Exact ensemble properties in combinatorial dynamic programming schemes

Yann Ponty Cédric Saule
École Polytechnique/CNRS/INRIA AMIB - France

Optimization problem=

- Search space S
- Objective function f

Problem: Find element $e \in S$ which $\min (\max)$-imizes $f(s)$?

Dynamic programming scheme relates the minimal value of f to its minimal value(s) on some smaller search space(s) (Substructure property).

DP scheme $=$ Efficient factorization (traversal) of S.
Alt.: DP scheme is generating search space.

Combinatorial dynamic programming

In order to say something general, let us be specific...

Definition (Combinatorial DP)

A combinatorial DP scheme computes functions that are locally additive and relies on a decomposition that is:

- Unambiguous: Each solution generated at most once!
- Complete: Each solution generated at least once!

Based on this property, DP schemes for optimization readily translate into $D P$ schemes for counting, generating. . .
Remark: None of this above is strictly required by DP!

What is a decomposition?

Hypergraphs as decompositions

Hypergaphs generalize directed graphs to arcs of arbitrary in/out degrees.
Definition (Hypergraph)
A directed hypergaph \mathcal{H} is a couple (V, E) such that:

- V is a set of vertices
- E is a set of hyperarcs $e=(t(e) \rightarrow h(e))$ such that $t(e), h(e) \subset E$

Forward hypergraphs, or F-graphs, are hypergraphs whose arcs have

Hypergraphs as decompositions

Hypergaphs generalize directed graphs to arcs of arbitrary in/out degrees.
Definition (Hypergraph)
A directed hypergaph \mathcal{H} is a couple (V, E) such that:

- V is a set of vertices
- E is a set of hyperarcs $e=(t(e) \rightarrow h(e))$ such that $t(e), h(e) \subset E$

Forward hypergraphs, or F-graphs, are hypergraphs whose arcs have ingoing degree exactly 1 .

F-graph

All F-paths starting from vertex 1

Definition (F-path)
A F-path is a tree having root $s \in V$, whose children are F-paths built from the outgoing vertices of some $\operatorname{arc} e=(s \rightarrow t) \in E$.

Remark: Vertices of out degree $0(\mathrm{t}=\varnothing)$ provide an elegant terminal case to the above recursive definition.

F-graph is independent iff each F-path sees at most once each arc. A numerical valued-fonction $\pi: E \rightarrow \mathbb{R}$ can be assigned to each arc:

- Weight of a path is the product of its arcs' values
- Score of a path is the sum of its arcs' values

F-graph

All F-paths starting from vertex 1

Definition (F-path)
A F-path is a tree having root $s \in V$, whose children are F-paths built from the outgoing vertices of some $\operatorname{arc} e=(s \rightarrow t) \in E$.

Remark: Vertices of out degree $0(\mathrm{t}=\varnothing)$ provide an elegant terminal case to the above recursive definition.

F-graph is independent iff each F-path sees at most once each arc.
A numerical valued-fonction $\pi: E \rightarrow \mathbb{R}$ can be assigned to each arc:

- Weight of a path is the product of its arcs' values
- Score of a path is the sum of its arcs' values

F-graph

All F-paths starting from vertex 1

Definition (F-path)

A F-path is a tree having root $s \in V$, whose children are F-paths built from the outgoing vertices of some $\operatorname{arc} e=(s \rightarrow t) \in E$.

Remark: Vertices of out degree $0(\mathrm{t}=\varnothing)$ provide an elegant terminal case to the above recursive definition.

F-graph is independent iff each F-path sees at most once each arc.
A numerical valued-fonction $\pi: E \rightarrow \mathbb{R}$ can be assigned to each arc:

- Weight of a path is the product of its arcs' values
- Score of a path is the sum of its arcs' values

F-graph

All F-paths starting from vertex 1

Definition (F-path)

A F-path is a tree having root $s \in V$, whose children are F-paths built from the outgoing vertices of some $\operatorname{arc} e=(s \rightarrow t) \in E$.

Remark: Vertices of out degree $0(\mathrm{t}=\varnothing)$ provide an elegant terminal case to the above recursive definition.

F-graph is independent iff each F-path sees at most once each arc.
A numerical valued-fonction $\pi: E \rightarrow \mathbb{R}$ can be assigned to each arc:

- Weight of a path is the product of its arcs' values
- Score of a path is the sum of its arcs' values

Basic algorithms

$\mathcal{H}=\left(s_{0}, V, E, \pi\right)$: acyclic F-graph s_{0} : Init. node π : value fun.

Problem	Recurrence	Complexities time/space
Min score	$m_{s}=\min _{e=(s \rightarrow \mathbf{t})}\left(w(e)+\sum_{u \in \mathbf{t}} m_{u}\right)$	$\Theta(\|E\|+\|V\|) / \Theta(\|V\|)$
Num. paths	$\Theta(\|E\|+\|V\|) / \Theta(\|V\|)$	
Total weight	$w_{s}=\sum_{(s \rightarrow t)} \prod_{u \in \mathrm{t}} \prod_{u} w_{s}$	$\Theta(\|E\|+\|V\|) / \Theta(\|V\|)$

Basic algorithms

$\mathcal{H}=\left(s_{0}, V, E, \pi\right)$: acyclic F-graph s_{0} : Init. node π : value fun.

$$
n_{s}=\sum_{(s \rightarrow \mathbf{t})} \prod_{u \in \mathbf{t}} n_{u}
$$

Problem	Recurrence	Complexities time/space
Min score	$m_{s}=\min _{e=(s \rightarrow \mathbf{t})}\left(w(e)+\sum_{u \in \mathbf{t}} m_{u}\right)$	$\Theta(\|E\|+\|V\|) / \Theta(\|V\|)$
Num. paths	$n_{s}=\sum_{(s \rightarrow \mathbf{t})} \prod_{u \in \mathbf{t}} n_{u}$	$\Theta(\|E\|+\|V\|) / \Theta(\|V\|)$
Total weight	$w_{s}=\sum_{s^{\prime} \in \mathrm{t}}$	$\Theta(\|E\|+\|V\|) / \Theta(\|V\|)$

Basic algorithms

$\mathcal{H}=\left(s_{0}, V, E, \pi\right)$: acyclic F-graph s_{0} : Init. node π : value fun.

Problem	Recurrence	Complexities time/space
Min score	$m_{s}=\min _{e=(s \rightarrow \mathbf{t})}\left(w(e)+\sum_{u \in \mathbf{t}} m_{u}\right)$	$\Theta(\|E\|+\|V\|) / \Theta(\|V\|)$
Num. paths	$n_{s}=\sum_{(s \rightarrow \mathbf{t})} \prod_{u \in \mathbf{t}} n_{u}$	$\Theta(\|E\|+\|V\|) / \Theta(\|V\|)$
Total weight	$w_{s}=\sum_{e=(s \rightarrow \mathbf{t})} w(e) \cdot \prod_{s^{\prime} \in \mathbf{t}} w_{s^{\prime}}$	$\Theta(\|E\|+\|V\|) / \Theta(\|V\|)$

This decomposition is unambiguous!
(Proof may use length generating functions).

Akutsu's simple pseudoknots

Kissing hairpins

Half time summary

Message \#1
Applications of DP could (and should) be detached from the equation, and be expressed at an abstract - combinatorial - level.

Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics, L. Hwang for algebraic hypergraph DP, R. Giegerich for ADP...

Half time summary

Message \#1
Applications of DP could (and should) be detached from the equation, and be expressed at an abstract - combinatorial - level.

Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics, L. Hwang for algebraic hypergraph DP, R. Giegerich for ADP...

Half time summary

Message \#1
Applications of DP could (and should) be detached from the equation, and be expressed at an abstract - combinatorial - level.

Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics, L. Hwang for algebraic hypergraph DP, R. Giegerich for ADP...

Let us extend applications of DP...

Distribution of solutions

Functional folding?

III-defined folding: mRNA?

Bistable RNA Kinetics?

- An acyclic F-graph $\mathcal{H}=\left(s_{0}, V, E, \pi\right)$, defining a search space \mathcal{T} the set of F-paths (trees) in \mathcal{H}.
- Feature functions $\alpha_{1}, \ldots, \alpha_{k}: E \rightarrow \mathbb{R}$ extended additively on \mathcal{T}.

What can we say about the distribution(s) of $\alpha_{i}(\mathrm{~s})$?
Naive approach: Compute the distribution exactly, accessible values being choices of $\mathcal{O}(n)$ values among $|E|, n=\#$ arcs in largest F-path. \Rightarrow DP count the \#ways of accessing each value in exponential time...

Example: Mean value of a feature function

What is the average values of α assuming a uniform distribution on \mathcal{T} ?

$$
\text { Mean value }=\text { Weighted sum }=\frac{\sum_{t \in \mathcal{T}} \alpha(t)}{|\mathcal{T}|}
$$

Remark: Dropping the terminal edges (Alt. $\alpha(e)=0) \ldots$

Example: Mean value of a feature function

What is the average values of α assuming a uniform distribution on \mathcal{T} ?

Mean value $=$ Weighted sum $=\frac{\sum_{t \in \mathcal{T}} \alpha(t)}{|\mathcal{T}|}$

Principle and main equation

By introducing a controlled ambiguity, one can extract the feature expectation from a combinatorial DP scheme. Idea: Passing a dot • along or drop it ($\equiv \alpha(e)$) on some arc e.

$$
\Rightarrow c_{s}^{\bullet_{s}^{\alpha}}=\sum_{o \in \mathcal{T}} \alpha(o)=\sum_{e=(s \rightarrow \mathbf{t})}\left(\alpha(e) \cdot \prod_{t_{i} \in \mathbf{t}} c_{t_{i}}+\sum_{t_{i} \in \mathbf{t}} c_{t_{i}}^{\boldsymbol{\theta}_{i}^{\alpha}} \prod_{t_{j} \neq t_{i} \in \mathbf{t}} c_{t_{j}}\right)
$$

$\Rightarrow \mathbb{E}(\alpha):=c_{s_{0}}^{\bullet} / c_{s_{0}}$ obtained in $\Theta\left(|V|+|E| \cdot D^{2}\right) / \Theta(|V|)$ time/space, with $D:=\max _{e \in E}(|h(e)|)$
Remark: Similar to the folklore pointing operator in enumerative combinatorics, and to the formal derivative.

Low-hanging fruits

$D: \max _{e \in E}(|h(e)|)$

- Boltzmann-like distribution

Unconvinced by the uniform distribution? Got an energy fonction $\Delta: E \rightarrow \mathbb{R}$ extended additively, and a good reason to expect convergence toward a Boltzmann distribution $e^{\frac{-\Delta}{k T}}$? (We do...)
\Rightarrow Expectation in the Boltzmann distribution is just a weight away.

$$
\begin{aligned}
c_{s}^{\boldsymbol{\bullet}_{\alpha}^{\alpha}} & =\sum_{o \in \mathcal{T}} \alpha(o) \cdot e^{-\Delta(o) / R T} \\
& =\sum_{e=(s \rightarrow \mathbf{t})} \mathrm{e}^{\frac{-\Delta(\mathrm{e})}{k T}}\left(\alpha(e) \cdot \prod_{t_{i} \in \mathbf{t}} c_{t_{i}}+\sum_{t_{i} \in \mathbf{t}} c_{t_{i} \alpha}^{\boldsymbol{\theta}^{\alpha}} \prod_{t_{j} \neq t_{i} \in \mathbf{t}} c_{t_{j}}\right) \\
\Rightarrow \Theta(|V| & \left.+|E| \cdot D^{2}\right) / \Theta(|V|)
\end{aligned}
$$

- Exact correlations

Nh: Specializes into Miklos et al 2005 for RNA secondary structures.

Low-hanging fruits

$D: \max _{e \in E}(|h(e)|)$

- Boltzmann-like distribution $\Rightarrow \Theta\left(|V|+|E| \cdot D^{2}\right) / \Theta(|V|)$
- Higher-order moments

Want to go beyond the expected value of α ? No problem (almost), compute higher-order moments.

$$
c_{s^{\boldsymbol{\bullet}^{m}}}=\sum_{o \in \mathcal{T}} \alpha(o)^{m} \cdot e^{-\Delta(o) / R T}
$$

$$
=\sum_{e=(s \rightarrow \mathbf{t})} e^{\frac{-\Delta(e)}{k T}}\left(\sum_{\substack{\left(m_{1}^{\prime}, \ldots, m^{\prime}(\mathbf{t e}) \\ \text { s.t. } \sum m_{i}^{\prime}:=m^{\prime} \leq m\right.}} \alpha(e)^{m-m^{\prime}} \prod_{t_{i} \in \mathbf{t}} c_{t_{i}^{\prime}}^{\boldsymbol{o}_{i}^{m_{i}^{\prime}}}\right)
$$

$\Rightarrow \Theta\left(|V|+|E| \cdot m^{D+2}\right) / \Theta(m \cdot|V|)$

Low-hanging fruits

$D: \max _{e \in E}(|h(e)|)$

- Boltzmann-like distribution $\Rightarrow \Theta\left(|V|+|E| \cdot D^{2}\right) / \Theta(|V|)$
- Higher-order moments $\Rightarrow \Theta\left(|V|+|E| \cdot m^{D+2}\right) / \Theta(m \cdot|V|)$
- Exact correlations Given two α and α^{\prime}, correlation is given by

$$
c_{s}^{\bullet_{\alpha} \bullet_{\alpha^{\prime}}}=\sum_{o \in \mathcal{T}} \alpha(o) \cdot \alpha^{\prime}(o) \cdot e^{-\Delta(o) / R T}
$$

$$
\Rightarrow \Theta\left(|V|+|E| \cdot D^{2}\right) / \Theta(|V|)
$$

Nb : Specializes into Miklos et al 2005 for RNA secondary structures.

Conclusion

- Many algorithms in Bioinformatics rely on dynamic programming
- Adopting a combinatorial vision over the search space greatly, and hypergraph representations, helped:
- Prove correctness.
- Instant transposal of new applications.
- Implementation tricky (avoid explicit representations).
- Use in combination with machine-learning as classifier/scanner for ncRNAs.
- How to transpose usual DP tricks (four-russians, cutting corners, sparsification)?
- Are there even more compact ways to describe more specific search spaces (e.g. CFGs, split-types??)

