analytic combinatorics) \rightarrow nail (RNA+homopolymer model) \Rightarrow Time for a new hammer?

Collaborators: W. A. Lorenz and P. Clote (Boston College), A. Denise (Univ. Paris Sud), J.-M. Steyaert (Ecole Polytechnique)

