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MFE Folding

Input: RNA sequence ω

Definition (Minimum Free-Energy (MFE) Folding Problem)

Find a partial matching s∗ of positions from ω that min(max)-imizes a
free-energy function Eω,s∗ within some restricted class of matching.
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Secondary Structure (Non-crossing) + Additive energies: Easy!
Optimal substructure⇒ Dynamic Programming (DP)

(Weighted) base-pairs maximization: Θ(n3)
[Nussinov and Jacobson, 1980]

Nearest-neighbor model: Θ(n4)/Θ(n3)
[Zuker and Stiegler, 1981]
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Boltzmann ensemble and partition function

Energy functions are not ideally accurate

MFE structure might be isolated

⇒ One postulates a Boltzmann equilibrium, i.e. admissible conformations
exist in a probability distribution [McCaskill, 1990]

P(s) =
e
−Es
RT

Z where Z =
∑
s′∈S

e
−Es
RT (Partition function)

Observables can be derived, such that the base-pairing prob. [McCaskill, 1990],
centroid-structure [Ding and Lawrence, 2003], likelihood of multi-stable
RNAs [Voss et al., 2004], confidence in prediction [Mathews, 2004], moments of the
free-energy distribution [Miklós et al., 2005]. . .
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Pseudoknots

Any matching (crossing): Harder for realistic energy models

BP maximization: O(n3) (Max. Weighted Matching)
[Tabaska et al., 1998]

Nearest-neighbor: NP-complete
[Akutsu, 2000, Lyngsø and Pedersen, 2000]

In practice:

Heuristics/local search

Restricted conformational spaces solved exactly (DP) in polynomial time
[Rivas and Eddy, 1999, Lyngsø and Pedersen, 2000, Dirks and Pierce, 2003,

Reeder and Giegerich, 2004, Cao and Chen, 2006, Cao and Chen, 2009, Chen et al., 2009,

Cao and Chen, 2009, Huang et al., 2009, Theis et al., 2010, Reidys et al., 2011].

Very few of them allow for a transposition to ensemble based approach!
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Developing new algorithms: Motivation

Folding RNAs including pseudoknots remains a challenge:

Capture complex topological aspects

Incorporate better energy models

Optimize expressivity/computational complexity tradeoff

Address ensemble-related questions

Tackle related problems (RNA-RNA interaction)

However, developing new DP algorithms is difficult and error-prone:

Lack of modularity

Tedious proofs for unambiguity/correctness

Hard to connect DP equation (product) to decomposition (source)

CS geek: Underlying object to define meta-algorithms/proofs?
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State-of-the-art

Existing abstractions for Dynamic Programming algorithms:

Giegerich et (many!) al: Algebraic Dynamic Programming

Lefebvre et al: Multi-tape attributed grammars

Roytberg and Finkelstein: Forward hypergraphs
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State-of-the-art

Existing abstractions for Dynamic Programming algorithms:

Giegerich et (many!) al: Algebraic Dynamic Programming

Lefebvre et al: Multi-tape attributed grammars
Roytberg and Finkelstein: Forward hypergraphs

Conformations bijectively associated with hyperpaths (∼ Traces)
+ Highly expressive (⇒ Pseudoknots!)
- Low-level: Explicit indices manipulation (Think bytecode. . . )

Main Contribution

Considering families of hypergraphs as combinatorial classes will

Simplify algorithms

Ease proving their correctness

Help develop new applications
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Hypergraphs as decompositions
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Hypergaphs generalize directed graphs to arcs of arbitrary in/out degrees.

Definition (Hypergraph)

A directed hypergaph H is a couple (V ,E) such that:

V is a set of vertices

E is a set of hyperarcs e = (t(e)→ h(e)) such that t(e), h(e) ⊂ E

Forward hypergraphs (F-graphs)→ arcs have in degree exactly 1.
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Score: 4

F-graph All F-paths starting from vertex 1

Definition (F-path)

A F-path is a tree having root s ∈ V , whose children are F-paths built from
the outgoing vertices of some arc e = (s → t) ∈ E .

Remark: Vertices of out degree 0 (t = ∅) provide an elegant terminal case.

F-graph is independent iff each F-path sees at most once each arc.

A numerical feature fonction α : E → R assigns a value to each arc:

Weight of a path is the product of its arcs’ values

Score of a path is the sum of its arcs’ values
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Generic algorithms

H = (v0,V ,E , π): acyclic F-graph v0: Init. node π: feature function

+

ms = min
p∈Ps

Score(s)

= min
e=(s→t)

(
π(e) +

∑
u∈t

mu

) s

t1

t ′1

t ′2

π(e)

π(e′′) π(e′)

Problem Recurrence Time/space (DP)

Min. score ms = min
e=(s→t)

(
π(e) +

∑
u∈t

mu

)
Θ(|E |+ |V |)/Θ(|V |)

Num. paths ns =
∑
(s→t)

∏
u∈t

nu Θ(|E |+ |V |)/Θ(|V |)

Total weight ws =
∑

e=(s→t)

π(e) ·
∏
s′∈t

ws′ Θ(|E |+ |V |)/Θ(|V |)
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Generic algorithms
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Assume a weighted (Boltzmann) probability distribution on F-paths P:

P(p) =
∏
e∈p

π(e)/wv0

Problem Algorithm Time/space (DP)

Random gen.
Compute ws; Starting with s ← v0,
pick an arc s → (t1, t2, . . .) w.p.∏

wti /ws and recurse on each ti .
Θ(|E |+ |V |)/Θ(|V |)

Arcs prob.
pe =

bt(e) ·
∏

s′∈h(e) ws′

wv0

bs = (1+)
∑

s′→(t1···s··· )

π(e′)bs′
∏

ti

wti

Θ(|E |+ |V |+
∑
|h(e)|2)

Θ(|V |)
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Back to the RNA world

Given an RNA sequence ω and an energy function E , assume one has:

Acyclic hypergraph H s.t. F-paths⇔ (pseudoknotted) conformations

Feature function α: F-path p→ free-energy Eω,s of conformation.

Application Hypergraph Algorithm Arguments
MFE folding ⇔ Minimum score (H, α)

Partition function ⇔ Total weight (H, e−α/RT )

Statistical sampling ⇔ Random generation (H, e−α/RT )

BP probabilities (dot-plot) ⇔ Arcs prob. (H, e−α/RT )

Message #1

DP equations for ensemble applications are by-products of a combinatorial
decomposition (⇒ Family of hypergraphs).

How to design such hypergraphs/energy function?
You do it yourself! But combinatorics can help. . .
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Example: Base-pairs maximization (Nussinov)

Decomposition:

i j
=

i i+1 j
+

i+1i kk-1 k+1 j

≥ 1

As an Hypergraph: Θ(n2) vertices, Θ(n3) arcs (n = |ω|).

i,j

i+1,j

i+1,i+1

i+3,j

i+1,i+2

i+4,j

...

1,|ω|

Initial vertex

i,i-1

Terminal vertices

Eω,i,j =

{
1 If ωi base-pairs with ωj

+∞ Otherwise

Energy function

0

Eω,i,i+2

Eω,i,i+3

0
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+∞ Otherwise
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0

Remark: Before applying generic ensemble algorithms, one needs to prove:

F-paths⇔ Secondary structures → Generating functions

Weight/score⇔ Free-energy
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+∞ Otherwise
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0
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Application Algorithm Feature Time/Space
Energy minimization Minimal weight E O(n3)/O(n2)

Partition function Weighted count e
−E
RT O(n3)/O(n2)

BP prob. Arc-traversal prob. e
−E
RT O(n3)/O(n2)

Stat. sampling (k str.) Random gen. e
−E
RT O(n3 + kn log n)/O(n2)
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Half time summary

Message #2 (cf ADP)

Applications of DP could (and should) be detached from the equation, and be
expressed at an abstract – combinatorial – level.

Sec. str. Turner

Sec. str. Nussinov

PK Akutsu

PK Kissing Hairpins

Count

MFE

Partition function

BP probabilities

. . .

Statistical sampling

Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics, L.
Hwang for algebraic hypergraph DP, R. Giegerich for ADP. . .

Let us extend applications of DP. . .
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Applications of DP could (and should) be detached from the equation, and be
expressed at an abstract – combinatorial – level.

Sec. str. Turner

Sec. str. Nussinov

PK Akutsu

PK Kissing Hairpins
Moments of Boltzmann distribution

Count

MFE

Partition function

BP probabilities

. . .

Statistical sampling

Hypergraph

Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics, L.
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Distribution of solutions
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What information can we extract from the Boltzmann ensemble?

Average picture may be insufficient/misleading. . .
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Distribution of solutions
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Input:

An acyclic F-graph H, defining the set of F-paths (trees) in H.

Weight function w : E → R, defining a probability distribution.

Additive feature functions α1, . . . , αk : E → R.
Example: #helices, #multiloops, ∆G [Miklós et al., 2005]. . .

What can be said about the (joint) distribution of features?
⇒ (Generalized) moments.
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Generalized moments

Definition (Generalized moments)

E[α
m1
1 α

m2
2 · · ·α

mk
k ] =

∑
p∈Ps

π(p)

ws

k∏
i=1

αi (p)mi

Remark: Single feature + m1 = 1 → Expectation in Boltzmann distribution

Theorem (Generalized moments extraction (Generalizes Miklos et al 2005))

Generalized moments can be computed as E[α
m1
1 · · ·α

mk
k ] = cm

s /ws, where

cm
s =

∑
e=(s→t)

π(e) ·
∑

m′,
(

m′′1 ,··· ,m
′′
|t|

)
s. t. m′+

∑
j m′′j =m

k∏
i=1

(
mi

m′i ,m
′′
1,i , · · · ,m′′|t|,i

)
· αi (e)m′i ·

|t|∏
i=1

cm′′i
ti

Time: O
(

(|E |+ |V |) · k · t+ ·
∏k

i=1 mt++1
i

)
(t+ =max. out-degree)

Memory: Θ
(
|V | ·

∏k
i=1 mi

)
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Mfold/Unafold decomposition
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i+1 j-1
i j

j-1

i'>i
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i j

i+1

i+1 j-1

k

i

jk

i

j

k

i

j

1 j

1 j-1 1 jk

Application Algorithm Weight fun. Time/Space Ref.

Energy minimization Minimal weight πT O(n3(4))/O(n2) [Zuker and Stiegler, 1981]

Partition function Weighted count e
−πT

RT O(n3(4))/O(n2) [McCaskill, 1990]

Base-pairing probabilities Arc-traversal prob. e
−πT

RT O(n3(4))/O(n2) [McCaskill, 1990]

Statistical sampling (k -samples) Random gen. e
−πT

RT O(n3(4) + kn log n)/O(n2) [Ding and Lawrence, 2003, Ponty, 2008]

Moments of energy (Mean, Var.) Moments extraction e
−πT

RT O(n3(4))/O(n2) [Miklós et al., 2005]

m-th moment of additive features Moments extraction e
−πT

RT O(m3 · n3(4))/O(m · n2) –

Correlations of additive features Moments extraction e
−πT

RT O(n3(4))/O(n2) –

Yann Ponty, Cédric Saule Hypergraph RNA Folding Including Pseudoknots 16 / 22



Akutsu/Uemura simple pseudoknots

a x b
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Entry point

x=k+1

ji

a x b

i

b-1x+1
i

a

a-1 x+1
b
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i j

i j

i j
i k k+1 jExit Point

a=i

k j

x

b=x

a=i

a=i

k j

b=x

Application Algorithm Weight fun. Time/Space Ref.
Energy minimization Minimal weight πbp O(n4)/O(n4) [Akutsu, 2000]

Partition function Weighted count e
−πbp

RT O(n4)/O(n4) Θ(n6)[Cao and Chen, 2009]

Base-pairing probabilities Arc-traversal prob. e
−πbp

RT O(n4)/O(n4) –

Statistical sampling (k -samples) Random gen. e
−πbp

RT O(n4 + kn log n)/O(n4) –

Moments of energy (Mean, Var.) Moments extraction e
−πbp

RT O(n4)/O(n4) –

m-th moment of additive features Moments extraction e
−πbp

RT O(m3 · n4)/O(m · n4) –
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Kissing hairpins

ji
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k
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l j

Exit Point

Application Algorithm Weight fun. Time/Memory Ref.
Energy minimization Minimal weight πT O(n5)/O(n4) [Chen et al., 2009]

Partition function Weighted count e
−πT

RT O(n5)O(n4) –

Base-pairing probabilities Arc-traversal prob. e
−πT

RT O(n5)/O(n4) –

Statistical sampling (k -samples) Random gen. e
−πT

RT O(n5 + k · n log n)/O(n4) –

Moments of energy (Mean, Var.) Moments extraction e
−πT

RT O(n5)/O(n4) –

m-th moment of additive features Moments extraction e
−πT

RT O(m3 · n5)/O(m · n4) –
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Conclusion/perspectives

Implementation issues: Avoid memory consumption, table design,
compilation to low-level language. . .

Generate hypergraph from more abstract description (CFGs, Möhl’s
split-types, Nebel’s algebraic descriptors)

Novel sequence-only features⇒ Thermodynamic signatures for
ncRNAs, Riboswitches, Pseudoknotted RNAs classifier. . . ?

Adapt generic optimizations: Sparsification, four-russians. . .

Extensions: RNA-RNA interactions, Simultaneous folding/alignment,
RNA design. . .

Thanks to
Elena Eric
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