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Formal stu�s

Optimization problem=

Search space S

Objective function f

Problem: Find element e ∈ S which min(max)-imizes f (s)?

Dynamic programming scheme relates the minimal value of f to its
minimal value(s) on some smaller search space(s) (Substructure
property).

DP scheme = E�cient factorization (traversal) of S .
Alt.: DP scheme is generating search space.
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Combinatorial dynamic programming

In order to say something general, let us be speci�c. . .

De�nition (Combinatorial DP)

A combinatorial DP scheme computes functions that are locally additive
and relies on a decomposition that is:

Unambiguous: Each solution generated at most once!

Complete: Each solution generated at least once!

Based on this property, DP schemes for optimization readily translate
into DP schemes for counting, generating. . .
Remark: None of this above is strictly required by DP!

What is a decomposition?
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Hypergraphs as decompositions
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Hypergaphs generalize directed graphs to arcs of arbitrary in/out degrees.

De�nition (Hypergraph)

A directed hypergaph H is a couple (V ,E ) such that:

V is a set of vertices

E is a set of hyperarcs e = (t(e)→ h(e)) such that t(e), h(e) ⊂ E

Forward hypergraphs, or F-graphs, are hypergraphs whose arcs have
ingoing degree exactly 1.
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F-graph All F-paths starting from vertex 1

De�nition (F-path)

A F-path is a tree having root s ∈ V , whose children are F-paths built
from the outgoing vertices of some arc e = (s → t) ∈ E .

Remark: Vertices of out degree 0 (t = ∅) provide an elegant terminal
case to the above recursive de�nition.

F-graph is independent i� each F-path sees at most once each arc.

A numerical valued-fonction π : E → R can be assigned to each arc:

Weight of a path is the product of its arcs' values

Score of a path is the sum of its arcs' values
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Basic algorithms

H = (s0,V ,E , π): acyclic F-graph s0: Init. node π: value fun.

+

ms = min
e=(s→t)

(
w(e) +

∑
u∈t

mu

)
s

t1

t ′1

t ′2

w(e)

w(e′′)w(e′)

Problem Recurrence Complexities time/space

Min score ms = min
e=(s→t)

(
w(e) +

∑
u∈t

mu

)
Θ(|E |+ |V |)/Θ(|V |)

Num. paths ns =
∑

(s→t)

∏
u∈t

nu Θ(|E |+ |V |)/Θ(|V |)

Total weight ws =
∑

e=(s→t)

w(e) ·
∏
s′∈t

ws′ Θ(|E |+ |V |)/Θ(|V |)
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Nussinov's algorithm revisited

i j
=

i i+1 j
+

i+1i kk-1 k+1 j

≥ θ

i,j i+1,j

i+1,i+θ i+θ+2,j

i+1,i+θ+1 i+θ+3,j

i+1,i+θ+2 i+θ+4,j

...

Terminal vertices:

i,i-1

0Ei,i+θ+1

Ei,i+θ+2

Ei,i+θ+3

This decomposition is unambiguous!
(Proof may use length generating functions).
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Mfold/Unafold decomposition
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Akutsu's simple pseudoknots
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Half time summary

Message #1

Applications of DP could (and should) be detached from the equation,
and be expressed at an abstract � combinatorial � level.

Sec. str. Turner

Sec. str. Nussinov

PK Akutsu

PK Kissing Hairpins

Count

Min/max score

Weighted count

Arc probability

. . .

Random generation

Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics,
L. Hwang for algebraic hypergraph DP, R. Giegerich for ADP. . .

Let us extend applications of DP. . .
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Distribution of solutions

Functional folding? Ill-de�ned folding:

mRNA?

Bistable RNA

Kinetics?

An acyclic F-graph H = (s0,V ,E , π), de�ning a search space T the
set of F-paths (trees) in H.
Feature functions α1, . . . , αk : E → R extended additively on T .

What can we say about the distribution(s) of αi (s)?

Naive approach: Compute the distribution exactly, accessible values being
choices of O(n) values among |E |, n =#arcs in largest F-path.
⇒ DP count the #ways of accessing each value in exponential time. . .
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Example: Mean value of a feature function

What is the average values of α assuming a uniform distribution on T ?

H
A+B+C+D

A

B

C

D

EE

FF

Mean value = Weighted sum =

∑
t∈T α(t)

|T |

Remark: Dropping the terminal edges (Alt. α(e) = 0). . .
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Principle and main equation

By introducing a controlled ambiguity, one can extract the feature
expectation from a combinatorial DP scheme.

Idea: Passing a dot • along or drop it (≡ α(e)) on some arc e.

A

B
⇒ •

•

•

•

1

1

A
1B

⇒ c•αs =
∑
o∈T

α(o) =
∑

e=(s→t)

α(e) ·
∏
ti∈t

cti +
∑
ti∈t

c•αti

∏
tj 6=ti∈t

ctj


⇒ E(α) := c•αs0 /cs0 obtained in Θ(|V |+ |E | · D2)/Θ(|V |) time/space,
with D := maxe∈E (|h(e)|)
Remark: Similar to the folklore pointing operator in enumerative combinatorics, and

to the formal derivative.
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Low-hanging fruits

D: maxe∈E (|h(e)|)
Boltzmann-like distribution
Unconvinced by the uniform distribution? Got an energy fonction
∆ : E → R extended additively, and a good reason to expect

convergence toward a Boltzmann distribution e
−∆
kT ? (We do. . . )

⇒ Expectation in the Boltzmann distribution is just a weight away.

c•αs =
∑
o∈T

α(o) · e−∆(o)/RT

=
∑

e=(s→t)

e
−∆(e)
kT

α(e) ·
∏
ti∈t

cti +
∑
ti∈t

c•αti

∏
tj 6=ti∈t

ctj


⇒ Θ(|V |+ |E | · D2)/Θ(|V |)
Higher-order moments

Exact correlations

Nb: Specializes into Miklos et al 2005 for RNA secondary structures.
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Want to go beyond the expected value of α? No problem (almost),
compute higher-order moments.

c
•mα
s =

∑
o∈T

α(o)m · e−∆(o)/RT

=
∑

e=(s→t)

e
−∆(e)

kT

 ∑
(m′1,··· ,m

′
|t|)

s.t.
∑

m
′
i :=m

′≤m

α(e)m−m
′∏
ti∈t

c•
m′i
α

ti


⇒ Θ(|V |+ |E | ·mD+2)/Θ(m · |V |)
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Higher-order moments ⇒ Θ(|V |+ |E | ·mD+2)/Θ(m · |V |)
Exact correlations Given two α and α′, correlation is given by

c•α•α′s =
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o∈T

α(o) · α′(o) · e−∆(o)/RT

=
∑

e=(s→t)

e
−∆(e)

kT


∑

((m1·m|t|),
(m′1·m

′
|t|))

m:=
∑

mi≤1,
m
′:=

∑
m
′
i≤1

α(e)1−mα′(e)1−m
′∏
ti∈t

c
•mi
α •

m′i
α′

ti
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Conclusion

Many algorithms in Bioinformatics rely on dynamic programming

Adopting a combinatorial vision over the search space greatly, and
hypergraph representations, helped:

Prove correctness.

Instant transposal of new applications.

Implementation tricky (avoid explicit representations).

Use in combination with machine-learning as classi�er/scanner for
ncRNAs.

How to transpose usual DP tricks (four-russians, cutting corners,
sparsi�cation)?

Are there even more compact ways to describe more speci�c search
spaces (e.g. CFGs, split-types??)
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