Impact Of The Energy Model On The Complexity Of RNA Folding With Pseudoknots

Saad Sheikh^{⊙, ♦} Rolf Backofen[♣] Yann Ponty^{•, ♦}

[☉] University of Florida, Gainesville, USA

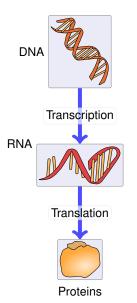
Albert Ludwigs University, Freiburg, Germany

LIX, CNRS/Ecole Polytechnique, France

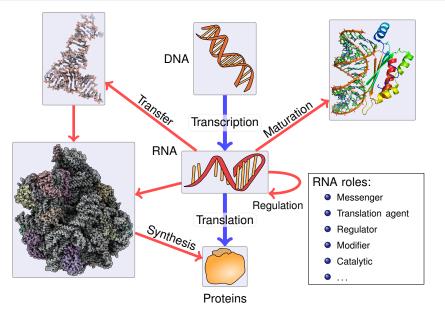
♦ AMIB Team-Project, INRIA, Saclay, France

July 5th - CPM'12

Fundamental dogma of molecular biology



Fundamental dogma of molecular biology



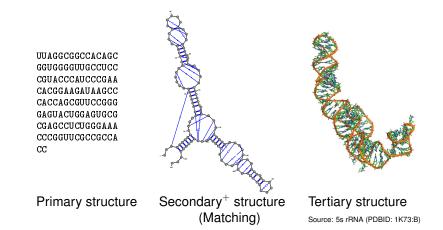
RNA structure

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC Primary structure Secondary structure Tertiary structure (Matching) Source: 5s rRNA (PDBID: 1K73:B)

Bottom-up approach to molecular biology

Understand and predict how RNA folds to decypher its function(s).

RNA structure



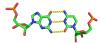
Bottom-up approach to molecular biology

Understand and predict how RNA folds to decypher its function(s).

Crossing interactions

• Non-canonical base-pairs:

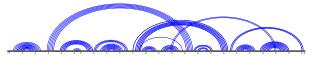
Any base-pair other than {(A-U), (C-G), (G-U)} OR interacting in a non-standard way (WC/WC-Cis) [Leontis 01].



Canonical CG base-pair (WC/WC-Cis)

Non-canonical base-pair (Sugar/WC-Trans)

• Pseudoknots: Crossing sets of nested stable base-pairs

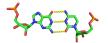


Group I Ribozyme (PDBID: 1Y0Q:A

Crossing interactions

• Non-canonical base-pairs:

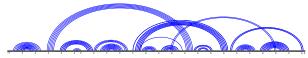
Any base-pair other than {(A-U), (C-G), (G-U)} OR interacting in a non-standard way (WC/WC-Cis) [Leontis 01].



Canonical CG base-pair (WC/WC-Cis)

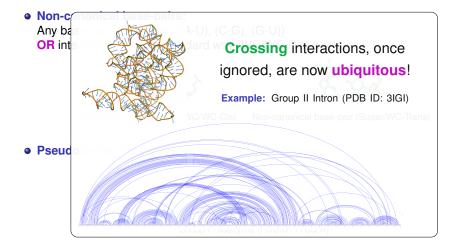
Non-canonical base-pair (Sugar/WC-Trans)

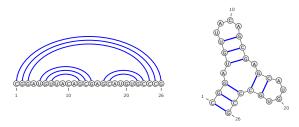
• Pseudoknots: Crossing sets of nested stable base-pairs



Group I Ribozyme (PDBID: 1Y0Q:A)

Crossing interactions

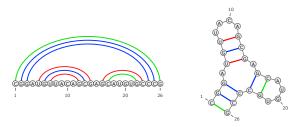




• RNA structure S: (Partial) matching of positions in sequence w

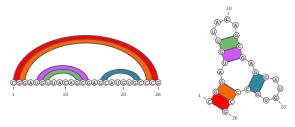
• Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

Energy model: Motif → Free-energy contribution Δ(·) ∈ ℝ[−] ∪ {+∞} Free-Energy E_w(S): Sum over (independently contributing) motifs in S



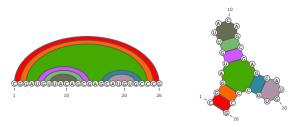
- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

Energy model: Motif → Free-energy contribution Δ(·) ∈ ℝ[−] ∪ {+∞} Free-Energy E_w(S): Sum over (independently contributing) motifs in S



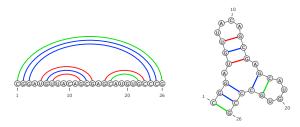
- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

Energy model: Motif → Free-energy contribution Δ(·) ∈ ℝ[−] ∪ {+∞} Free-Energy E_w(S): Sum over (independently contributing) motifs in S



- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

Energy model: Motif → Free-energy contribution Δ(·) ∈ ℝ[−] ∪ {+∞} Free-Energy E_w(S): Sum over (independently contributing) motifs in S

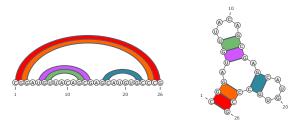


- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

• Energy model:

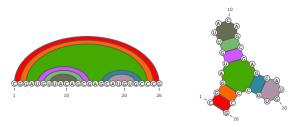
Motif \rightarrow Free-energy contribution $\Delta(\cdot) \in \mathbb{R}^- \cup \{+\infty\}$ **Free-Energy** $E_w(S)$: Sum over (independently contributing) motifs in *S*

$$E_S = 2 \cdot \Delta \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + 4 \cdot \Delta \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + 2 \cdot \Delta \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$



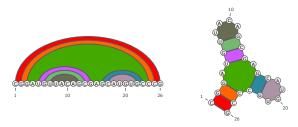
- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)
- Energy model:
 Motif → Free-energy contribution Δ(·) ∈ ℝ[−] ∪ {+∞}
 Free-Energy E_w(S): Sum over (independently contributing) motifs in S

$$E_{S} = \Delta \begin{pmatrix} 0 & 0 \\ 0 & -c \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & -c \end{pmatrix} + \Delta \begin{pmatrix} 0 & -c \\ 0 & -c \end{pmatrix} + \Delta \begin{pmatrix} 0 & -c \\ 0 & -c \end{pmatrix} + \Delta \begin{pmatrix} 0 & -c \\ 0 & -c \end{pmatrix} + \Delta \begin{pmatrix} 0 & -c \\ 0 & -c \end{pmatrix}$$



- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)
- Energy model: Motif → Free-energy contribution Δ(·) ∈ ℝ[−] ∪ {+∞} Free-Energy E_w(S): Sum over (independently contributing) motifs in S

$$E_{S} = \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$



- RNA structure S: (Partial) matching of positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

```
    Energy model:

Motif → Free-energy contribution Δ(·) ∈ ℝ<sup>−</sup> ∪ {+∞}

Free-Energy E<sub>w</sub>(S): Sum over (independently contributing) motifs in S
```

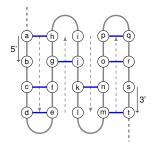
Definition (RNA-PK-FOLD(E) problem)

Input: RNA sequence $w \in \{A, C, G, U\}^*$. **Output:** Matching S^* , having Minimal Free-Energy $E_w(S^*)$.

Energy models

Three models, based on interacting positions (i, j):

- **Base-pair model** \mathcal{B} : Nucleotides (w_i, w_j) at (i, j) $\rightarrow \Delta_{\mathcal{B}}(w_i, w_i)$
- Nearest-neighbor model \mathcal{N} : Nucl. at (i, j) and (i+1, j-1) + partners (or \emptyset) $\rightarrow \Delta_{\mathcal{N}}(w_i, w_j, w_{i+1}, w_{j-1}, w_{m_{i+1}}, w_{m_{j-1}})$
- Stacking pairs model S: Nucl. at (i, j) and (i+1, j-1) only if latter paired $\rightarrow \Delta_{\mathcal{S}}(w_i, w_j, w_{i+1}, w_{j-1})$

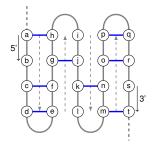


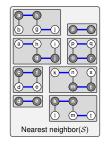
Solved in $\mathcal{O}(n^3)$ [Tabaska 98] (Max-weighted matching) Unrealistic!

Energy models

Three models, based on interacting positions (i, j):

- **Base-pair model** \mathcal{B} : Nucleotides (w_i, w_j) at (i, j) $\rightarrow \Delta_{\mathcal{B}}(w_i, w_i)$
- Nearest-neighbor model \mathcal{N} : Nucl. at (i, j) and (i+1, j-1) + partners (or \emptyset) $\rightarrow \Delta_{\mathcal{N}}(w_i, w_j, w_{i+1}, w_{j-1}, w_{m_{i+1}}, w_{m_{i-1}})$
- Stacking pairs model S: Nucl. at (i, j) and (i+1, j-1) only if latter paired $\rightarrow \Delta_{\mathcal{S}}(w_i, w_j, w_{i+1}, w_{j-1})$



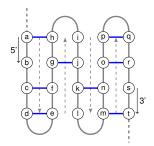


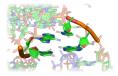
NP-hard [Lyngsø 00, Akutsu 00] Too expressive?

Energy models

Three models, based on interacting positions (i, j):

- **Base-pair model** \mathcal{B} : Nucleotides (w_i, w_j) at (i, j) $\rightarrow \Delta_{\mathcal{B}}(w_i, w_i)$
- Nearest-neighbor model \mathcal{N} : Nucl. at (i, j) and (i+1, j-1) + partners (or \emptyset) $\rightarrow \Delta_{\mathcal{N}}(w_i, w_j, w_{i+1}, w_{j-1}, w_{m_{i+1}}, w_{m_{i-1}})$
- Stacking pairs model S: Nucl. at (i, j) and (i+1, j-1) only if latter paired $\rightarrow \Delta_{\mathcal{S}}(w_i, w_j, w_{i+1}, w_{j-1})$





Captures stablest motifs Still NP-hard [Lyngsø 04] ...but PTAS [Lyngsø 04]

		Base-pairs	Stacking-Pairs	Nearest-Neighbor
	Comp.	P [Nussinov 80]	P [leong 03]	P [Zuker 81]
Non-crossing	Approx.	-	-	-
	Comp.	???	NP-Hard [leong 03]	NP-Hard [leong 03]
Planar	Approx.	2-approx. \approx [leong 03]	2-approx. [leong 03]	???
	Comp.	P [Tabaska 98]	NP-Hard [Lyngsø 04]	NP-Hard [Lyngsø 00, Akutsu 00]
General	Approx.	-	ε -approx. $\in \mathcal{O}(n^{4^{1/\varepsilon}})$???

Missing:

- Qualitative difference between Stacking-pairs and Nearest-Neighbor models?
- Influence of \mathcal{M} on hardness/approx. ratio (only unit-valued studied)

Biologists demand (Biology deserves) honest hardness results:

- Energy model as input: Pandora's box (e.g. RNA folding on infinite alphabet!)
- Model as parameter: Is problem hard..
 - Sometimes $(\exists M)$? \rightarrow Dishones Always $(\forall M)$? Almost surely (w. p. 1)? \rightarrow Hones

		Base-pairs	Stacking-Pairs	Nearest-Neighbor
	Comp.	P [Nussinov 80]	P [leong 03]	P [Zuker 81]
Non-crossing	Approx.	-	-	-
	Comp.	???	NP-Hard [leong 03]	NP-Hard [leong 03]
Planar	Approx.	2-approx. \approx [leong 03]	2-approx. [leong 03]	???
	Comp.	P [Tabaska 98]	NP-Hard [Lyngsø 04]	NP-Hard [Lyngsø 00, Akutsu 00]
General	Approx.	-	ε -approx. $\in \mathcal{O}(n^{4^{1/\varepsilon}})$???

Missing:

- Qualitative difference between Stacking-pairs and Nearest-Neighbor models?
- Influence of $\mathcal M$ on hardness/approx. ratio (only unit-valued studied)

Biologists demand (Biology deserves) honest hardness results:

- Energy model as input: Pandora's box (e.g. RNA folding on infinite alphabet!)
- Model as parameter: Is problem hard...

		Base-pairs	Stacking-Pairs	Nearest-Neighbor
	Comp.	P [Nussinov 80]	P [leong 03]	P [Zuker 81]
Non-crossing	Approx.	-	-	-
	Comp.	???	NP-Hard [leong 03]	NP-Hard [leong 03]
Planar	Approx.	2-approx. \approx [leong 03]	2-approx. [leong 03]	???
	Comp.	P [Tabaska 98]	NP-Hard [Lyngsø 04]	NP-Hard [Lyngsø 00, Akutsu 00]
General	Approx.	-	ε -approx. $\in \mathcal{O}(n^{4^{1/\varepsilon}})$???

Missing:

- Qualitative difference between Stacking-pairs and Nearest-Neighbor models?
- Influence of \mathcal{M} on hardness/approx. ratio (only unit-valued studied)

Biologists demand (Biology deserves) honest hardness results:

- Energy model as input: Pandora's box (e.g. RNA folding on infinite alphabet!)
- Model as parameter: Is problem hard...

		Base-pairs	Stacking-Pairs	Nearest-Neighbor
	Comp.	P [Nussinov 80]	P [leong 03]	P [Zuker 81]
Non-crossing	Approx.	-	-	-
	Comp.	???	NP-Hard [leong 03]	NP-Hard [leong 03]
Planar	Approx.	2-approx. \approx [leong 03]	2-approx. [leong 03]	???
	Comp.	P [Tabaska 98]	NP-Hard [Lyngsø 04]	NP-Hard [Lyngsø 00, Akutsu 00]
General	Approx.	-	ε -approx. $\in \mathcal{O}(n^{4^{1/\varepsilon}})$???

Missing:

- Qualitative difference between Stacking-pairs and Nearest-Neighbor models?
- Influence of $\mathcal M$ on hardness/approx. ratio (only unit-valued studied)

Biologists demand (Biology deserves) honest hardness results:

- Energy model as input: Pandora's box (e.g. RNA folding on infinite alphabet!)
- Model as parameter: Is problem hard...

		Base-pairs	Stacking-Pairs	Nearest-Neighbor
	Comp.	P [Nussinov 80]	P [leong 03]	P [Zuker 81]
Non-crossing	Approx.	-	-	-
	Comp.	???	NP-Hard [leong 03]	NP-Hard [leong 03]
Planar	Approx.	2-approx. \approx [leong 03]	2-approx. [leong 03]	???
	Comp.	P [Tabaska 98]	NP-Hard [Lyngsø 04]	NP-Hard [Lyngsø 00, Akutsu 00]
General	Approx.	-	ε -approx. $\in \mathcal{O}(n^{4^{1/\varepsilon}})$???

Missing:

- Qualitative difference between Stacking-pairs and Nearest-Neighbor models?
- Influence of $\mathcal M$ on hardness/approx. ratio (only unit-valued studied)

Biologists demand (Biology deserves) honest hardness results:

- Energy model as input: Pandora's box (e.g. RNA folding on infinite alphabet!)
- Model as parameter: Is problem hard...

(Almost!)-honest hardness of RNA-PK-FOLD(S)

For any stacking energy model S, such that:

- Only G/C, A/U and G/U pairs are allowed
- Any other X/Y pair forbidden

 $\Rightarrow \Delta_{\mathcal{S}}(X, Y, *, *) = +\infty$

(Such BPs are rarely observed [Stombaugh 09] \rightarrow Unstable)

Arbitrary energies associated with valid stackings

$$\Rightarrow \Delta_{\mathcal{S}}(X, Y, X', Y') < 0$$

Definition (3-PARTITION problem)

Input: Sequence of integers $X = \{x_i\}_{i=1}^n$, summing to $n/3 \cdot K$, $K \in \mathbb{N}$. **Output:** True iff X can be split into m := n/3 triplets $\{(x_{a_i}, x_{b_i}, x_{c_i})\}_{i=1}^m$ s. t.

$$x_{a_j} + x_{b_j} + x_{c_j} = K, \forall j \in [1, m].$$

Proof. Reduction from 3-PARTITION:

• Let $w_X := C^{x_1}AC^{x_2}AC^{x_3}A\cdots AC^{x_n}AG^{K}AG^{K}A\cdots AG^{K}$ and $\delta := \Delta_{\mathcal{S}}(C, G, C, G)$

m times

- Best matching S^* for w_X has free-energy $E(S^*)_{w_X} \leq E^* := \delta \cdot (K-3) \cdot m$.
- If X 3-partitionable, then matching induced by partition gives E(S^{*})_{wx} = E^{*}.
- If $E(S^*)_{w_{\chi}} = E^*$, then S^* saturates each G^{κ} block, using three blocks (C^a, C^b, C^c) .
- Since $|w_X| \in \mathcal{O}(n \cdot P(n))$, then RNA-PK-FOLD $(\mathcal{S}) \in \mathsf{P} \Rightarrow 3$ -PARTITION $\in \mathsf{P}$.

Definition (3-PARTITION problem)

Input: Sequence of integers $X = \{x_i\}_{i=1}^n$, summing to $n/3 \cdot K$, $K \in \mathbb{N}$. **Output:** True iff X can be split into m := n/3 triplets $\{(x_{a_i}, x_{b_i}, x_{c_i})\}_{i=1}^m$ s. t.

$$x_{a_j} + x_{b_j} + x_{c_j} = K, \forall j \in [1, m].$$

Proof. Reduction from 3-PARTITION:

• Let $w_X := C^{x_1}AC^{x_2}AC^{x_3}A\cdots AC^{x_n} \underbrace{AG^{K}AG^{K}A\cdots AG^{K}}_{\mathcal{A}}$ and $\delta := \Delta_{\mathcal{S}}(C, G, C, G)$

m times

- Best matching S^{*} for w_X has free-energy E(S^{*})_{w_X} ≤ E^{*} := δ ⋅ (K − 3) ⋅ m.
- If X 3-partitionable, then matching induced by partition gives $E(S^*)_{w_x} = E^*$.
- If $E(S^*)_{W_X} = E^*$, then S^* saturates each G^K block, using three blocks (C^a, C^b, C^c) .
- Since $|w_X| \in \mathcal{O}(n \cdot P(n))$, then RNA-PK-Fold $(\mathcal{S}) \in P \Rightarrow 3$ -Partition $\in P$.

Definition (3-PARTITION problem)

Input: Sequence of integers $X = \{x_i\}_{i=1}^n$, summing to $n/3 \cdot K$, $K \in \mathbb{N}$. **Output:** True iff X can be split into m := n/3 triplets $\{(x_{a_i}, x_{b_i}, x_{c_i})\}_{i=1}^m$ s. t.

$$x_{a_j} + x_{b_j} + x_{c_j} = K, \forall j \in [1, m].$$

Proof. Reduction from 3-PARTITION:

• Let
$$w_X := C^{x_1}AC^{x_2}AC^{x_3}A\cdots AC^{x_n} \underbrace{AG^KAG^KA\cdots AG^K}_{m \text{ times}}$$
 and $\delta := \Delta_S(C, G, C, G)$

- Best matching S^* for w_X has free-energy $E(S^*)_{w_X} \leq E^* := \delta \cdot (K-3) \cdot m$.
- If X 3-partitionable, then matching induced by partition gives E(S^{*})_{wx} = E^{*}.
- If $E(S^*)_{W_X} = E^*$, then S^* saturates each G^K block, using three blocks (C^a, C^b, C^c) .
- Since $|w_X| \in \mathcal{O}(n \cdot P(n))$, then RNA-PK-FOLD $(S) \in P \Rightarrow 3$ -PARTITION $\in P$.

Definition (3-PARTITION problem)

Input: Sequence of integers $X = \{x_i\}_{i=1}^n$, summing to $n/3 \cdot K$, $K \in \mathbb{N}$. **Output:** True iff X can be split into m := n/3 triplets $\{(x_{a_i}, x_{b_i}, x_{c_i})\}_{i=1}^m$ s. t.

$$x_{a_j} + x_{b_j} + x_{c_j} = K, \forall j \in [1, m].$$

Proof. Reduction from 3-PARTITION:

• Let
$$w_X := C^{x_1} A C^{x_2} A C^{x_3} A \cdots A C^{x_n} \underbrace{A G^K A G^K A \cdots A G^K}_{m \text{ times}}$$
 and $\delta := \Delta_S(C, G, C, G)$

- Best matching S^{*} for w_X has free-energy E(S^{*})_{w_X} ≤ E^{*} := δ ⋅ (K − 3) ⋅ m.
- If X 3-partitionable, then matching induced by partition gives E(S^{*})_{w_χ} = E^{*}.
- If $E(S^*)_{W_X} = E^*$, then S^* saturates each G^K block, using three blocks (C^a, C^b, C^c) .
- Since $|w_X| \in \mathcal{O}(n \cdot P(n))$, then RNA-PK-FOLD $(S) \in P \Rightarrow 3$ -PARTITION $\in P$.

Definition (3-PARTITION problem)

Input: Sequence of integers $X = \{x_i\}_{i=1}^n$, summing to $n/3 \cdot K$, $K \in \mathbb{N}$. **Output:** True iff X can be split into m := n/3 triplets $\{(x_{a_i}, x_{b_i}, x_{c_i})\}_{i=1}^m$ s. t.

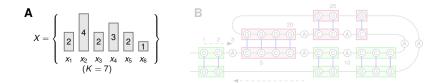
$$x_{a_j} + x_{b_j} + x_{c_j} = K, \forall j \in [1, m].$$

Proof. Reduction from 3-PARTITION:

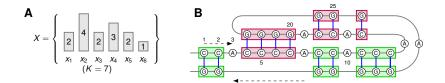
• Let
$$w_X := C^{x_1} A C^{x_2} A C^{x_3} A \cdots A C^{x_n} \underbrace{A G^K A G^K A \cdots A G^K}_{m \text{ times}}$$
 and $\delta := \Delta_S(C, G, C, G)$

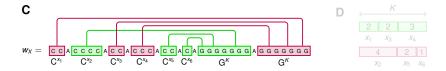
- Best matching S^* for w_X has free-energy $E(S^*)_{w_X} \leq E^* := \delta \cdot (K-3) \cdot m$.
- If X 3-partitionable, then matching induced by partition gives $E(S^*)_{w_X} = E^*$.
- If $E(S^*)_{W_X} = E^*$, then S^* saturates each G^K block, using three blocks (C^a, C^b, C^c) .
- Since $|w_X| \in \mathcal{O}(n \cdot P(n))$, then RNA-PK-FOLD $(S) \in P \Rightarrow 3$ -PARTITION $\in P$.

Example

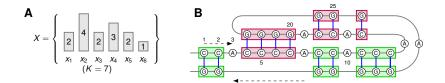


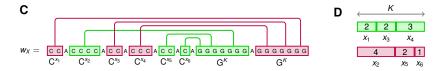
Example





Example





Honest $\mathcal{O}(n^3)$ 5-approximation for RNA-PK-FoLD(\mathcal{S})

- Existence of polynomial time approximation scheme (in $O(n^{4^{1/\epsilon}}))$ [Lyngsø 04]
- Base-pair maximization (unit cost) ⇒ Arbitrary energies???

Algorithm:

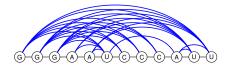
- **1** Build weighted adjacency graph G = (V, E)
 - Vertices: Pairs of consecutive pos. (*i*, *i* + 1)
 - Edges: $(i, i+1) \rightarrow (j-1, j)$ with weight $-\Delta_{\mathcal{S}}(w_i, w_j, w_{i+1}, w_{j-1})$

Ompute maximal-weighted matching m'.

3 Loop over $p = (i, i + 1), (j, j - 1) \in m'$, ordered by decreasing weight:

Add result to output m, remove any p' ∈ m' conflicting with p

Return m



Honest $\mathcal{O}(n^3)$ 5-approximation for RNA-PK-FoLD(\mathcal{S})

- Existence of polynomial time approximation scheme (in $O(n^{4^{1/\epsilon}}))$ [Lyngsø 04]
- Base-pair maximization (unit cost) ⇒ Arbitrary energies???

Algorithm:

- **1** Build weighted adjacency graph G = (V, E)
 - Vertices: Pairs of consecutive pos. (*i*, *i* + 1)
 - Edges: $(i, i+1) \rightarrow (j-1, j)$ with weight $-\Delta_{\mathcal{S}}(w_i, w_j, w_{i+1}, w_{j-1})$

Compute maximal-weighted matching m'.

- ③ Loop over $p = (i, i + 1), (j, j 1) \in m'$, ordered by decreasing weight:
 - Add result to output *m*, remove any $p' \in m'$ conflicting with *p*

Return m

Honest $\mathcal{O}(n^3)$ 5-approximation for RNA-PK-FoLD(\mathcal{S})

- Existence of polynomial time approximation scheme (in $O(n^{4^{1/\epsilon}}))$ [Lyngsø 04]
- Base-pair maximization (unit cost) ⇒ Arbitrary energies???

Algorithm:

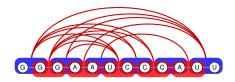
- Build weighted adjacency graph G = (V, E)
 - Vertices: Pairs of consecutive pos. (*i*, *i* + 1)
 - Edges: $(i, i+1) \rightarrow (j-1, j)$ with weight $-\Delta_{\mathcal{S}}(w_i, w_j, w_{i+1}, w_{j-1})$

Compute maximal-weighted matching m'.

③ Loop over $p = (i, i + 1), (j, j - 1) \in m'$, ordered by decreasing weight:

Add result to output *m*, remove any p' ∈ m' conflicting with p

Return m

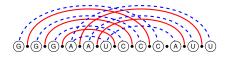


- Existence of polynomial time approximation scheme (in $O(n^{4^{1/\epsilon}}))$ [Lyngsø 04]
- Base-pair maximization (unit cost) ⇒ Arbitrary energies???

Algorithm:

- **1** Build weighted adjacency graph G = (V, E)
 - Vertices: Pairs of consecutive pos. (*i*, *i* + 1)
 - Edges: $(i, i+1) \rightarrow (j-1, j)$ with weight $-\Delta_{\mathcal{S}}(w_i, w_j, w_{i+1}, w_{j-1})$
- Ompute maximal-weighted matching m'.
- Solution Loop over p = (i, i + 1), (j, j − 1) ∈ m', ordered by decreasing weight:
 Add result to output m, remove any p' ∈ m' conflicting with p

Return m

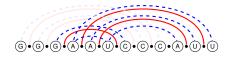


- Existence of polynomial time approximation scheme (in $O(n^{4^{1/\epsilon}}))$ [Lyngsø 04]
- Base-pair maximization (unit cost) ⇒ Arbitrary energies???

Algorithm:

- **O** Build weighted adjacency graph G = (V, E)
 - Vertices: Pairs of consecutive pos. (*i*, *i* + 1)
 - Edges: $(i, i+1) \rightarrow (j-1, j)$ with weight $-\Delta_{\mathcal{S}}(w_i, w_j, w_{i+1}, w_{j-1})$
- Ompute maximal-weighted matching m'.
- Solution 2 Solution 2
 - Add result to output *m*, remove any $p' \in m'$ conflicting with *p*

In Return m

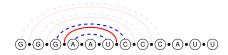


- Existence of polynomial time approximation scheme (in $O(n^{4^{1/\epsilon}}))$ [Lyngsø 04]
- Base-pair maximization (unit cost) ⇒ Arbitrary energies???

Algorithm:

- **O** Build weighted adjacency graph G = (V, E)
 - Vertices: Pairs of consecutive pos. (*i*, *i* + 1)
 - Edges: $(i, i+1) \rightarrow (j-1, j)$ with weight $-\Delta_{\mathcal{S}}(w_i, w_j, w_{i+1}, w_{j-1})$
- Ompute maximal-weighted matching m'.
- Solution 5 Solution 5 Solution 6 Solution 7 Solution 6 Solution 7 Solution 7
 - Add result to output *m*, remove any $p' \in m'$ conflicting with *p*

In Return m

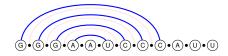


- Existence of polynomial time approximation scheme (in $O(n^{4^{1/\epsilon}}))$ [Lyngsø 04]
- Base-pair maximization (unit cost) ⇒ Arbitrary energies???

Algorithm:

- **O** Build weighted adjacency graph G = (V, E)
 - Vertices: Pairs of consecutive pos. (*i*, *i* + 1)
 - Edges: $(i, i+1) \rightarrow (j-1, j)$ with weight $-\Delta_{\mathcal{S}}(w_i, w_j, w_{i+1}, w_{j-1})$
- Ompute maximal-weighted matching m'.
- Solution 5 Solution 5 Solution 6 Solution 7 Solution 6 Solution 7 Solution 7
 - Add result to output *m*, remove any $p' \in m'$ conflicting with *p*

Return m



- Existence of polynomial time approximation scheme (in $O(n^{4^{1/\epsilon}}))$ [Lyngsø 04]
- Base-pair maximization (unit cost) ⇒ Arbitrary energies???

Algorithm:

- **()** Build weighted adjacency graph G = (V, E)
 - Vertices: Pairs of consecutive pos. (*i*, *i* + 1)
 - Edges: $(i, i+1) \rightarrow (j-1, j)$ with weight $-\Delta_{\mathcal{S}}(w_i, w_j, w_{i+1}, w_{j-1})$
- Ompute maximal-weighted matching m'.
- Solution 5 Solution 5 Solution 6 Solution 7 Solution 6 Solution 7 Solution 7
 - Add result to output *m*, remove any $p' \in m'$ conflicting with *p*

Return m

Complexity: At most $\mathcal{O}(n^3)$ (Max-weighted matching)

Approx. ratio: Initial matching m' has total energy smaller than OPT. **Loop 3:** Each stacking pair p conflicts with ≤ 4 pairs in m', having greater energy.

 \Rightarrow Returned matching has free-energy $\leq 1/5$ of OPT ($\forall \boldsymbol{\mathcal{S}} \rightarrow \textbf{Honest})$

Half-time summary

		Base-pairs	Stacking-Pairs	Nearest-Neighbor
	Comp.	Р	Р	Р
		[Nussinov 80]	[leong 03]	[Zuker 81]
Non-crossing	Approx.	-	—	-
	Comp.	???	NP-Hard	NP-Hard
			[leong 03]	[leong 03]
Planar	Approx.	2-approx.	2-approx.	???
		\approx [leong 03]	[leong 03]	
	Comp.	Р	NP-Hard	NP-Hard
		[Tabaska 98]	[Lyngsø 04] (any* ∆ model)	[Lyngsø 00, Akutsu 00]
General	Approx.	-	ε -approx. $\in \mathcal{O}(n^{4^{1/\varepsilon}})$ [Lyngsø 04]	???
			1/5 (any \triangle model)	

How hard is it to approximate the nearest neighbor model?

Theorem

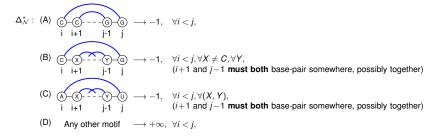
and the energy model:

For some nearest-neighbor model \mathcal{N} , one has RNA-PK-FOLD $(\mathcal{N}) \notin APX$.

Proof. Consider the RNA seq. built from some 3-PARTITION instance X:

$$w_X = C^{x_1} A C^{x_2} A \cdots A C^{x_{3m}} A \underbrace{G^K U G^K U \cdots G^K U}_{} U^{2n}$$

m times



Lemma: The energy of **any matching** of w_X is either 0 (no base-pair), $-|w_X| < 0$ ($\Rightarrow X$ is 3-partitionable) or $+\infty$ (any other case).

Theorem

and the energy model:

For some nearest-neighbor model \mathcal{N} , one has RNA-PK-FOLD $(\mathcal{N}) \notin APX$.

Proof. Consider the RNA seq. built from some 3-PARTITION instance X:

$$w_X = \mathsf{C}^{x_1}\mathsf{A}\mathsf{C}^{x_2}\mathsf{A}\cdots\mathsf{A}\mathsf{C}^{x_{3m}}\mathsf{A}\underbrace{\mathsf{G}^{\mathsf{K}}\mathsf{U}\mathsf{G}^{\mathsf{K}}\mathsf{U}\cdots\mathsf{G}^{\mathsf{K}}\mathsf{U}}_{\mathcal{U}}\mathsf{U}^{2m}$$

m times

Lemma: The energy of any matching of w_X is either 0 (no base-pair), $-|w_X| < 0$ ($\Rightarrow X$ is 3-partitionable) or $+\infty$ (any other case).

Theorem

For some nearest-neighbor model \mathcal{N} , one has RNA-PK-FOLD $(\mathcal{N}) \notin APX$.

Proof (continued).

- The energy of any matching of w_X under \mathcal{N} is either 0 (no base-pair), $-|w_X| < 0$ ($\Rightarrow X$ is 3-partitionable) or $+\infty$ (any other case).
- **Reminder:** Polynomial-time 1/f(n)-approximation algorithm bound to produce solution having free-energy $\leq f(n) \cdot OPT$.
- Any 1/f(n)-approx. algorithm, f(n) > 0, produces a matching of negative free-energy ≤ f(n) · E* < 0 iff a matching of energy E* < 0 exists...
- ...i.e. iff X is 3-partitionable!

Theorem

For some nearest-neighbor model \mathcal{N} , one has RNA-PK-FOLD $(\mathcal{N}) \notin APX$.

Proof (continued).

- The energy of any matching of w_X under \mathcal{N} is either 0 (no base-pair), $-|w_X| < 0$ ($\Rightarrow X$ is 3-partitionable) or $+\infty$ (any other case).
- **Reminder:** Polynomial-time 1/f(n)-approximation algorithm bound to produce solution having free-energy $\leq f(n) \cdot OPT$.

Any 1/f(n)-approx. algorithm, f(n) > 0, produces a matching of negative free-energy ≤ f(n) · E* < 0 iff a matching of energy E* < 0 exists...

• ... i.e. iff X is 3-partitionable!

Theorem

For some nearest-neighbor model \mathcal{N} , one has RNA-PK-FOLD $(\mathcal{N}) \notin APX$.

Proof (continued).

- The energy of any matching of w_X under \mathcal{N} is either 0 (no base-pair), $-|w_X| < 0$ ($\Rightarrow X$ is 3-partitionable) or $+\infty$ (any other case).
- **Reminder:** Polynomial-time 1/f(n)-approximation algorithm bound to produce solution having free-energy $\leq f(n) \cdot OPT$.
- Any 1/f(n)-approx. algorithm, f(n) > 0, produces a matching of negative free-energy ≤ f(n) · E* < 0 iff a matching of energy E* < 0 exists...

• ... i.e. iff X is 3-partitionable!

Theorem

For some nearest-neighbor model \mathcal{N} , one has RNA-PK-FOLD $(\mathcal{N}) \notin APX$.

Proof (continued).

- The energy of any matching of w_X under \mathcal{N} is either 0 (no base-pair), $-|w_X| < 0$ ($\Rightarrow X$ is 3-partitionable) or $+\infty$ (any other case).
- **Reminder:** Polynomial-time 1/f(n)-approximation algorithm bound to produce solution having free-energy $\leq f(n) \cdot OPT$.
- Any 1/f(n)-approx. algorithm, f(n) > 0, produces a matching of negative free-energy ≤ f(n) · E* < 0 iff a matching of energy E* < 0 exists...
- ... i.e. iff X is 3-partitionable!

Theorem

For some nearest-neighbor model \mathcal{N} , one has RNA-PK-FOLD $(\mathcal{N}) \notin APX$.

Proof (continued).

- The energy of any matching of w_X under \mathcal{N} is either 0 (no base-pair), $-|w_X| < 0$ ($\Rightarrow X$ is 3-partitionable) or $+\infty$ (any other case).
- **Reminder:** Polynomial-time 1/f(n)-approximation algorithm bound to produce solution having free-energy $\leq f(n) \cdot OPT$.
- Any 1/f(n)-approx. algorithm, f(n) > 0, produces a matching of negative free-energy ≤ f(n) · E* < 0 iff a matching of energy E* < 0 exists...
- ... i.e. iff X is 3-partitionable!
 - \Rightarrow Unless P = NP, there is no polynomial-time approximation algorithm of (non-necessarily constant) positive ratio for RNA-PK-FOLD(N).

- Dishonest inapproximability result for nearest-neighbor model
- Almost honest general hardness result for stacking model
- Honest 5-approximation for stacking model

Nearest Neighbor model:

Dishonest unapproximability → Hardness of approximating within ratio *f*(*r*)? where *r* is largest ratio between contributions of motifs.

Stacking model:

- Honest + efficient polynomial-time approximation scheme
- Approximations do not guarantee any overlap with best solution.
 - \rightarrow Polynomial k-overlap algorithm? (Seems unlikely...)

Thanks for listening Questions?

- Dishonest inapproximability result for nearest-neighbor model
- Almost honest general hardness result for stacking model
- Honest 5-approximation for stacking model

Nearest Neighbor model:

 Dishonest unapproximability → Hardness of approximating within ratio f(r)? where r is largest ratio between contributions of motifs.

Stacking model:

- Honest + efficient polynomial-time approximation scheme
- Approximations do not guarantee any overlap with best solution.
 - ightarrow Polynomial k-overlap algorithm? (Seems unlikely...)

Thanks for listening Questions?

- Dishonest inapproximability result for nearest-neighbor model
- Almost honest general hardness result for stacking model
- Honest 5-approximation for stacking model

Nearest Neighbor model:

 Dishonest unapproximability → Hardness of approximating within ratio f(r)? where r is largest ratio between contributions of motifs.

Stacking model:

- Honest + efficient polynomial-time approximation scheme
- Approximations do not guarantee any overlap with best solution.
 - \rightarrow Polynomial *k*-overlap algorithm? (Seems unlikely...)

Thanks for listening Questions?

- Dishonest inapproximability result for nearest-neighbor model
- Almost honest general hardness result for stacking model
- Honest 5-approximation for stacking model

Nearest Neighbor model:

 Dishonest unapproximability → Hardness of approximating within ratio f(r)? where r is largest ratio between contributions of motifs.

Stacking model:

- Honest + efficient polynomial-time approximation scheme
- Approximations do not guarantee any overlap with best solution.
 - \rightarrow Polynomial k-overlap algorithm? (Seems unlikely...)

Thanks for listening Questions?

References I

Tatsuya Akutsu.

Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl. Math., vol. 104, no. 1-3, pages 45–62, 2000.

M. R. Garey & D. S. Johnson.

Complexity Results for Multiprocessor Scheduling under Resource Constraints. SIAM Journal on Computing, vol. 4, no. 4, pages 397–411, 1975.

Samuel leong, Ming yang Kao, Tak wah Lam, Wing kin Sung & Siu ming Yiu.

Predicting RNA Secondary Structures with Arbitrary Pseudoknots by Maximizing the Number of Stacking Pairs. Journal Of Computational Biology, vol. 10, no. 6, pages 981–995, 2003.

N. Leontis & E. Westhof.

Geometric nomenclature and classification of RNA base pairs. RNA, vol. 7, pages 499–512, 2001.

R. B. Lyngsø& C. N. S. Pedersen.

RNA Pseudoknot Prediction in Energy-Based Models. Journal of Computational Biology, vol. 7, no. 3-4, pages 409–427, 2000.

Rune Lyngsø.

Complexity of Pseudoknot Prediction in Simple Models. In Proceedings of ICALP, 2004.

R. Nussinov & A.B. Jacobson.

Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc Natl Acad Sci U S A, vol. 77, pages 6903–13, 1980.

Jesse Stombaugh, Craig L. Zirbel, Eric Westhof & Neocles B. Leontis.

Frequency and isostericity of RNA base pairs. Nucleic Acids Research, vol. 37, no. 7, pages 2294–2312, 2009.

References II

J. E. Tabaska, R. B. Cary, H. N. Gabow & G. D. Stormo.

An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics, vol. 14, no. 8, pages 691–699, 1998.

M. Zuker & P. Stiegler.

Optimal computer folding of large RNA sequencesusing thermodynamics and auxiliary information. Nucleic Acids Res., vol. 9, pages 133–148, 1981.