A Combinatorial Framework for Designing (Pseudoknotted) RNA Algorithms

Yann Ponty Cédric Saule

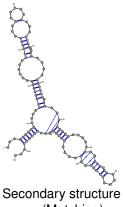
CNRS - INRIA AMIB - École Polytechnique - Palaiseau - France

Institute for Research in Immunology and Cancer - Montreal - Canada

September 5, 2011

RNA structure

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC



Primary structure

(Matching)

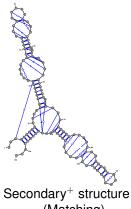
Tertiary structure Source: 5s rRNA (PDBID: 1K73:B)

Bottom-up approach to molecular biology

Understand and predict how RNAs fold to decypher their function(s).

RNA structure

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC



Primary structure

(Matching)

Tertiary structure Source: 5s rRNA (PDBID: 1K73:B)

Bottom-up approach to molecular biology

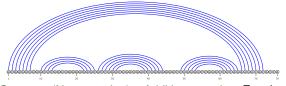
Understand and predict how RNAs fold to decypher their function(s).

MFE Folding

Input: RNA sequence ω

Definition (Minimum Free-Energy (MFE) Folding Problem)

Find a partial matching s^* of positions from ω that min(max)-imizes a free-energy function E_{ω,s^*} within some restricted class of matching.



Secondary Structure (Non-crossing) + Additive energies: Easy!

Optimal substructure ⇒ Dynamic Programming (DP)

• (Weighted) base-pairs maximization:

 $\Theta(n^3)$

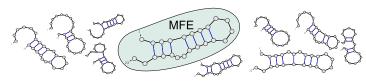
[Nussinov and Jacobson, 1980]

Nearest-neighbor model:

 $\Theta(n^4)/\Theta(n^3)$

[Zuker and Stiegler, 1981]

Boltzmann ensemble and partition function



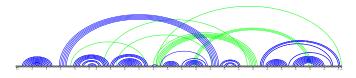
- Energy functions are not ideally accurate
- MFE structure might be isolated

⇒ Recent thermodynamic studies postulate a Boltzmann equilibrium, i.e. admissible conformations exist in a probability distribution [McCaskill, 1990]

$$\mathbb{P}(s) = \frac{e^{\frac{-E_s}{RT}}}{\mathcal{Z}} \quad \text{where} \quad \mathcal{Z} = \sum_{s' \in S} e^{\frac{-E_s}{RT}} \quad \text{(Partition function)}$$

Observables can be derived, such that the base-pairing prob. [McCaskill, 1990], centroid-structure [Ding and Lawrence, 2003], likelihood of multi-stable RNAs [Voss *et al.*, 2004], confidence in prediction [Mathews, 2004], moments of the free-energy distribution [Miklós *et al.*, 2005]...

Pseudoknots



Any matching (crossing): Harder for realistic energy models

• BP maximization: $O(n^3)$ (Max. Weighted Matching)

[Tabaska et al., 1998]

Nearest-neighbor:

NP-complete

[Akutsu, 2000, Lyngsø and Pedersen, 2000]

In practice:

- Heuristics/local search
- Restricted conformational spaces solved exactly (DP) in polynomial time [Rivas and Eddy, 1999, Lyngsø and Pedersen, 2000, Dirks and Pierce, 2003, Reeder and Giegerich, 2004, Cao and Chen, 2006, Cao and Chen, 2009, Chen et al., 2009, Cao and Chen, 2009, Huang et al., 2009. Theis et al., 2010, Reidys et al., 2011].

Very few of them allow for a transposition to ensemble based approach!

Developing new algorithms: Motivation

Folding RNAs including pseudoknots remains a challenge:

- Incorporate incoming thermodynamic parameters
- Capture complex topological aspects
- Optimize expressivity/computational complexity tradeoff
- Address ensemble-related questions
- Tackle other problems (RNA-RNA interaction)

Yet developing new DP algorithms is tedious and error-prone:

- Lack of modularity
- Tedious proofs for unambiguity/correctness
- Hard to connect DP equation (product) to decomposition (source)

CS geek: Underlying object to define meta-algorithms/proofs?

State-of-the-art

Existing abstractions for Dynamic Programming algorithms:

- Giegerich et (many!) al: Algebraic Dynamic Programming
 - Folding = Parsing: Based on grammar/algebra pair
 - + Automated (efficient!) code generation
 - + Partially automated (heuristic) ambiguity check
 - + High level: No indices...
 - Hacky for context-dependent features (Addressed by Bellmann's GAP?)
- Lefebvre et al: Multi-tape attributed grammars
- Roytberg and Finkelstein: Forward hypergraphs

State-of-the-art

Existing abstractions for Dynamic Programming algorithms:

- Giegerich et (many!) al: Algebraic Dynamic Programming
- Lefebvre et al: Multi-tape attributed grammars
 - Context-free grammar, coupled with attributes system
 - + Mixed algebras
 - Synchronized multiple tapes for PKs
 - ⇒ Performance degradation...
- Roytberg and Finkelstein: Forward hypergraphs

State-of-the-art

Existing abstractions for Dynamic Programming algorithms:

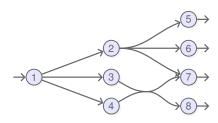
- Giegerich et (many!) al: Algebraic Dynamic Programming
- Lefebvre et al: Multi-tape attributed grammars
- Roytberg and Finkelstein: Forward hypergraphs
 - Conformations bijectively associated with hyperpaths (~ Traces)
 - + Highly expressive
 - Low-level: Explicit indices manipulation

Main Contribution

Considering families of hypergraphs as combinatorial classes will

- Simplify algorithms
- Ease proving their correctness
- Help develop new applications

Hypergraphs as decompositions



Hypergaphs generalize directed graphs to arcs of arbitrary in/out degrees.

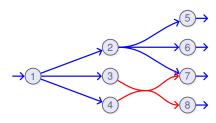
Definition (Hypergraph)

A directed hypergaph \mathcal{H} is a couple (V, E) such that:

- V is a set of vertices
- E is a set of hyperarcs $e = (t(e) \rightarrow h(e))$ such that $t(e), h(e) \subset E$

Forward hypergraphs, or F-graphs, are hypergraphs whose arcs have ingoing degree exactly 1.

Hypergraphs as decompositions



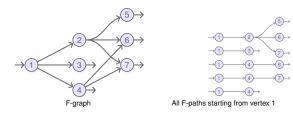
Hypergaphs generalize directed graphs to arcs of arbitrary in/out degrees.

Definition (Hypergraph)

A directed hypergaph \mathcal{H} is a couple (V, E) such that:

- V is a set of vertices
- E is a set of hyperarcs $e = (t(e) \rightarrow h(e))$ such that $t(e), h(e) \subset E$

Forward hypergraphs, or F-graphs, are hypergraphs whose arcs have ingoing degree exactly 1.

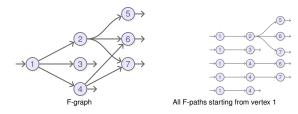


A F-path is a tree having root $s \in V$, whose children are F-paths built from the outgoing vertices of some arc $e = (s \to t) \in E$.

Remark: Vertices of out degree 0 ($t = \emptyset$) provide an elegant terminal case.

F-graph is independent iff each F-path sees at most once each arc.

- Weight of a path is the product of its arcs' values
- Score of a path is the sum of its arcs' values

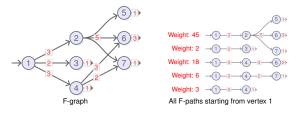


A F-path is a tree having root $s \in V$, whose children are F-paths built from the outgoing vertices of some arc $e = (s \to t) \in E$.

Remark: Vertices of out degree 0 ($t = \emptyset$) provide an elegant terminal case.

F-graph is independent iff each F-path sees at most once each arc.

- Weight of a path is the product of its arcs' values
- Score of a path is the sum of its arcs' values

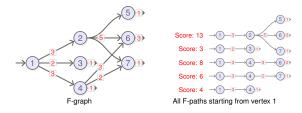


A F-path is a tree having root $s \in V$, whose children are F-paths built from the outgoing vertices of some arc $e = (s \to t) \in E$.

Remark: Vertices of out degree 0 ($t = \emptyset$) provide an elegant terminal case.

F-graph is independent iff each F-path sees at most once each arc.

- Weight of a path is the product of its arcs' values
- Score of a path is the sum of its arcs' values



A F-path is a tree having root $s \in V$, whose children are F-paths built from the outgoing vertices of some arc $e = (s \to t) \in E$.

Remark: Vertices of out degree 0 ($t = \emptyset$) provide an elegant terminal case.

F-graph is independent iff each F-path sees at most once each arc.

- Weight of a path is the product of its arcs' values
- Score of a path is the sum of its arcs' values

 $\mathcal{H} = (v_0, V, E, \alpha)$: acyclic F-graph v_0 : Init. node α : feature function

$$m_{s} = \min_{\rho \in \mathcal{P}_{s}} Score(s)$$

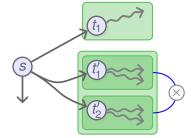
$$= \min_{e = (s \to t)} \left(u(e) + \sum_{u \in t} m_{u} \right)$$

Problem	Recurrence	Time/space (DP)	
Min. score	$m_s = \min_{e=(s o t)} \left(u(e) + \sum_{u \in t} m_u \right)$	$\Theta(E + V)/\Theta(V)$	
Num. paths	$n_s = \sum \prod n_u$	$\Theta(E + V)/\Theta(V)$	
Total weight	$W_{S} = \sum_{e=(s \to t)}^{(s \to t)} \underbrace{u(e) \cdot \prod_{s' \in t} W_{s'}}_{s' \in t}$	$\Theta(E + V)/\Theta(V)$	

 $\mathcal{H} = (v_0, V, E, \alpha)$: acyclic F-graph v_0 : Init. node α : feature function

$$n_s = |\mathcal{P}_s| = \sum_{p \in \mathcal{P}_s} 1$$

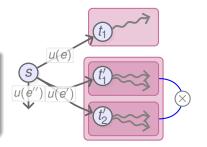
$$= \sum_{(s \to t)} \prod_{u \in t} n_u$$



Problem	Recurrence	Time/space (DP)
Min. score	$m_s = \min_{e=(s o t)} \left(u(e) + \sum_{u \in t} m_u \right)$	$\Theta(E + V)/\Theta(V)$
Num. paths	$n_s = \sum_{u \in I} \prod_{u \in I} n_u$	$\Theta(E + V)/\Theta(V)$
Total weight	$W_{s} = V(s \rightarrow t) u \in t$ $W_{s} = V(e) \cdot V(e)$	$\Theta(E + V)/\Theta(V)$
Total Weight	$e=(s\to t) \qquad s'\in t$	

 $\mathcal{H} = (v_0, V, E, \alpha)$: acyclic F-graph v_0 : Init. node α : feature function

$$egin{aligned} w_s &= \sum_{p \in \mathcal{P}_S} \textit{Weight}(s) \ &= \sum_{e = (s
ightarrow t)} \textit{u}(e) \cdot \prod_{s' \in t} \textit{w}_{s'} \end{aligned}$$



Problem	Recurrence	Time/space (DP)
Min. score	$m_{s} = \min_{e=(s o t)} \left(u(e) + \sum_{u \in t} m_{u} \right)$	$\Theta(E + V)/\Theta(V)$
Num. paths	$n_s = \sum_{u \in I} \prod_{u \in I} n_u$	$\Theta(E + V)/\Theta(V)$
Total weight	$w_s = \sum_{e=(s \to t)}^{(s \to t)} u(e) \cdot \prod_{s' \in t} w_{s'}$	$\Theta(E + V)/\Theta(V)$

Problem	Recurrence	Time/space (DP)
Min. score	$m_s = \min_{e=(s o t)} \left(u(e) + \sum_{u \in t} m_u \right)$	$\Theta(E + V)/\Theta(V)$
Num. paths	$n_s = \sum_{(s \to t)} \prod_{u \in t} n_u$	$\Theta(E + V)/\Theta(V)$
Total weight	$w_s = \sum_{e=(s \to t)} u(e) \cdot \prod_{s' \in t} w_{s'}$	$\Theta(E + V)/\Theta(V)$

Assume a weighted (Boltzmann) probability distribution on F-paths $\mathcal{P}\colon$

$$\mathbb{P}(p) = \prod_{e \in p} \alpha(e) / w_{v_0}$$

Problem	Algorithm	Time/space (DP)
Random gen.	Compute w_s ; Starting with $s \leftarrow v_0$, pick an arc $s \rightarrow (t_1, t_2,)$ w.p. $\prod w_{t_i}/w_s$ and recurse on each t_i .	$\Theta(E + V)/\Theta(V)$
Arcs prob.	$p_e = \frac{b_{t(e)} \cdot \prod_{s' \in h(e)} w_{s'}}{w_{v_0}}$ $b_s = (1+) \sum_{s' \to (t_1 \cdots s \cdots)} \alpha(e') b_{s'} \prod_{t_i} w_{t_i}$	$\Theta(E + V + \sum \mathbf{h}(\boldsymbol{\theta}) ^2)$ $\Theta(V)$

Problem	Recurrence	Time/space (DP)
Min. score	$m_s = \min_{e=(s o t)} \left(u(e) + \sum_{u \in t} m_u \right)$	$\Theta(E + V)/\Theta(V)$
Num. paths	$n_s = \sum_{i} \prod_{i} n_u$	$\Theta(E + V)/\Theta(V)$
Total weight	$w_s = \sum_{e=(s \to t)}^{(s \to t)} \frac{u(e)}{u(e)} \cdot \prod_{s' \in t} w_{s'}$	$\Theta(E + V)/\Theta(V)$

Assume a weighted (Boltzmann) probability distribution on F-paths $\mathcal{P}\colon$

$$\mathbb{P}(p) = \prod_{e \in p} \alpha(e) / w_{\nu_0}$$

Problem	Algorithm	Time/space (DP)
Random gen.	Compute w_s ; Starting with $s \leftarrow v_0$, pick an arc $s \rightarrow (t_1, t_2,)$ w.p. $\prod w_{t_i}/w_s$ and recurse on each t_i .	$\Theta(E + V)/\Theta(V)$
Arcs prob.	$p_e = \frac{b_{t(e)} \cdot \prod_{s' \in \mathbf{h}(e)} w_{s'}}{w_{v_0}}$ $b_s = (1+) \sum_{s' \to (t_1 \cdots s \cdots)} \alpha(e') b_{s'} \prod_{t_i} w_{t_i}$	$\Theta(E + V + \sum \mathbf{h}(e) ^2)$ $\Theta(V)$

Given an RNA sequence ω and an energy function E, assume one has:

- \bullet Acyclic hypergraph $\mathcal{H},$ whose F-paths are in bijection with the targeted (pseudoknotted) conformations
- Feature function α which returns, for each F-path p, the energy $E_{\omega,s}$ of its conformation s_p .

Application	Hypergraph Algorithm	Arguments
MFE folding	Minimum score	(\mathcal{H}, α)
Partition function	Total weight	$(\mathcal{H}, e^{-\alpha/RT})$
Statistical sampling	Random generation	$(\mathcal{H}, e^{-\alpha/RT})$
BP probabilities (dot-plot)	Arcs prob.	$(\mathcal{H}, e^{-\alpha/RT})$

Message

Dynamic programming equations for ensemble applications are by-products of an underlying combinatorial decomposition (\Rightarrow Family of hypergraphs).

How to design such hypergraphs/energy function? You do it vourself! But combinatorics can help...

Given an RNA sequence ω and an energy function E, assume one has:

- \bullet Acyclic hypergraph $\mathcal{H},$ whose F-paths are in bijection with the targeted (pseudoknotted) conformations
- Feature function α which returns, for each F-path p, the energy $E_{\omega,s}$ of its conformation s_p .

Application		Hypergraph Algorithm	Arguments
MFE folding	\Leftrightarrow	Minimum score	(\mathcal{H}, α)
Partition function	\Leftrightarrow	Total weight	$(\mathcal{H}, e^{-lpha/RT})$
Statistical sampling	\Leftrightarrow	Random generation	$(\mathcal{H}, e^{-lpha/RT})$
BP probabilities (dot-plot)	\Leftrightarrow	Arcs prob.	$(\mathcal{H}, e^{-lpha/RT})$

Message

Dynamic programming equations for ensemble applications are by-products of an underlying combinatorial decomposition (\Rightarrow Family of hypergraphs).

How to design such hypergraphs/energy function? You do it vourself! But combinatorics can help...

Given an RNA sequence ω and an energy function E, assume one has:

- Acyclic hypergraph H, whose F-paths are in bijection with the targeted (pseudoknotted) conformations
- Feature function α which returns, for each F-path p, the energy $E_{\omega,s}$ of its conformation s_p .

Application		Hypergraph Algorithm	Arguments
MFE folding	\Leftrightarrow	Minimum score	(\mathcal{H}, α)
Partition function	\Leftrightarrow	Total weight	$(\mathcal{H}, e^{-\alpha/RT})$
Statistical sampling	\Leftrightarrow	Random generation	$(\mathcal{H}, e^{-lpha/RT})$
BP probabilities (dot-plot)	\Leftrightarrow	Arcs prob.	$(\mathcal{H}, \pmb{e}^{-lpha/RT})$

Message #1

Dynamic programming equations for ensemble applications are by-products of an underlying combinatorial decomposition (\Rightarrow Family of hypergraphs).

How to design such hypergraphs/energy function? You do it yourself! But combinatorics can help...

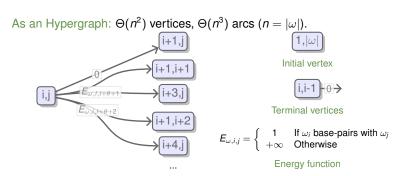
Decomposition:

$$i \qquad j = \underbrace{ }_{i \text{ i+1}} + \underbrace{ }_{j \text{ i+1}} \underbrace{ }_{k-1} \underbrace{ k \text{ k+1}}_{k} \underbrace{ }_{j}$$

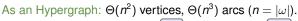
As an Hypergraph: $\Theta(n^2)$ vertices, $\Theta(n^3)$ arcs $(n = |\omega|)$. $\begin{array}{c}
(i,j) \\
(i+1,j) \\
(i+1,$

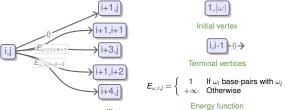
Decomposition:

$$i \qquad j = \underbrace{ }_{i \text{ i+1}} + \underbrace{ }_{j \text{ i+1}} \underbrace{ }_{k-1} \underbrace{ k \text{ k+1}}_{k} \underbrace{ j}$$



Decomposition:





Before applying generic ensemble algorithms, one needs to prove:

- Bijection between F-paths and secondary structures of length n.
 Halve the burden through generating functions (cf proceedings).
- Free-energy is reflected by weight/score.

As an Hypergraph:
$$\Theta(n^2)$$
 vertices, $\Theta(n^3)$ arcs $(n = |\omega|)$.

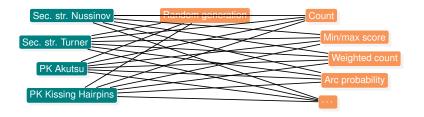
$$\begin{array}{cccc}
 & & & & & & & & & \\
\hline
 & & & \\$$

Application	Algorithm	Feature fun.	Time/Space
Energy minimization	Minimal weight	E	$O(n^3)/O(n^2)$
Partition function	Weighted count	$e^{\frac{-E}{RT}}$	$O(n^3)/O(n^2)$
BP prob.	Arc-traversal prob.	$e^{\frac{-E}{RT}}$	$O(n^3)/O(n^2)$
Stat. sampling (k-samples)	Random gen.	e ^{−E}	$O(n^3 + kn \log n)$ $O(n^2)$

Half time summary

Message #2 (cf ADP)

Applications of DP could (and should) be detached from the equation, and be expressed at an abstract – combinatorial – level.



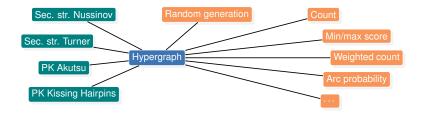
Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics, L. Hwang for algebraic hypergraph DP, R. Giegerich for ADP...

Let us extend applications of DP...

Half time summary

Message #2 (cf ADP)

Applications of DP could (and should) be detached from the equation, and be expressed at an abstract – combinatorial – level.



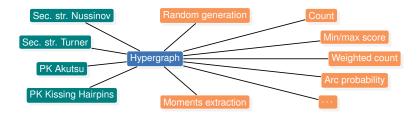
Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics, L. Hwang for algebraic hypergraph DP, R. Giegerich for ADP...

Let us extend applications of DP...

Half time summary

Message #2 (cf ADP)

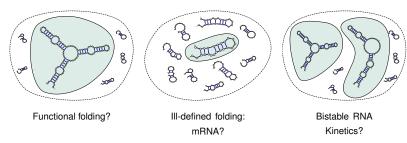
Applications of DP could (and should) be detached from the equation, and be expressed at an abstract – combinatorial – level.



Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics, L. Hwang for algebraic hypergraph DP, R. Giegerich for ADP...

Let us extend applications of DP...

Distribution of solutions



Toward ab-initio signatures for ncRNAs, one may have to go beyond average behavior of additive features (#Hairpins, #Multiple Loops, Free-Energy...).

Input:

- An acyclic F-graph \mathcal{H} , defining the set of F-paths (trees) in \mathcal{H} .
- Weight function $w : E \to \mathbb{R}$, defining a probability distribution.
- Additive feature functions $\alpha_1, \ldots, \alpha_k : E \to \mathbb{R}$.

What can be said about the (joint) distribution of features?

⇒ (Generalized) moments.

$$\mathbb{E}[\alpha_1^{m_1}\alpha_2^{m_2}\cdots\alpha_k^{m_k}] = \sum_{\boldsymbol{p}\in\mathcal{P}_s} \frac{\pi(\boldsymbol{p})}{w_s} \prod_{i=1}^k \alpha_i(\boldsymbol{p})^{m_i}$$

Remark: Single feature + $m_1 = 1 \Rightarrow$ Expectation in the weighted distribution.

Theorem (Generalized moments extraction (Generalizes Miklos et al 2005)

$$c_{s}^{m} = \sum_{e = (s \to t)} \pi(e) \cdot \sum_{\substack{m', (m''_{1}, \dots, m''_{|t|}) \\ s. t. \ m' + \sum_{j} m''_{j} = m}} \prod_{i=1}^{k} \binom{m_{i}}{m'_{i}, m''_{1,i}, \dots, m''_{|t|,i}} \cdot \alpha_{i}(e)^{m'_{i}} \cdot \prod_{i=1}^{|t|} c_{t_{i}}^{m''_{i}}$$

Time:
$$\mathcal{O}\left((|E|+|V|)\cdot k\cdot t^+\cdot \prod_{i=1}^k m_i^{t^++1}\right)$$
 Memory: $\Theta\left(|V|\cdot \prod_{i=1}^k m_i\right)$ (t^+ =max, out-degree).

$$\mathbb{E}[\alpha_1^{m_1}\alpha_2^{m_2}\cdots\alpha_k^{m_k}] = \sum_{p\in\mathcal{P}_S} \frac{\pi(p)}{w_s} \prod_{i=1}^k \alpha_i(p)^{m_i}$$

Remark: Single feature + m_2 = 2 characterizes Standard Deviation.

Theorem (Generalized moments extraction (Generalizes Miklos *et al* 2005)

$$\begin{aligned} \textbf{\textit{C}}_{s}^{m} &= \sum_{\boldsymbol{e} = (s \rightarrow t)} \pi(\boldsymbol{e}) \cdot \sum_{\substack{\boldsymbol{m}', \left(\boldsymbol{m}_{1}'', \cdots, \boldsymbol{m}_{|t|}'' \\ s.\ t.\ \boldsymbol{m}' + \sum_{j} \boldsymbol{m}_{j}'' = m}} \prod_{i=1}^{k} \binom{m_{i}}{m_{i}', m_{1,i}'', \cdots, m_{|t|,i}''} \cdot \alpha_{i}(\boldsymbol{e})^{m_{i}'} \cdot \prod_{i=1}^{|t|} \textbf{\textit{c}}_{t_{i}}^{m_{i}''} \end{aligned}$$

Time:
$$\mathcal{O}\left((|E|+|V|)\cdot k\cdot t^+\cdot \prod_{i=1}^k m_i^{t^++1}\right)$$
 Memory: $\Theta\left(|V|\cdot \prod_{i=1}^k m_i\right)$ (t^+ =max, out-degree).

$$\mathbb{E}[\alpha_1^{m_1}\alpha_2^{m_2}\cdots\alpha_k^{m_k}] = \sum_{p\in\mathcal{P}_s} \frac{\pi(p)}{w_s} \prod_{i=1}^k \alpha_i(p)^{m_i}$$

Remark: Two features + $m_1 = m_2 = 1$ computes Pearson product-moment corr. coeff..

Theorem (Generalized moments extraction (Generalizes Miklos et al 2005)

$$c_{s}^{m} = \sum_{e = (s \to t)} \pi(e) \cdot \sum_{\substack{m', (m''_{1}, \dots, m''_{|t|}) \\ s. t. m' + \sum_{j} m''_{j} = m}} \prod_{i=1}^{k} {m_{i} \choose m'_{1,j}, \dots, m''_{|t|,j}} \cdot \alpha_{i}(e)^{m'_{i}} \cdot \prod_{i=1}^{|t|} c_{t_{i}}^{m''_{i}}$$

Time:
$$\mathcal{O}\left((|E|+|V|)\cdot k\cdot t^+\cdot \prod_{i=1}^k m_i^{t^++1}\right)$$
 Memory: $\Theta\left(|V|\cdot \prod_{i=1}^k m_i\right)$ $(t^+=\max, \text{ out-degree}).$

$$\mathbb{E}[\alpha_1^{m_1}\alpha_2^{m_2}\cdots\alpha_k^{m_k}] = \sum_{\boldsymbol{p}\in\mathcal{P}_s} \frac{\pi(\boldsymbol{p})}{w_s} \prod_{i=1}^k \alpha_i(\boldsymbol{p})^{m_i}$$

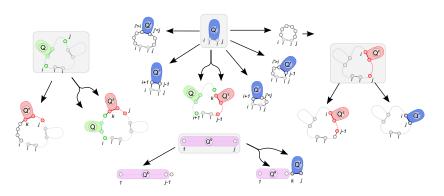
Remark: Two features + $m_1 = m_2 = 1$ computes Pearson product-moment corr. coeff..

Theorem (Generalized moments extraction (Generalizes Miklos et al 2005))

$$C_{s}^{\mathbf{m}} = \sum_{\boldsymbol{e} = (s \rightarrow \mathbf{t})} \pi(\boldsymbol{e}) \cdot \sum_{\substack{\mathbf{m}', (\mathbf{m}_{1}'', \cdots, \mathbf{m}_{|t|}'') \\ s. \ t. \ \mathbf{m}' + \sum_{j} \mathbf{m}_{j}'' = \mathbf{m}}} \prod_{i=1}^{k} \binom{m_{i}}{m_{i}', m_{1,j}'', \cdots, m_{|t|,j}''} \cdot \alpha_{i}(\boldsymbol{e})^{m_{i}'} \cdot \prod_{i=1}^{|t|} c_{t_{i}}^{\mathbf{m}_{i}''}$$

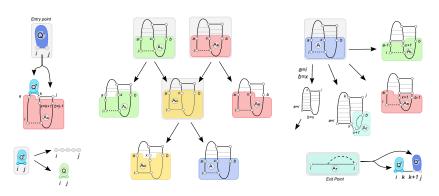
Time:
$$\mathcal{O}\left((|E|+|V|)\cdot k\cdot t^+\cdot \prod_{i=1}^k m_i^{t^++1}\right)$$
 Memory: $\Theta\left(|V|\cdot \prod_{i=1}^k m_i\right)$ (t^+ =max. out-degree).

Mfold/Unafold decomposition



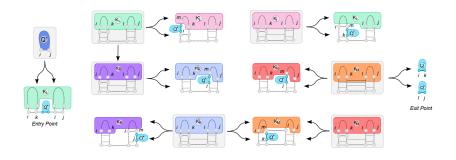
Application	Algorithm	Weight fun.	Time/Space	Ref.
Energy minimization	Minimal weight	π_T	$O(n^{3(4)})/O(n^2)$	[Zuker and Stiegler, 1981]
Partition function	Weighted count	$e^{\frac{-\pi T}{RI}}$	$O(n^{3(4)})/O(n^2)$	[McCaskill, 1990]
Base-pairing probabilities	Arc-traversal prob.	$e^{\frac{-\pi_T}{RT}}$	$O(n^{3(4)})/O(n^2)$	[McCaskill, 1990]
Statistical sampling (k-samples)	Random gen.	$e^{\frac{-\pi_T}{RI}}$	$O(n^{3(4)} + kn\log n)/O(n^2)$	[Ding and Lawrence, 2003, Ponty, 2008]
Moments of energy (Mean, Var.)	Moments extraction	$e^{\frac{-\pi_T}{RT}}$	$O(n^{3(4)})/O(n^2)$	[Miklós et al., 2005]
m-th moment of additive features	Moments extraction	$e^{\frac{-\pi_T}{RT}}$	$O(m^3 \cdot n^{3(4)})/O(m \cdot n^2)$	-
Correlations of additive features	Moments extraction	$e^{\frac{-\pi_T}{RI}}$	$O(n^{3(4)})/O(n^2)$	-

Akutsu/Uemura simple pseudoknots



Application	Algorithm	Weight fun.	Time/Space	Ref.	
Energy minimization	Minimal weight	π_{bp}	$O(n^4)/O(n^4)$	[Akutsu, 2000]	
Partition function	Weighted count	$e^{\frac{-\pi_{bp}}{RT}}$	$O(n^4)/O(n^4)$	$\Theta(n^6)$ [Cao and Chen, 2009]	
Base-pairing probabilities	Arc-traversal prob.	$e^{\frac{-\pi_{bp}}{RT}}$	$O(n^4)/O(n^4)$	-	
Statistical sampling (k-samples)	Random gen.	$e^{\frac{-\pi_{bp}}{RT}}$	$O(n^4 + kn \log n)/O(n^4)$	-	
Moments of energy (Mean, Var.)	Moments extraction	$e^{\frac{-\pi_{bp}}{RT}}$	$O(n^4)/O(n^4)$		
m-th moment of additive features	Moments extraction	$e^{\frac{-\pi_{bp}}{RT}}$	$O(m^3 \cdot n^4)/O(m \cdot n^4)$	_	

Kissing hairpins



Application	Algorithm	Weight fun.	Time/Memory	Ref.
Energy minimization	Minimal weight	π_T	$O(n^5)/O(n^4)$	[Chen et al., 2009]
Partition function	Weighted count	e ^{-π} / _{Rl}	$O(n^5)O(n^4)$	-
Base-pairing probabilities	Arc-traversal prob.	$e^{\frac{-\pi_T}{RI}}$	$O(n^5)/O(n^4)$	_
Statistical sampling (k-samples)	Random gen.	$e^{\frac{-\pi_T}{RI}}$	$O(n^5 + k \cdot n \log n) / O(n^4)$	-
Moments of energy (Mean, Var.)	Moments extraction	$e^{\frac{-\pi_T}{RI}}$	$O(n^5)/O(n^4)$	_
m-th moment of additive features	Moments extraction	$e^{\frac{-\pi_T}{RI}}$	$O(m^3 \cdot n^5)/O(m \cdot n^4)$	-

Conclusion/perspectives

- Implementation issues: Table design, avoid memory consumption, compilation to low-level language...
- Generate hypergraph from more abstract description (CFG, Möhl's split-types, Nebel's algebraic descriptors)
- Novel sequence-only features ⇒ Thermodynamic signatures for ncRNAs, Riboswitches. Pseudoknotted RNAs classifier...?
- Formulate generic optimizations: Sparsification, four-russians...
- Extensions: Predicting interactions, RNA design, Simultaneous folding and alignment

Thanks to

References I

Tatsuya Akutsu.

Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl. Math., 104(1-3):45–62, 2000.

S. Cao and S. J. Chen.

Predicting RNA pseudoknot folding thermodynamics.

S. Cao and S-J Chen.

Predicting structured and stabilities for H-type pseudoknots with interhelix loop. RNA. 15:696–706, 2009.

Ho-Lin Chen, Anne Condon, and Hosna Jabbari.

An O(n(5)) algorithm for MFE prediction of kissing hairpins and 4-chains in nucleic acids. Journal of Computational Biology, 16(6):803–815, 2009.

Y. Ding and E. Lawrence.

A statistical sampling algorithm for RNA secondary structure prediction.

R.M. Dirks and N.A. Pierce.

A partition function algorithm for nucleic acid secondary structure including pseudoknots.

Fenix W D Huang, Wade W J Peng, and Christian M Reidys.

Folding 3-noncrossing rna pseudoknot structures.

J Comput Biol, 16(11):1549-1575, Nov 2

R. B. Lyngsø and C. N. S. Pedersen.

RNA pseudoknot prediction in energy-based models. Journal of Computational Biology, 7(3-4):409–427, 2000.

References II

D. H. Mathews.

Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA, 10(8):1178–1190, 2004.

J.S. McCaskill.

The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29:1105–1119, 1990.

István Miklós, Irmtraud M Meyer, and Borbála Nagy.

Moments of the boltzmann distribution for RNA secondary structures.

R Nussinov and A R Jacobson

Fast algorithm for predicting the secondary structure of single stranded RNA. Proc. Natl. Acad. Sci. U. S. A., 77(11):6309–6313, 1980.

Y. Ponty.

Efficient sampling of RNA secondary structures from the boltzmann ensemble of low-energy: The boustrophedon method. *J Math Biol*, 56(1-2):107–127, Jan 2008.

J. Reeder and R. Giegerich.

Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics. 5:104, 2004.

Christian M Reidys, Fenix W D Huang, Jørgen E Andersen, Robert C Penner, Peter F Stadler, and Markus E Nebel.

Topology and prediction of rna pseudoknots. Bioinformatics, 27(8):1076–1085, Apr 2011.

E. Rivas and S.R. Eddy.

A dynamic programming algorithm for RNA structure prediction including pseudoknots.

References III

J. E. Tabaska, R. B. Carv, H. N. Gabow, and G. D. Stormo.

An rna folding method capable of identifying pseudoknots and base triples. Bioinformatics, 14(8):691–699, 1998.

Corinna Theis, Stefan Janssen, and Robert Giegerich.

Prediction of rna secondary structure including kissing hairpin motifs. In *Proceedings of WABI 2010*, pages 52–64, 2010.

Björn Voss, Carsten Meyer, and Robert Giegerich.

Evaluating the predictability of conformational switching in rna.

M. Zuker and P. Stiegler.

Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res, 9:133–148, 1981.