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Formal stuffs

Optimization problem=
@ Search space S
@ Objective function f
Problem: Find element e € S which min(max)-imizes f(s)?

Dynamic programming scheme relates the minimal value of f to its
minimal value(s) on some smaller search space(s) (Substructure

property).

DP scheme = Efficient factorization (traversal) of S.
Alt.: DP scheme is generating search space.
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Combinatorial dynamic programming

In order to say something general, let us be specific. . .

Definition (Combinatorial DP)

A combinatorial DP scheme computes functions that are locally additive
and relies on a decomposition that is:

e Unambiguous: Each solution generated at most once!l
o Complete: Each solution generated at least once!

Based on this property, DP schemes for optimization readily translate
into DP schemes for counting, generating. . .
Remark: None of this above is strictly required by DP!

What is a decomposition?
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Hypergraphs as decompositions

c e ‘a

Hypergaphs generalize directed graphs to arcs of arbitrary in/out degrees.

Definition (Hypergraph)
A directed hypergaph 7/ is a couple (V, E) such that:
@ V is a set of vertices
o E is a set of hyperarcs e = (i(e) — h(e)) such that (e), h(e) C E

Yann Ponty, Cédric Saule Moments of combinatorial DP



Hypergraphs as decompositions

c e ‘e

Hypergaphs generalize directed graphs to arcs of arbitrary in/out degrees.

Definition (Hypergraph)
A directed hypergaph 7/ is a couple (V, E) such that:
e V is a set of vertices
o E is a set of hyperarcs e = (i(e) — h(e)) such that (e), h(e) C E

Forward hypergraphs, or F-graphs, are hypergraphs whose arcs have
exactly 1.
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F-graph All F-paths starting from vertex 1

Definition (F-path)

A F-path is a tree having root s € V, whose children are F-paths built
from the outgoing vertices of some arc e = (s — t) € E.

Remark: Vertices of out degree 0 (t = &) provide an elegant terminal
case to the above recursive definition.
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F-graph All F-paths starting from vertex 1

Definition (F-path)

A F-path is a tree having root s € V, whose children are F-paths built
from the outgoing vertices of some arc e = (s — t) € E.

Remark: Vertices of out degree 0 (t = &) provide an elegant terminal
case to the above recursive definition.

F-graph is independent iff each F-path sees at most once each arc.
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F-graph All F-paths starting from vertex 1

Definition (F-path)

A F-path is a tree having root s € V, whose children are F-paths built
from the outgoing vertices of some arc e = (s — t) € E.

Remark: Vertices of out degree 0 (t = &) provide an elegant terminal
case to the above recursive definition.

F-graph is independent iff each F-path sees at most once each arc.
A numerical valued-fonction 7 : E — R can be assigned to each arc:

@ Weight of a path is the product of its arcs’ values
@ Score of a path is the sum of its arcs’ values
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F-graph All F-paths starting from vertex 1

Definition (F-path)

A F-path is a tree having root s € V, whose children are F-paths built
from the outgoing vertices of some arc e = (s — t) € E.

Remark: Vertices of out degree 0 (t = &) provide an elegant terminal
case to the above recursive definition.

F-graph is independent iff each F-path sees at most once each arc.
A numerical valued-fonction 7 : E — R can be assigned to each arc:

@ Weight of a path is the product of its arcs’ values
@ Score of a path is the sum of its arcs’ values
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Basic algorithms

H = (s, V, E,7): acyclic F-graph sp: Init. node 7: value fun.

(W(e) + Z m,

)

w(e)

GC A~
W(f Jw(e )\)@ﬂ‘\’\) E_B

uet

mg = min
e=(s—t)
uet
Problem Recurrence Complexities time/space
Min score | ms = min <W(e) + Z mu> O(|E| + |V|)/O(IV])
e=(s—t)
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Basic algorithms

H = (s, V, E,7): acyclic F-graph sp: Init. node 7: value fun.

o= I

(s—t) uet
Problem Recurrence Complexities time/space
Min score | ms = min W(e)+2mu O(lE|+ |V/e(V])
e=(s—t) vt
Num. paths =Y [In O(E|+|V])/e(V])
(s—t) uct
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Basic algorithms

= (s, V, E,m): acyclic F-graph sp: Init. node 7: value fun.

w(e)

ws = w(e) - W'
e_;t) e l—e[t W@:(e”‘w (e/)/»@x“f:j
4 ' \)@%\:\V\)ﬂ }Q

Problem Recurrence Complexities time/space
Min score ms = min W(e)+2mu O(lE|+ |V/e(V])
e=(s—t) vet
Num. paths ns = Z H”u O(lE[+|V)/o(IV])
(s—t) uct
Total weight ws = Z w(e) - H Wer O(IEI + |VI)/e(IVI)
e=(s—t) s'et
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Nussinov's algorithm revisited

o A 1 N
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Terminal vertices:

This decomposition is unambiguous!
(Proof may use length generating functions).
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Half time summary

Message #1

Applications of DP could (and should) be detached from the equation,
and be expressed at an abstract — combinatorial — level.

PK Kissing Hairpins

Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics,
L. Hwang for algebraic hypergraph DP, R. Giegerich for ADP. ..
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Half time summary

Message #1

Applications of DP could (and should) be detached from the equation,
and be expressed at an abstract — combinatorial — level.

Sec. str. Nussinov
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Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics,
L. Hwang for algebraic hypergraph DP, R. Giegerich for ADP. ..

Let us extend applications of DP. ..
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Distribution of solutions

Functional folding? lll-defined folding: Bistable RNA
mRNA? Kinetics?

@ An acyclic F-graph # = (so, V, E, ), defining a search space T the
set of F-paths (trees) in
@ Feature functions aq,...,ax : E — R extended additively on 7.

What can we say about the distribution(s) of «;(s)?

Naive approach: Compute the distribution exactly, accessible values being
choices of O(n) values among |E|, n =#arcs in largest F-path.
= DP count the #ways of accessing each value in exponential time. ..
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Example: Mean value of a feature function

What is the average values of o assuming a uniform distribution on 77
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Mean value = Weighted sum = M

7]
Remark: Dropping the terminal edges (Alt. a(e) =0). ..
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Example: Mean value of a feature function

What is the average values of o assuming a uniform distribution on 77

Mean value = Weighted sum =
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Principle and main equation

By introducing a controlled ambiguity, one can extract the feature
expectation from a combinatorial DP scheme.
Idea: Passing a dot e along or drop it (= a(e)) on some arc e.

sar=Ya)= 3 |a@ [Jea+>a I o

oeT e=(s—t) Get et LAt €t

= E(a) 1= c2* /cs, obtained in O(|V| + |E| - D?)/O(| V) time/space,
with D := maxece(|h(e)])
Remark: Similar to the folklore pointing operator in enumerative combinatorics, and

to the formal derivative.
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Low-hanging fruits

D: maxece(|h(e)])
@ Boltzmann-like distribution
Unconvinced by the uniform distribution? Got an energy fonction
A : E — R extended additively, and a good reason to expect
convergence toward a Boltzmann distribution e¥r ? (We do...)
= Expectation in the Boltzmann distribution is just a weight away.

CS.Q — Z A(0)/RT
ocT
e a(e)-Hct,.—cht'i“ H Cy

=(s—t) et t; et At ct

o(lV|+ [E|- D*)/6( V)
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Low-hanging fruits

D: maxece(|h(e)])
e Boltzmann-like distribution = ©(|V|+ |E|- D?)/0O(|V])

e Higher-order moments
Want to go beyond the expected value of a? No problem (almost),
compute higher-order moments.

Cs-‘;’ _ Z alo)™- e—A()/RT
oeT

/

—Ae) " mi

= E e kT E a(e)™™ ™ I | Ct',."
e=(s—t) (my,--,miy) Lt

st. Y mi=m'<m

= O(|V| + |E|- mP*2)/©(m - |V])
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Low-hanging fruits

D: maxece(|h(e)])
e Boltzmann-like distribution = ©(|V| + |E| - D?)/O(|V])
e Higher-order moments = ©(|V| + |E| - mP*2)/©(m - |V|)

@ Exact correlations Given two « and o/, correlation is given by

CS."‘.‘]/ _ Z a(o) . O/(O) . e—A(o)/RT
o€T

/
—A(e) _ o oTie™i
_ 2 : e kT 2 : a(e)l ma/(e)l m Hct,-a of
e=(s—t) ((my-my)), t;ct
(m}-miy,)
m:=> m;<1,
m’:=3"m;<1

= O(|v|+ |E| - D*)/6(|V])
Nb: Specializes into Miklos et al 2005 for RNA secondary structures.

Yann Ponty, Cédric Saule Moments of combinatorial DP




Conclusion

e Many algorithms in Bioinformatics rely on dynamic programming

@ Adopting a combinatorial vision over the search space greatly, and
hypergraph representations, helped:

o Prove correctness.
o Instant transposal of new applications.

@ Implementation tricky (avoid explicit representations).

@ Use in combination with machine-learning as classifier /scanner for
ncRNAs.

@ How to transpose usual DP tricks (four-russians, cutting corners,
sparsification)?

@ Are there even more compact ways to describe more specific search
spaces (e.g. CFGs, split-types??)
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