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Motivation: RNA folding prediction through statistical sampling

RNA Structure
RNA = Sequence over {A,C,G,U}.
RNA folds, creating hydrogen bonds.
Such base-pairs stabilize structure.
Free-energy ES assigned to each structure S.

Simplified energy model [Nussinov-Jacobson 78]
Only non-crossing base-pairs allowed→ Secondary Structures
Free-Energy = −# Base-pairs

Boltzmann equilibrium [McCaskill 90]
Any structure S exists w.p. pS ∝ e−#ES/RT .
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Motivation: RNA folding prediction through statistical sampling

RNA in silico search: from sequence to functional secondary structure
Earlier works: Functional sec. str. = Most probable structure
But approach lacks robustness to errors in energy models.

[Ding-Lawrence 03] Functional sec. str. = Centroid structure

[Halvorsen et al 2010]

1 Draw k sec. str. at random in the Boltzmann distribution
2 Cluster them using some machine learning technique
3 Pick most probable cluster and return its centroid

⇒ This simple idea greatly improved specificity of predictions.
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Motivation: RNA folding prediction through statistical sampling

A closer look at the (meta)-algorithm:
1 Draw k sec. str. at random (with replacement!) in the Boltzmann distribution

Redundancy is uninformative, one should aim for k distinct secondary structures.

Which additional cost is induced by the redundant generation?

↓
Worst-case complexity? (k =#Structures)

Secondary structures are encoded by a context-free language.
↓

How many generations before obtaining each word of length n in the language?
↓

Coupon collector problem!
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The Coupon Collector problem (uniform)

m→ Number of coupons
Cm → #purchased coupons (waiting time) for full collection (random variable).
Uniform distribution: Each coupon drawn with probability 1/m.
Average cost: - It takes a first coupon to get hooked!
- One must then buy, on the average, m

m−red coupons to get the coupon. . .

E [Cm] = 1

+ m
m−1

+ m
m−2

+ . . .+ m
m−k + . . . = m · Hm ∼

m→∞
m ln m

.
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The Coupon Collector problem (uniform)

How many stickers must she (I!) buy, on average, to get the full collection?
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The Coupon Collector problem (uniform)

10/c per sticker
m = 539 stickers

⇒ 339 e!!!

How many stickers must she (I!) buy, on average, to get the full collection?

m→ Number of coupons
Cm → #purchased coupons (waiting time) for full collection (random variable).
Uniform distribution: Each coupon drawn with probability 1/m.
Average cost: - It takes a first coupon to get hooked!
- One must then buy, on the average, m

m−k coupons to get the k + 1-th coupon. . .

E [Cm] = 1 + m
m−1 + m

m−2 + . . .+ m
m−k + . . . = m · Hm ∼

m→∞
m ln m.
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Coupon Collector (non-uniform version)

Everybody knows that the dice are loaded, Everybody rolls with their fingers
crossed. . . Leonard Cohen, Everybody Knows

Each sticker vi is now drawn with probability pi ,
m∑

i=1
pi = 1.

Theorem (Flajolet-Gardy-Thimonier,92)

E [Cm] =

∫ ∞
0

(
1−

m∏
i=1

(
1− e−pi t

))
dt.

Difficult to evaluate exactly in general⇒ Asymptotically?

Some results, derived on a case per case basis:

(i) [David-Barton,62] pi =
2i

m(m + 1)
⇒ E [Cm] ∼

m→∞

(
2π√

3
− 3
)
·m · (m + 1).

(ii) [Hildebrand,93] pi =
1

iHm
⇒ E [Cm] ∼

m→∞
m · Hm · log m.
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A more general result

Distribution defined by a sequence of positive numbers {a1, ..., am} :

pi =
ai

µm
, with µm =

m∑
i=1

ai .

Define f (·) such that ai = 1
f (i) .

Theorem (Boneh-Papanicolaou,94)

If f satisfies:

(i) f (x)↗∞, (ii)
f ′(x)

f (x)
↘, and (iii)

f ′′(x)/f ′(x)

(f ′(x)/f (x)) log(f ′(x)/f )(x)
→ 0,

Then E [Cm] ∼
m→∞

µm · f (m) · log
f (m)

f ′(m)

What about sequences whose weights appear with multiplicities?
(e.g. unbounded #occurrences of some ai as m→∞)
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Word collector?

Random generation of words

+
Coupon Collector

=
Words collector
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Which probability distribution on words?

Definition

i L is a language over Σ = (a1, ..., ak ), and Ln its restriction to words of length n.

ii Weight of a letter ai → πai ∈ R+.

iii Weight of a word ω ∈ Ln → π(ω) =
∏

a∈ω
πa

iv Weighted probability distribution, defined on Ln by:

∀ω ∈ Ln : P[ω] =
π(ω)

µn
, with µn =

∑
ω∈Ln

π(ω).

Remark: Words having equal composition have equal probability:

P[ababbabaaa] = P[aababbbaaa] = P[aaaaaabbbb] =
π6

aπ
4
b

µ10
.

Many coupons have equal weight, i.e. equal probabilities! ⇒ Large multiplicities
⇒ None of the general theorems applies. . .
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Asymptotics

Reminder:

E [Cm] =

∫ ∞
0

Φ(t)dt with Φ(t) = 1−
m∏

i=1

(
1− e−pi t

)
.

Asymptotics of E [Cm]→ Evaluate integral?

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

3

limit

Value of k

Ψ(t) on {a, b}k (m = 2k ) upon well-chosen change of variable.
Left: Uniform distribution. Right: Weighted distribution, πa/πb = 2/3.
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−t
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ω(m)
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Mm,i

.
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Asymptotics (continued)

Evaluating the integral? → for distributions featuring large multiplicities.

Definition (Distribution description)

i Smallest weight of a letter set to 1.

ii Wm: Vector of distinct weights, ordered increasingly.

iii Mm,i : Multiplicity of weight Wm,i .

Hypotheses (simplified):
H1. Multiplicity. Control over (sufficient) growth of weights multiplicities Mm,i .
H2. Regularity. For large values of m, smallest weights of Wm no longer depend on m.
H3. Growth. Weight growth dominates multiplicity growth.

Theorem (du Boisberranger-Gardy-P,2012)

If weight distribution satisfies hypotheses H1, H2 et H3, then

E [Cm] ∼
m→∞

κ · µm

ω(m)
· g(m)

where κ: explicit constant,

ω(m): smallest weight in collection and g(m): log of
rank-independent contribution in leading term of multiplicity as m→∞.
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Application: Σ∗

Description: Language (a1, ..., ak )∗ with 1 = πa1 = ... = πaj < πaj+1 ≤ ... ≤ πak .

. . . Verify Hypotheses H1, H2 and H3 (ouch!). . .

Reminder: E [Cm] ∼ κ · µm
ω(m)
· g(m).

i m = #coupons = #words of length n→ kn.

ii ω(m) = smallest weight = weight of word an
1 = πn

a1 → 1.

iii µm = (a1 + ...+ ak )n → m · ( a1+...+ak
k )logk (m).

iv g(m) ∼ log log m if j = 1, or g(m) ∼ log m otherwise.

Proposition

E [Cm] ∼
{
κ1 ·mp · log log m if j = 1,
κ2 ·mp · log m otherwise.

where p = logk (πa1 + · · ·+ πak ).

Asymptotic waiting time differs from the uniform case.
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Application: RNA Secondary Structures

Description: RNA sec. str. unambiguously generated by context-free grammar

S → ( S≥θ ) S | • S | ε and S≥θ → ( S≥θ ) S | • S≥θ | •θ .

where θ: minimal distance between matching parentheses (θ = 1 or 3).
Boltzmann probability distribution⇒ π• = 1 and π( × π) = e1/RT (π( < π)).

. . . Verify Hypotheses H1, H2 and H3. . .

Properties:
i Gen. fun. + Singularity analysis⇒ µm ∼ κ ·m · (log m)−3/2

ii Smallest weight = Weight of unpaired structure •n = 1
iii Dominating term for multiplicity growth: g(m) ∼ log log m.

Proposition

E [Cm] ∼ κ ·mp · (log m)3p/2 · log log m

where p = log ρθ
log ηθ

> 1 and ηθ (resp. ρθ) is the dom. sing. for the number (resp.
cumulated weight) of RNA sec. str.

Again, asymptotic waiting time differs from the uniform case.
Corollary: On average, a secondary structure is generated Θ((ηθ/ρθ)n · log(n)) times.
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Conclusion

Words collector: new instance of the coupon collector.

Original probability distribution: Large multiplicities.

Asymptotic behaviors are diverse and differs from uniform case.

Application: Still on a case-per-case basis. . .

Variants: Partial collections? Waiting time before k distinct objects (alt. cumulated
probability of 1− ε) are obtained.

Language classes adopting ubiquitous asymptotic behaviors
(regular/algebraic/strongly connected→ Drmota theorem...)

Obtain second moment to get limiting distribution [Neal 08]

Thanks for listening
Questions?
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