

Goals

• To help your survive the RNA data jungle.

- To conceptually and practically connect the three levels of RNA structural information.
- To introduce mature prediction and annotation tools.
- To illustrate the structure-informed curation RNA alignments.
- To keep this fun and interactive.

Schedule (French)

When?	What?		
9:30	Introduction		
9:45	First session: Databases, 2D structure prediction tools, 3D annotations tools, hands on.		
10:30	Interactive coffee break		
10:45	Second session: Ensemble approaches, comparative methods, further refinement of alignments, assessment.		
12:30	Discussion		
13:00	Lunch		

RNA structure(s)

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Secondary structure

Primary structure

Tertiary structure

Source: 5s rRNA (PDBID: 1K73:B)

RNA structure(s)

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure

Secondary⁺ structure

Tertiary structure

Source: 5s rRNA (PDBID: 1K73:B)

How RNA folds

RNA folding = Hierarchical stochastic process driven by/resulting in the pairing (hydrogen bonds) of a subset of its bases.

Sources of RNA data

Þ

Name	Data type	Scope	Description	File formats #Entries		URL
PDB	All-atoms	General	RCSB Protein Data Bank – Global repository for 3D molecular models	PDB	~1,900 models	http://www.pdb.org
NDB	All-atoms, Secondary structures	General	Nucleic Acids Database – Nucleic acids models and structural annotations.	PDB, RNAML	~2,000 models	http://bit.ly/rna-ndb
RFAM	Alignments, Secondary structures ³	General	RNA FAMilies – Multiple alignments of RNA as functional families. Features consensus secondary structures, either predicted and/or manually curated.	stockholm, fasta	~1,973 Alignments/ structures, 2,756,313 sequences	http://bit.ly/rfam-db
STRAND	Secondary structures	General	The RNA secondary STRucture and statistical ANalysis Database – Curated aggregation of several databases	CT, BPSEQ, RNAML, FASTA, Vienna	4,666 structures	http://bit.ly/sstrand
PseudoBase	Secondary structures	Pseudokn otted RNAs	PseudoBase – Secondary structure of known pseudonotted RNAs.	Extended Vienna RNA	359 structures	http://bit.ly/pkbase
CRW	Sequence alignments, Secondary structures	Ribosoma I RNAs, Introns	Comparative RNA Web Site – Manually curated alignments and statistics of ribosomal RNAs.	FASTA, ALN, BPSEQ	I,109 structures, 91,877 sequences	http://bit.ly/crw-rna

RNA file formats: Sequences (alignments)

>0.sativa.1 AJ489954.1/1-104

.....UGGCUGUGACGACUAGGUGAAAUU.CAAGCUCAACAGACCAAAUCACAGGUCUC .UCUCCAAGGCCUU.UGGAGAUGGGAUCUGUAUGCCGA.....GU.UUCCGCUC....

.AGCCG.....

>0.sativa.2 AY013245.2/61987-62105

....GAUGGCAGUGACGACUUGGUAAUAUU.CAAGCUCAACAGACCAAAUCACAGGUCUU CCUCUCUGGAUCCAC..UCCUCUGGGAUUGAUUUG..UAUGCCGAUUUUCCCGCUGAACC GAGCCAUC....

>0.sativa.3 AJ307928.1/3-121

....GAUGGCAGUGACGACCUGGUAAUAUU.CAAGCUCAACAGACCAAAUCACAGGUCUU ..UCUCUCUGGAUCUACUCCUCAGGGAUUGAUUUG.UAUGCCGAUUUUUCCGCUGAACC GAGCCAUC....

Fasta

CLUSTAL 2.1 multiple sequence alignment

M.musculus.1 H.sapiens.2 H.sapiens.3 T.rubripes.1 H.sapiens.1	UGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUG-CAGGUCCCAAGGGGCCUAUUCU 55 UGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUG-CAGGUCCCAAU-GGCCUAU-CU 53 GGACCCAGUUCAAGUAAUUCAGGAUAGGUUGUGUG-CUGUCCAGCCUGUUCU 51 CAACCGGGUUCAAGUAAUCCAGGAUAGGCUCUGUAUCUGUCUUGGCCUAUGCU 53 UGGCUGGAUUCAAGUAAUCCAGGAUAGGCUGUUUCCAUCUGUG-AGGCCUAUUCU 54 * * *
M.musculus.1	UGGUUACUUGCACGGGGAC 74
H.sapiens.2	UGGUUACUUGCACGGGGAC 72
H.sapiens.3	CCAUUACUUGGCUCGGGGAC 71

Aln

RNA file formats: Sequences (alignments)

# STOCKHOLM 1.0 #=GF ID mir-22 #=GF AC RF00653	
 O.latipes.1 Gasterosteus_aculeat.1 R.esox.1	CGUUG.CCUCACAGUCGUUCUUCA.CUGGCU.AGCUUUAUGUCCCACG. GGCUG.ACCUACAGCAGUUCUUCA.CUGGCA.AGCUUUAUGUCCUCAUCU AGCUGAGCACACAGUUCUUCA.CUGGCA.GCCUUAAGGUUUCUGUAG
#=GC SS_cons #=GC RF	.<<<<< <ggccg.acucacagcaguucuuca.cuggca.agcuuuauguccuuauaa< td=""></ggccg.acucacagcaguucuuca.cuggca.agcuuuauguccuuauaa<>
O.latipes.1 Gasterosteus_aculeat.1 R.esox.1	CCCCACCGUAAAGCU.GC.CAGUUGAAGAGCUGUUGUG.UGUAACC ACCAGC.UAAAGCU.GC.CAGCUGAAGAACUGUUGUG.GUCGGCA ACAGGC.UAAACCU.GC.CAGCUGAAGAACUGCUCUG.GCCAGCU
#=GC SS_cons #=GC RF //	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Stockholm (RFAM)

> Rat Alanine tRNA

Vienna (RNAFold)

1590 1600 1610 1620 1630 # |123456789|123456789|123456789|123456789|123456 \$ 1590 AAAAAACUAAUAGAGGGGGGACUUAGCGCCCCCAAACCGUAACCCC=1636 % 1590 :::::::::::::[[[[[[:::::((([]]]]]::::)))::::::

PseudoBase

BPSeq (CRW)

Filename: AM286415_b.bpse Organism: Yersinia entero Accession Numbers: AM2864 Citation and related info 1 U 0	q colitica 15 rmation a	subsp. e available	enterocol e at http	litica 80 p://www.u)81 rna.ccbb.	utexas.edu
117 U 0 118 U 236 119 G 235 120 C 234						
121 C 233						
122 U 232	80	dG = -3	3.48 [In	itially	-35.60]	
123 G 231	1	U	0	2	80	1
124 G 230	2	G	1	3	79	2
	3	G	2	4	78	3
230 C 124	4	G	3	5	77	4
231 C 123	5	А	4	6	76	5
$232 \land 122$	6	U	5	7	0	6
233 G 121	7	G	6	8	75	7
234 G 120						
235 C 119	75	U	74	76	7	75
236 A 118	76	U	75	77	5	76
250 A 110	77	С	76	78	4	77
	78	С	77	79	3	78
	79	U	78	80	2	79
	80	А	79	0	1	80

|--|

HEADER 27-JUL-09 RNA 3IGI TITLE TERTIARY ARCHITECTURE OF THE OCEANOBACILLUS IHEYENSIS GROUP TITLE 2 II INTRON COMPND $MOL_ID: 1:$ COMPND 2 MOLECULE: GROUP IIC INTRON; COMPND 3 CHAIN: A: . . . 8009 P U A 375 19.076 79.179 370.688 1.00 66.25 ATOM Ρ ATOM 8010 OP1 U A 375 18.815 77.862 371.313 1.00 83.22 0 ATOM 8011 OP2 U A 375 19.869 80.203 371.409 1.00 56.32 0 . . . CONECT 8654 8520 CONECT 8655 8521 CONECT 8658 8531 MASTER 717 0 66 0 0 0 69 6 8656 2 123 33 END

PDB

<?xml version="1.0"?>
<!DOCTYPE rnaml SYSTEM "rnaml.dtd">
<rnaml version="1.0">
<molecule id="xxx">
<sequence> ... </sequence>
<structure> ... </sequence>
</molecule>
<interactions> ... </interactions>
</rnaml>

```
<?xml version="1.0"?>
<!DOCTYPE rnaml SYSTEM "rnaml.dtd">
<rnaml version="1.0">
  <molecule id="xxx">
      <sequence>
        <numbering-system id="1" used-in-file="false">
           <numbering-range>
              <start>1</start><end>387</end>
           </numbering-range>
        </numbering-system>
        <numbering-table length="387">
           2 3 4 5 6 7 8...
        </numbering-table>
        <seq-data>
           UGUGCCCGGC AUGGGUGCAG UCUAUAGGGU...
        </seq-data>
        . . .
     </sequence>
     <structure> ... </structure>
    </molecule>
 <interactions> ... </interactions>
</rnaml>
```



```
<?xml version="1.0"?>
<!DOCTYPE rnaml SYSTEM "rnaml.dtd">
<rnaml version="1.0">
   <molecule id="xxx">
     <sequence> ... </sequence>
     <structure>
        <model id="yyy">
           <base> ... </base> ...
            <str-annotation>
              <base-pair>
                 <base-id-5p><base-id><position>2</position></base-id></base-id-5p>
                 <base-id-3p><base-id><position>260</position></base-id>3p>
                 <edge-5p>+</edge-5p>
                 <edge-3p>+</edge-3p>
                 <bond-orientation>c</bond-orientation>
              </base-pair>
              <base-pair comment="?">
                 <base-id-5p><base-id><position>4</position></base-id></base-id-5p>
                 <base-id-3p><base-id><position>259</position></base-id>3p>
                 <edge-5p>S</edge-5p>
                 <edge-3p>W</edge-3p>
                 <bond-orientation>c</bond-orientation>
              </base-pair>
           </str-annotation>
       </model>
     </structure>
   </molecule>
 <interactions> ... </interactions>
</rnaml>
```

Secondary Structure representations

http://varna.lri.fr

Run the web start version of VARNA at: http://varna.lri.fr/downloads.html

Locate and save on disk a bunch of secondary structures from the RNA Strand Database (CT or BPseq): http://www.rnasoft.ca/strand/

 Load these files and using the region highlight feature of VARNA, highlight a region of interest.

Menu Edit Annotation New Region

Basic prediction

Minimal free-energy folding

Minimal Free-Energy (MFE) Folding

...CAGUAGCCGAUCGCAGCUAGCGUA...

- > Turner model associates energy to each compatible secondary structure.
- Vienna RNA package implements a O(n³) algorithm for computing the most stable folding...
- but also offers nice visualization features.

RFAM: RNA functional families

http://rfam.sanger.ac.uk/

Minimal Free-Energy folding of RNA

 Get the RFAM alignment for the the DI-D4 domain of the Group II intron (RFAM ID: RF02001 – Seed – Stockholm format)

http://rfam.sanger.ac.uk/

- Load the A. Capsulatum (Acidobacterium_capsu.1) sequence in VARNA.
- Run RNAFold on this sequence using the Vienna RNA web tools suite: http://rna.tbi.univie.ac.at/
- Retrieve the result (Vienna format) and compare it with the consensus structure.
- Rerun RNAFold using more recent energy parameters (Show advanced options → Turner 2004 energy model)
- Compare the predictions in both models.

Advanced structural features

Tertiary motifs and pseudoknots

Non canonical interactions

RNA nucleotides bind through edge/edge interactions.

Non canonical are weaker, but cluster into modules that are structurally constrained, evolutionarily conserved, and functionally essential.

Non canonical interactions

RNA nucleotides bind through edge/edge interactions.

Non canonical are weaker, but cluster into modules that are structurally constrained, evolutionarily conserved, and functionally essential.

Non canonical interactions

RNA nucleotides bind through edge/edge interactions.

Non canonical are weaker, but cluster into modules that are structurally constrained, evolutionarily conserved, and functionally essential.

RNA nucleotides bind through edge/edge interactions.

Non canonical are weaker, but cluster into modules that are structurally constrained, evolutionarily conserved, and functionally essential.

Leontis/Westhof nomenclature: A *visual grammar* for tertiary motifs

+ Tools to infer base-pairs from experimentally-derived 3D models RNAView, MC-Annotate...

Automated annotation of 3D RNA models

- Get from the NDB and compile (see Readme) the RNAView software* http://ndbserver.rutgers.edu/services/download/
- Retrieve the 3IGI model from the RSCB PDB as a PDB file.
- Annotate it using RNAview (-p option) to create a RNAML file
- Visualize the output RNAML file within VARNA
- Run RNAFold (default options) on the sequence and compare the prediction with the one inferred from the 3D model.

Pseudoknots

Pseudoknots are complex topological models indicated by crossing interactions.

- Pseudoknots are largely ignored by computational prediction tools:
 - Lack of accepted energy model
 - Algorithmically challenging
- Yet heuristics can be sometimes efficient.
- Visualizing of secondary structure with pseudoknots is supported by:
 - PseudoViewer
 - VARNA

Predicting and visualizing Pseudoknots

Get seq./struct. data for a pseudoknot tmRNA the PseudoBase (ID: PKB210) http://pseudobaseplusplus.utep.edu/

- Visualize the structure using VARNA and the Pseudoviewer: http://pseudoviewer.inha.ac.kr/
- Fold this sequence using RNAFold and compare the result to the native structure
- Fold this sequence using Pknots-RG (Program type: Enforcing PK): http://bibiserv.techfak.uni-bielefeld.de/pknotsrg/

Ensemble approaches in RNA folding

- RNA in silico paradigm shift:
 - From single structure, minimal free-energy folding...
 - ... to ensemble approaches.

Ensemble diversity? Structure likelihood? Evolutionary robustness?

Example:

Comparative data

RNA Alignment curation

- Different tools for different tasks
 - 'top down' Structure guided modelling
 - S2S/Assemble
 - Interactive 3D modelling edit structure based on fold predictions and manual manipulation
 - Alignments arise from RNA structure comparisons
 - 'Bottom up'
 - Use evolutionary information (conservation patterns) to infer structural homology
 - Alignment methods like locaRNA or R-COFFEE maximise similarity in base pair contacts
 - Still need to curate/correlate with respect to other evidence for homology
 - Why curate when no structure is available
 - INFERNAL tool to search genomes for matches to RFAM alignments
 - □ Functional modules, etc.

A selection of tools ..

- RALEE (based on Emacs)
 - ▶ Favourite for hardcore RNA modellers (,), space and delete to edit

4SALE

- Visual editor also accesses RNA alignment and folding services
- BoulderAle: <u>http://boulderale.sourceforge.net/</u>
 - Web based RNA alignment annotator/editor (up to 1000 nucleotides)
 - Uses VARNA for 2D visualization & KineMAGE for 3D structure
 - Stockholm file + Vienna files + GFF
 - Model 2D structure based on isostericity
 - Curate alignments to align bases that can form similar base-base interactions
- Jalview new kid on the block...

4SALE

Upcoming Jalview features

Jalview's features relevant to RNA

Lauren Lui, UC Santa Cruz. http://jalview-rnasupport.blogspot.com/

Jan Engelhardt (Uni. Leipzig)

0-0-0

VARNA: Visualization Applet ×

→ C 🕓 varna.lri.fr/demo.html

←

VARNA: Visualization Applet for RNA

A Java lightweight component and applet for drawing the RNA secondary structure

RNA alignment tutorial with Locarna and Jalview

- I. Start Development version of Jalview http://www.compbio.dundee.ac.uk/users/wsdevI/jalview/develop/webstart/jalview_IG.jnlp
- 2. Import RF00162 from RFAM seed alignment
- 3. Select first 6 sequences in alignment, copy and paste to new alignment (shift + cmd/CTRL+V)
- 4. Select 'Edit->remove all gaps'
- 5. Add PDB sequence 2gis
- 6. Open locarna server page at <u>http://rna.informatik.uni-</u> <u>freiburg.de:8080/LocARNA.jsp</u>
- Select/copy all 7 (ctrl+a + ctrl+c) and paste into locarna input
- 8. Wait a few minutes...

Viewing the locarna results in Jalview

alifold

۱ ۱

- Jalview doesn't support direct retrieval of LocaRNA results = just yet
- I. Download '[alignment]' link
- 2. Open in a text editor
- Replace the lower RNA secondary structure line with the 'alifold' prediction given in the locarna output
- 4. Save and load into Jalview

download [alignment] [matrix] [tree]

CLUSTAL W LUC	ANNA 1.5.2 - LOCUL ALLYNNIEN
Bacillus_liche_1 Bacillus_licheni L_innocua_6_1_11 L_innocua_7_1_10 PDB_2gis_2GIS_A_ Pelobacter_propi Bacillus_liche_2	CUCUUAUCCAGAGU-GGUGGAGGGA UUCUUAUCAAGAGU-GGUGGAGGGA UUCUUAUCAAGAGCAGGCAGAGGGA AUCUUAUCCAGAGU-GGUGGAGGGA CUCUUAUCCAGAGC-GGUAGAGGGA GGCUUAUCAAGAG-AGGUGGAGGGA UGCUUAUCCAGAGU-GGUGGAGGGA CUCUUAUCCCGAGCUGGUGGAGGGA CUCUUAUCCCGAGCUGGUGGAGGGA
Bacillus_liche_1 Bacillus_licheni L_innocua_6_1_11 L_innocua_7_1_10 PDB_2gis_2GIS_A_ Pelobacter_propi Bacillus_liche_2	<pre>))))))))))). GUGCUCUUGAAGAUAAGGA- CGCUGAGAGAUAAGGA- UUGUUCUGAAAGAUGAGAA- UCUCCUG-AACGAUGAGAGA- CGUUGAAAGAUGAGCCA GAUGAGAGGGUGUGCU- AUACCUUGAGCGAUAAGAG- .)))))))))).</pre>

LocaRNA and RNAliFold in Jalview

VARNA in Jalview

Linked Highlighting & Selections

Inspection and curation of prediction

Summary/Discussion