Exact ensemble properties in combinatorial dynamic programming schemes

Yann Ponty Cédric Saule

École Polytechnique/CNRS/INRIA AMIB - France

Optimization problem=

- Search space S
- Objective function f

Problem: Find element $e \in S$ which min(max)-imizes f(s)?

Dynamic programming scheme relates the minimal value of f to its minimal value(s) on some *smaller* search space(s) (Substructure property).

DP scheme = Efficient factorization (traversal) of S. Alt.: DP scheme is generating search space. In order to say something general, let us be specific...

Definition (Combinatorial DP)

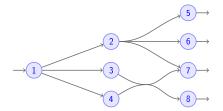
A combinatorial DP scheme computes functions that are locally additive and relies on a decomposition that is:

- Unambiguous: Each solution generated at most once!
- Complete: Each solution generated at least once!

Based on this property, DP schemes for optimization readily translate into *DP* schemes for counting, generating... Remark: None of this above is strictly required by DP!

What is a decomposition?

Hypergraphs as decompositions



Hypergaphs generalize directed graphs to arcs of arbitrary in/out degrees.

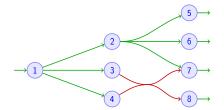
Definition (Hypergraph)

A directed hypergaph \mathcal{H} is a couple (V, E) such that:

- V is a set of vertices
- E is a set of hyperarcs $e = (t(e) \rightarrow h(e))$ such that $t(e), h(e) \subset E$

Forward hypergraphs, or F-graphs, are hypergraphs whose arcs have ingoing degree exactly 1.

Hypergraphs as decompositions



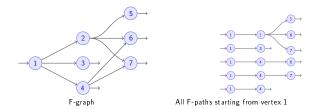
Hypergaphs generalize directed graphs to arcs of arbitrary in/out degrees.

Definition (Hypergraph)

A directed hypergaph \mathcal{H} is a couple (V, E) such that:

- V is a set of vertices
- E is a set of hyperarcs $e = (t(e) \rightarrow h(e))$ such that $t(e), h(e) \subset E$

Forward hypergraphs, or F-graphs, are hypergraphs whose arcs have ingoing degree exactly 1.



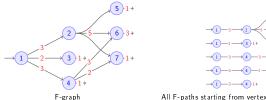
A F-path is a tree having root $s \in V$, whose children are F-paths built from the outgoing vertices of some arc $e = (s \rightarrow t) \in E$.

Remark: Vertices of out degree 0 ($t = \emptyset$) provide an elegant terminal case to the above recursive definition.

F-graph is independent iff each F-path sees at most once each arc.

A numerical valued-fonction $\pi: E \to \mathbb{R}$ can be assigned to each arc:

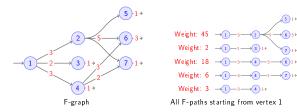
- Weight of a path is the product of its arcs' values
- Score of a path is the sum of its arcs' values



A F-path is a tree having root $s \in V$, whose children are F-paths built from the outgoing vertices of some arc $e = (s \rightarrow t) \in E$.

Remark: Vertices of out degree 0 ($\mathbf{t} = \emptyset$) provide an elegant terminal case to the above recursive definition

- F-graph is independent iff each F-path sees at most once each arc.
- - Weight of a path is the product of its arcs' values
 - Score of a path is the sum of its arcs' values



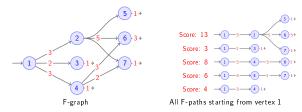
A F-path is a tree having root $s \in V$, whose children are F-paths built from the outgoing vertices of some arc $e = (s \rightarrow t) \in E$.

Remark: Vertices of out degree 0 ($t = \emptyset$) provide an elegant terminal case to the above recursive definition.

F-graph is independent iff each F-path sees at most once each arc.

A numerical valued-fonction $\pi: E \to \mathbb{R}$ can be assigned to each arc:

- Weight of a path is the product of its arcs' values
- Score of a path is the sum of its arcs' values



A F-path is a tree having root $s \in V$, whose children are F-paths built from the outgoing vertices of some arc $e = (s \rightarrow t) \in E$.

Remark: Vertices of out degree 0 ($t = \emptyset$) provide an elegant terminal case to the above recursive definition.

F-graph is independent iff each F-path sees at most once each arc.

A numerical valued-fonction $\pi: E \to \mathbb{R}$ can be assigned to each arc:

- Weight of a path is the product of its arcs' values
- Score of a path is the sum of its arcs' values

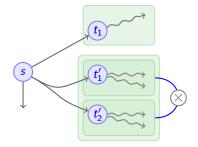
 $\mathcal{H} = (s_0, V, E, \pi)$: acyclic F-graph s_0 : Init. node π : value fun.

$$m_{s} = \min_{e=(s \to t)} \left(w(e) + \sum_{u \in t} m_{u} \right)$$

Problem	Recurrence	Complexities time/space
Min score	$m_{s} = \min_{e=(s \to t)} \left(w(e) + \sum_{u \in t} m_{u} \right)$	$\Theta(E + V)/\Theta(V)$
Num. paths	$n_s = \sum \prod n_u$	$\Theta(E + V)/\Theta(V)$
Total weight	$w_s = \sum_{e=(s \to t)}^{(s \to t)^{u \in t}} w(e) \cdot \prod_{s' \in t} w_{s'}$	$\Theta(E + V)/\Theta(V)$

 $\mathcal{H} = (s_0, V, E, \pi)$: acyclic F-graph s_0 : Init. node π : value fun.

$$n_s = \sum_{(s \to t)} \prod_{u \in t} n_u$$

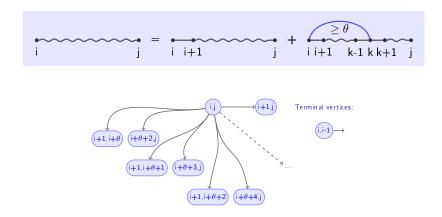


Problem	Recurrence	Complexities time/space
Min score	$m_{s} = \min_{e=(s \to t)} \left(w(e) + \sum_{u \in t} m_{u} \right)$	$\Theta(E + V)/\Theta(V)$
Num. paths	$n_s = \sum \prod n_u$	$\Theta(E + V)/\Theta(V)$
Total weight	$w_{s} = \sum_{e=(s \to t)}^{(s \to t) \ u \in t} w(e) \cdot \prod_{s' \in t} w_{s'}$	$\Theta(E + V)/\Theta(V)$

 $\mathcal{H} = (s_0, V, E, \pi)$: acyclic F-graph s_0 : Init. node π : value fun.

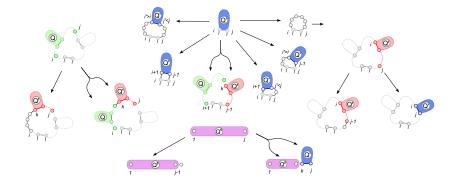
$$w_{s} = \sum_{e=(s \to t)} w(e) \cdot \prod_{s' \in t} w_{s'}$$

Problem	Recurrence	Complexities time/space
Min score	$m_{s} = \min_{e=(s \to t)} \left(w(e) + \sum_{u \in t} m_{u} \right)$	$\Theta(E + V)/\Theta(V)$
Num. paths	$n_s = \sum \prod n_u$	$\Theta(E + V)/\Theta(V)$
Total weight	$\mathbf{w}_{s} = \sum_{e=(s \to \mathbf{t})}^{(s \to \mathbf{t}) \ u \in \mathbf{t}} \mathbf{w}_{e} \cdot \prod_{s' \in \mathbf{t}} \mathbf{w}_{s'}$	$\Theta(E + V)/\Theta(V)$

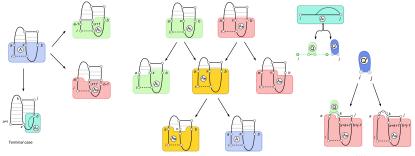


This decomposition is unambiguous! (Proof may use length generating functions).

Mfold/Unafold decomposition

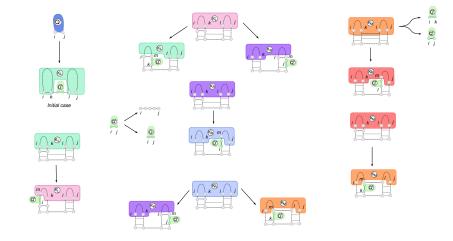


Akutsu's simple pseudoknots



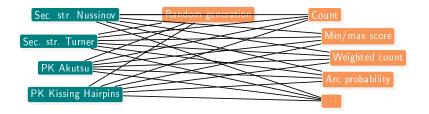
Initial cases

Kissing hairpins



Message #1

Applications of DP could (and should) be detached from the equation, and be expressed at an abstract – combinatorial – level.

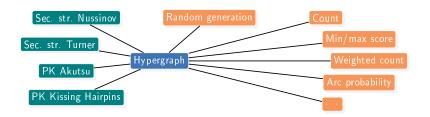


Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics, L. Hwang for algebraic hypergraph DP, R. Giegerich for ADP...

Let us extend applications of DP.

Message #1

Applications of DP could (and should) be detached from the equation, and be expressed at an abstract – combinatorial – level.

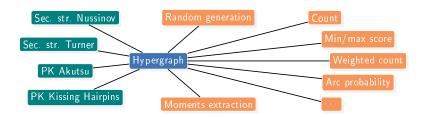


Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics, L. Hwang for algebraic hypergraph DP, R. Giegerich for ADP...

Let us extend applications of DP.

Message #1

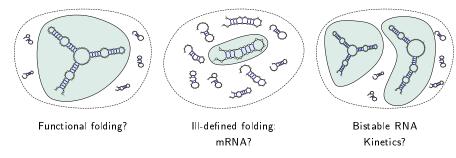
Applications of DP could (and should) be detached from the equation, and be expressed at an abstract – combinatorial – level.



Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics, L. Hwang for algebraic hypergraph DP, R. Giegerich for ADP...

Let us extend applications of DP....

Distribution of solutions



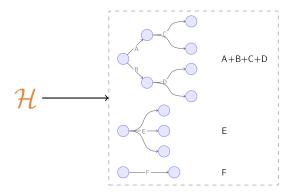
- An acyclic F-graph H = (s₀, V, E, π), defining a search space T the set of F-paths (trees) in H.
- Feature functions $\alpha_1, \ldots, \alpha_k : E \to \mathbb{R}$ extended **additively** on \mathcal{T} .

What can we say about the distribution(s) of $\alpha_i(s)$?

Naive approach: Compute the distribution exactly, accessible values being choices of $\mathcal{O}(n)$ values among |E|, n = #arcs in largest F-path. \Rightarrow DP count the #ways of accessing each value in exponential time...

Example: Mean value of a feature function

What is the average values of α assuming a uniform distribution on \mathcal{T} ?

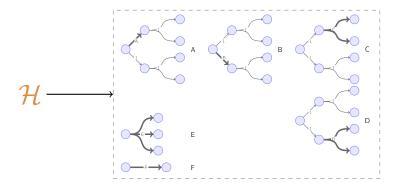


Mean value = Weighted sum =
$$rac{\sum_{t \in \mathcal{T}} lpha(t)}{|\mathcal{T}|}$$

Remark: Dropping the terminal edges (Alt. $\alpha(e) = 0$)...

Example: Mean value of a feature function

What is the average values of α assuming a uniform distribution on \mathcal{T} ?

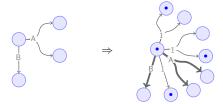


Mean value = Weighted sum =
$$rac{\sum_{t \in \mathcal{T}} lpha(t)}{|\mathcal{T}|}$$

Principle and main equation

By introducing a controlled ambiguity, one can extract the feature expectation from a combinatorial DP scheme.

Idea: Passing a dot \bullet along or drop it ($\equiv \alpha(e)$) on some arc e.



$$\Rightarrow c_s^{\bullet_\alpha} = \sum_{o \in \mathcal{T}} \alpha(o) = \sum_{e=(s \to t)} \left(\alpha(e) \cdot \prod_{t_i \in t} c_{t_i} + \sum_{t_i \in t} c_{t_i}^{\bullet_\alpha} \prod_{t_j \neq t_i \in t} c_{t_j} \right)$$

 $\Rightarrow \mathbb{E}(\alpha) := c_{s_0}^{\bullet_\alpha}/c_{s_0} \text{ obtained in } \Theta(|V| + |E| \cdot D^2) / \Theta(|V|) \text{ time/space,}$ with $D := \max_{e \in E}(|h(e)|)$

Remark: Similar to the *folklore* pointing operator in enumerative combinatorics, and to the formal derivative.

Low-hanging fruits

- $D: \max_{e \in E}(|h(e)|)$
 - Boltzmann-like distribution

Unconvinced by the uniform distribution? Got an energy fonction $\Delta: E \to \mathbb{R}$ extended additively, and a good reason to expect convergence toward a Boltzmann distribution $e^{\frac{-\Delta}{kT}}$? (We do...) \Rightarrow Expectation in the Boltzmann distribution is just a weight away.

$$c_{s}^{\bullet \alpha} = \sum_{o \in \mathcal{T}} \alpha(o) \cdot e^{-\Delta(o)/RT}$$
$$= \sum_{e=(s \to \mathbf{t})} e^{\frac{-\Delta(e)}{kT}} \left(\alpha(e) \cdot \prod_{t_{i} \in \mathbf{t}} c_{t_{i}} + \sum_{t_{i} \in \mathbf{t}} c_{t_{i}}^{\bullet \alpha} \prod_{t_{j} \neq t_{i} \in \mathbf{t}} c_{t_{j}} \right)$$

 $\Rightarrow \Theta(|V| + |E| \cdot D^2) / \Theta(|V|)$

- Higher-order moments
- Exact correlations

Nb: Specializes into Miklos et al 2005 for RNA secondary structures.

Low-hanging fruits

- $D: \max_{e \in E}(|h(e)|)$
 - Boltzmann-like distribution $\Rightarrow \Theta(|V| + |E| \cdot D^2) / \Theta(|V|)$
 - Higher-order moments

Want to go beyond the expected value of α ? No problem (almost), compute higher-order moments.

$$c_{s}^{\bullet_{\alpha}^{m}} = \sum_{o \in \mathcal{T}} \alpha(o)^{m} \cdot e^{-\Delta(o)/RT}$$
$$= \sum_{e=(s \to t)} e^{\frac{-\Delta(e)}{kT}} \left(\sum_{\substack{(m'_{1}, \cdots, m'_{|t|}) \\ \text{s.t.} \sum m'_{i} := m' \le m}} \alpha(e)^{m-m'} \prod_{t_{i} \in t} c_{t_{i}}^{\bullet_{\alpha}^{m'_{i}}} \right)$$

 $\Rightarrow \Theta(|V| + |E| \cdot m^{D+2}) / \Theta(m \cdot |V|)$

• Exact correlations

Nb: Specializes into Miklos et al 2005 for RNA secondary structures.

Low-hanging fruits

- $D: \max_{e \in E}(|h(e)|)$
 - Boltzmann-like distribution $\Rightarrow \Theta(|V| + |E| \cdot D^2) / \Theta(|V|)$
 - Higher-order moments $\Rightarrow \Theta(|V| + |E| \cdot m^{D+2}) / \Theta(m \cdot |V|)$
 - Exact correlations Given two lpha and lpha', correlation is given by

$$c_{s}^{\bullet \alpha \bullet \alpha'} = \sum_{o \in \mathcal{T}} \alpha(o) \cdot \alpha'(o) \cdot e^{-\Delta(o)/RT}$$
$$= \sum_{e=(s \to \mathbf{t})} e^{\frac{-\Delta(e)}{k\tau}} \left(\sum_{\substack{((m_{1} \cdot m_{|\mathbf{t}|}), \\ (m'_{1} \cdot m'_{|\mathbf{t}|})) \\ m := \sum m_{i} \leq 1, \\ m' := \sum m'_{i} \leq 1}} \alpha(e)^{1-m} \alpha'(e)^{1-m'} \prod_{t_{i} \in \mathbf{t}} c_{t_{i}}^{\bullet m'_{i} \bullet m'_{i}} \right)$$

 $\Rightarrow \Theta(|V| + |E| \cdot D^2) / \Theta(|V|)$

Nb: Specializes into Miklos et al 2005 for RNA secondary structures.

- Many algorithms in Bioinformatics rely on dynamic programming
- Adopting a combinatorial vision over the search space greatly, and hypergraph representations, helped:
 - Prove correctness.
 - Instant transposal of new applications.
- Implementation tricky (avoid explicit representations).
- Use in combination with machine-learning as classifier/scanner for ncRNAs.
- How to transpose usual DP tricks (four-russians, cutting corners, sparsification)?
- Are there even more compact ways to describe more specific search spaces (e.g. CFGs, split-types??)