
Extending the hypergraph analogy for RNA dynamic programming

Yann Ponty Balaji Raman Cédric Saule

Polytechnique/CNRS/INRIA AMIB � France

Yann Ponty, Balaji Raman, Cédric Saule RNA Hypergraph Dynamic Programming



RNA Folding

RNA = Biopolymer composed of nucleotides A, C, G, and U
A : Adenosine, C : Cytosine, G : Guanine et U : Uracil

Canonical base-pairs
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RNA folding = Stochastic continuous process directed by (resulting) the
pairing of nucleotides.

Understanding RNA folding is a key step toward understanding and predicting
its function(s).
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RNA structure(s)

Three1 levels of representation:
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Discarded by secondary structure

Non-canonical base-pairs
Any basepair other than {(A-U), (C-G), (G-U)}
Or interacting using a non-standard edge/orientation
(WC/WC-Cis) [LW01].

C/G canonical pair (WC/WC-Cis) CG non-canonical pair (Sugar/WC-Trans)

Pseudoknots
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Pseudoknots within a group I Ribozyme (PDBID: 1Y0Q:A)

More expressive model, but ab initio folding with pseudoknots:
⇒ NP-Complete [LP00]... yet polynomial for restricted classes [CDR+04].
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Our objective(s)

Authors Complexity Authors Complexity

Lyngso and Pedersen O(n5) Cao and Chen O(n6)
Reeder and Giegerich O(n4) Dirk and Pierce O(n5)
Akutso and Uemara O(n5) Rivas and Eddy O(n6)

Chen, Jabbari and Condon O(n5) . . . . . .

Many DP algorithms proposed for folding with restricted pseudoknots.
Decompositions induce high complexities and/or are ambiguous, prohibiting
ensemble-based approaches: Partition function, BP prob.. . .

Is it possible to come up with highly expressive, unambiguous decompositions?

Our programme

To unify DP RNA algorithms into a single abstract framework.

To reformulate ensemble-based applications within this framework.

Improve existing algorithms by working on their decomposition at an
abstract level.

May bene�t to RNA-RNA interaction prediction, parameterized approaches. . .
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DP Example: Nussinov/Jacobson decomposition

Nearest-neighbor model

Free-energy = Weighted sum over base-pairs

Goal: Given RNA sequence ω, �nd Minimum Free Energy (MFE) secondary
structure compatible with base-pairing.

i j
=

i i+1 j
+

i k j

≥ θ

Ni,t = 0, ∀t ∈ [i , i + θ]

Ni,j = min

 Ni+1,j i non apparié
j

min
k=i+θ+1

Eωi ,ωk +Ni+1,k−1 +Nk+1,j i apparié à k

EG ,C = EC ,G = −3.0 kCal
mol

, EA,U = EU,A = −2.0 kCal
mol

, and EG ,U = EU,G = −1.0 kCal
mol

.

Once the minimal energy is �gured out, the corresponding secondary structure
is obtained through a backtrack procedure.
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More complex/realistic example

Turner model

Free-energy = Weighted sum over loops

M′i,j = min


EH(i , j)
ES(i , j) +M′ i+1,j−1
Mini′,j′(EBI (i , i

′, j ′, j) +M′i′,j′)
a + c + Mink(Mi+1,k−1 +M1

k,j−1)

Mi,j = Mink
{
min (Mi,k−1, b(k − 1)) +M1

k,j

}
M1

i,j = Mink
{
b +M1

i,j−1, c +M′i,j
}

EH(i, j): Energy of terminal loop closed by base-pair (i, j)

EBI (i, j): Energy of bulge/internal loop ren�ement closed by bp (i, j)

ES (i, j): Stacking energy (i, j)/(i + 1, j − 1)

a,c,b: Penalties for multiple loops, helix and unpaired base in multiloop.
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Beyond minimization

Additional motivation: Go beyond energy minimization.
Current driving hypothesis = Boltzmann ensemble of low energy

Functional folding? Ill-de�ned folding:

mRNA?

Bistable RNA

Kinetics?

Decompositions will have to be unambiguous. . .
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Dynamic programming

Starting from an instance, or problem:

Search space: May depend on instance

Objective function: De�ned on search space, may depend on instance

Dynamic programming equation: Relates value of objective function for
problem to that of its sub-problems (substructure property), relying on a
decomposition of search space

Compute obj. fun. for sub-problems (Use backtrack to build solution).

Nussinov example:

Search space: Secondary structures inducing valid bps.

Objective function: Free-energy

DP equation/decomposition: MFE obtained by minimizing energy on
subsequence(s)

Alternative view: DP equation generates search space AND implements a
speci�c application.
⇒ Detach two conceptually di�erent entities.
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Existing DP abstract frameworks

Parsing approaches

Search space modeled by context-free grammar(s) (CFG).

(Multitape)-attribute grammars (Lefebvre, Waldispühl et al):

Compute and minimize score based on attribute algebra.
Pros: Captures simple pseudoknots through synchronized multiple tapes.
Cons: Designed for optimization. Multi-tapes can be overkill for almost CFG.

Algebraic Dynamic Programming (Giegerich et al)

Pros: Adresses general applications thanks to an algebraic approach.
Cons: Pseudoknots require hacking the formalism.

Other

Hypergraphs (. . . , Roytberg/Finkelstein)

Pros: Very �exible. Mild in�uence of order. Any CFG can be transformed into
equivalent hypergraph.
Cons: No generic implementation (yet!).
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Hypergraphs
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Hypergaphs generalize directed graphs to arcs of arbitrary in/out degrees.

De�nition (Hypergraph)

A directed hypergaph H is a couple (V ,E) such that:

V is a set of vertices

E is a set of hyperarcs e = (t(e)→ h(e)) such that t(e), h(e) ⊂ E

Forward hypergraphs, or F-graphs, are hypergraphs whose arcs have ingoing
degree exactly 1.
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F-graph All F-paths starting from vertex 1

De�nition (F-path)

A F-path is a tree having root s ∈ V , whose children are F-paths built from the
outgoing vertices of some arc e = (s → t) ∈ E .

Remark: Vertices of out degree 0 (t = ∅) provide a terminal case to the above
recursive de�nition.

F-graph is independent i� any arc is present at most once in each F-path.

A numerical value fonction π : E → R can be assigned to each arc e ∈ E :

Weight of a path is the product of its arcs' values

Score of a path is the sum of its arcs' values
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Basic algorithms

H = (s0,V ,E , π): acyclic hypergraph s0: Initial node π: value function

Some questions naturally arise:

What is the (min/max)imal score ms of an F-path starting from s ∈ V ?
⇒ Complexities: Θ(|E |+ |V |) time/Θ(|V |) memory.

What is the number ns of F-paths starting from s ∈ V ?
⇒ Complexities: Θ(|E |+ |V |) time/Θ(|V |) memory.

What is the total weight ws of all F-paths starting from s ∈ V ?
⇒ Complexities: Θ(|E |+ |V |) time/Θ(|V |) memory.

+

ms = min
e=(s→t)∈E

(
w(e) +

∑
u∈t

mu

)
s

t1

t′1

t′2

w(e)

w(e′′)w(e′)

Yann Ponty, Balaji Raman, Cédric Saule RNA Hypergraph Dynamic Programming



Basic algorithms

H = (s0,V ,E , π): acyclic hypergraph s0: Initial node π: value function

Some questions naturally arise:

What is the (min/max)imal score ms of an F-path starting from s ∈ V ?
⇒ Complexities: Θ(|E |+ |V |) time/Θ(|V |) memory.

What is the number ns of F-paths starting from s ∈ V ?
⇒ Complexities: Θ(|E |+ |V |) time/Θ(|V |) memory.

What is the total weight ws of all F-paths starting from s ∈ V ?
⇒ Complexities: Θ(|E |+ |V |) time/Θ(|V |) memory.

×

ns =
∑

(s→t)∈E

∏
u∈t

nu
s

t1

t′1

t′2

Yann Ponty, Balaji Raman, Cédric Saule RNA Hypergraph Dynamic Programming



Basic algorithms

H = (s0,V ,E , π): acyclic hypergraph s0: Initial node π: value function

Some questions naturally arise:

What is the (min/max)imal score ms of an F-path starting from s ∈ V ?
⇒ Complexities: Θ(|E |+ |V |) time/Θ(|V |) memory.

What is the number ns of F-paths starting from s ∈ V ?
⇒ Complexities: Θ(|E |+ |V |) time/Θ(|V |) memory.

What is the total weight ws of all F-paths starting from s ∈ V ?
⇒ Complexities: Θ(|E |+ |V |) time/Θ(|V |) memory.

×

ws =
∑

e=(s→h(e))∈E

w(e) ·
∏

s′∈h(e)

ws′
s

t1

t′1

t′2

w(e)

w(e′′)w(e′)

Yann Ponty, Balaji Raman, Cédric Saule RNA Hypergraph Dynamic Programming



De�nition (Weighted distribution)

Assume a weighted, Boltzmann-like, distribution on the set T of F-Paths:

P(p|π) =

∏
e∈p π(e)

ws0

, ∀p ∈ T .

Ensemble related � questions arise:

How to generate a random F-path p from T w.r.t. weighted distribution?
⇒ Complexities: Θ(|E |+ |V |) time/Θ(|V |) memory precomputation
+ O(|p|+

∑
e∈p |h(e)|) time generation.

What is the probability that a given arc be present in a random F-Path?
⇒ Inside/outside algorithm.
Distribution of additive features

Algorithm:
Choose ei = (s → ti ) with probability
ps,i such that:

ps,i =
w(e) ·

∏
s′∈t ws′

ws

Iterate the process over all ti 's.

s

t1

t′1

t′2

w(e)

w(e′′)w(e′)

Yann Ponty, Balaji Raman, Cédric Saule RNA Hypergraph Dynamic Programming



De�nition (Weighted distribution)

Assume a weighted, Boltzmann-like, distribution on the set T of F-Paths:

P(p|π) =

∏
e∈p π(e)

ws0

, ∀p ∈ T .

Ensemble related � questions arise:

How to generate a random F-path p from T w.r.t. weighted distribution?
⇒ Complexities: Θ(|E |+ |V |) time/Θ(|V |) memory precomputation
+ O(|p|+

∑
e∈p |h(e)|) time generation.

What is the probability that a given arc be present in a random F-Path?
⇒ Inside/outside algorithm.

Distribution of additive features

Yann Ponty, Balaji Raman, Cédric Saule RNA Hypergraph Dynamic Programming



Inside/outside algorithm

s0

s∗

t∗1 t∗2

F-path using a given arc e∗(s∗ → t
∗)

Inside: Some F-path built from t
∗

Distinguished arc e∗

Outside: Context where e∗ is used:

Path p = (s0, s1, . . . , s∗)
using F-arcs (e1, . . . , ek)
For each vertex in some h(ei )/p
complete F-path by adding siblings
to the vertices in p.
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Inside/outside algorithm

s0

s∗

t∗1t
∗
2

F-path using a given arc e∗(s∗ → t
∗)

Inside: Some F-path built from t
∗

Distinguished arc e∗

Outside: Context where e∗ is used:

Path p = (s0, s1, . . . , s∗)
using F-arcs (e1, . . . , ek)
For each vertex in some h(ei )/p
complete F-path by adding siblings
to the vertices in p.

If F-graph is acyclic and independent, this decomposition is complete and un-
ambiguous, and induces the following DP equations for the cumulated proba-
bility pe∗ of all F-paths featuring e∗ = (s∗ → t

∗):

pe∗ =
bs∗ · π(e) ·

∏
s′∈t∗ ws′

ws0

bs = 1s=s0 +
∑

e′=(s′→t
′)∈E

s. t. s∈t

π(e′) · bs′ ·
∏
s′′∈t′
s′′ 6=s

ws′′ , ∀s ∈ V
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Ensemble applications

De�nition (Weighted distribution)

Assume a weighted, Boltzmann-like, distribution on the set T of F-Paths:

P(p|π) =

∏
e∈p π(e)

ws0

, ∀p ∈ T .

Ensemble related � questions arise:

How to generate a random F-path p from T w.r.t. weighted distribution?
Complexities: Θ(|E |+ |V |) time/Θ(|V |) memory precomputation
+ O(|p|+

∑
e∈p |h(e)|) time generation.

What is the probability that a given arc be present in a random F-Path?
⇒ Inside/outside algorithm
Complexities: O(|V |+ |E |+

∑
e∈E |h(e)|2)time/Θ(|V |) memory

How to characterize the distribution of some additive features?
⇒ Extraction of generalized moments
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Moments of a feature distribution

Let T be the set of F-paths associated with a given hypergraph.

De�nition (Feature)

A feature is a function α : E → R inherited additively by F-paths through

α(p) =
∑
e∈p

α(e)

Example: Let us consider additive price α function over F-arcs and its
associated random variable Xα.

A Within the weighted distribution, what is the expected price of an F-path?

B . . . the variance of the price Xα of an F-path?

C How does the price Xα correlates with the weight Xπ?

A =
∑

p∈T π(p)·α(p)
ws0

= E(Xα) B =
∑

p∈T π(p)·α(p)
2

ws0
− E(Xα)2 = E(X 2

α)− E(Xα)2

C = E(Xα·Xπ)−E(Xα)E(Xπ)√
(E(X2

α)−E(Xα)2)(E(X2
π)−E(Xπ)2)

⇒ Can be expressed in term of the moments of the feature(s) distribution.
How to extract them?
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Goal: To extract the (combined) moment of an additive feature :

E(X k1
α1 · · ·X

km
αm ) =

∑
p∈T

π(p)

ws0

·
m∏
i=1

αi (p)km

Di�culty: Mixing additive (features) and multiplicative algebraic aspects
(weighted distribution).
Solution: Modify hypergraph to introduce controlled ambiguity.

De�nition (Feature-pointed F-graph)

Let H = (s0,V ,E , π) be a weighted F-graph and α : E → R some feature.
The α-pointing of H is an F-graph H•α = (s•α0 ,V •α ,E•α , π•α) such that:

Pointed versions of vertices are introduced ⇒ V •α := V ∪ {s•α | s ∈ V }
New arcs are introduced to propagate a point or erase it.

Propagation P•α :=
⋃

(s→t)∈E
t 6=∅

{
s•α → (t1, . . . , t

•α
i

, . . . , tk) | i ∈ [1, k]
}

Point erasure M•α :=
⋃

(s→t)∈E{(s•α → t)}

⇒ E•α := E ∪ P•α ∪ M•α

Weight function is extended to partially incorporate feature function

π•α(e′) :=

{
π(e′

◦α) If e′ ∈ P ∪ E
α(e′

◦
) · π(e′

◦α) Otherwise (e′ ∈ M•α)
, ∀e′ ∈ E•α
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Example: Simple 0 (dashed) or 1 (plain) feature function α.
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Initial F-graph

1• 3
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4•

5•

6

5

6•

1

1

00
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1
1

1

2
2

2

1

1

0

1

Pointed F-graph

1 2 5

6

1 3

1 4 6

1 4

π = 2

π = 1

π = 1

π = 1

Initial F-Paths

1• 2 5

6

1• 2• 5•

6

1• 2• 5

6

1• 2• 5

6•

π = 2

π = 0

π = 2

π = 2

Analogs in H• of boxed F-path

Rationale: Through pointing, each F-path p in H is duplicated |p| times in H•
(⇒ analogs of p) . Each copy features a point erasure over a di�erent F-arc.
⇒ The total weight, under π•α , of all analogs of p is now π(p) · α(p).
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Extracting moments

Input: F-graph H = (s0,V ,E , π)
Goal: To extract the (higher order) moment of an additive feature :

E(X k1
α1 · · ·X

km
αm ) =

∑
p∈T

π(p)

ws0

·
m∏
i=1

αi (p)km

Algorithm

Apply weighted count algorithm to H → ws0 .

Point H repeatedly (commutative transform) → H•.
Apply weighted count algorithm to H•

⇒ w
• =

∑
p∈T

π(p) ·
m∏
i=1

αi (p)km .

Return w•/ws0 .

Complexities: O
(
2k · |V |+

∑
e∈E (|h(e)|+ 1) · (|h(e)|+ 2)k

)
time

O(2k · |V |) memory, with k =
∑m

i=1 ki .

Remarks: Can be improved by pointing ki times in one go instead of pointing
repeatedly. Without loss of generality, |h(e)| = 2 can be assumed (CNF).
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Half time summary

Message #1

Speci�c applications of Dynamic Programming could (and should) be detached
from the equation, and be expressed at an abstract level.

Sec. str. Turner

Sec. str. Nussinov

PK Dirks/Pierce

Moments extraction Count

Min/max score

Weighted count

Arc probability

. . .Random generation

Message #2

Thanks to a pointing operator (formal derivative), one can extract arbitrary
moments of features distribution under a weighted/Boltzmann distribution.

Credits: Roytberg and Finkelstein for Hypergraph DP in Bioinformatics, L. Hwang for

algebraic hypergraph DP, Flajolet et al for formal derivative through pointing. . .

Let us now address the construction of suitable F-graphs. . .
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Mfold/Unafold decomposition

This decomposition is provably unambiguous and complete, and yields an
F-graph that is acyclic, independent, and has Θ(n2) vertices and O(n3) arcs.
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Mfold/Unafold decomposition

This decomposition is provably unambiguous and complete, and yields an
F-graph that is acyclic, independent, and has Θ(n2) vertices and O(n3) arcs.

Application Algorithm Time Memory Reference

Energy minimization Min. score + πT O(n3) O(n2) [ZS81]

Partition function π count + e
−πT
RT O(n3) O(n2) [McC90]

Base-pairing probabilities Arc prob. + e
−πT
RT O(n3) O(n2) [McC90]

Statistical sampling (k-samples) Rand. gen. + e
−πT
RT O(n3 + k · n log n) O(n2) [DL03, Pon08]

Moments of energy (Mean, Var.) Moments + e
−πT
RT O(n3) O(n2) [MMN05]

k-th moment of additive features Moments + e
−πT
RT O(k3.n3) O(k.n2) �

Correlations of additive features Moments + e
−πT
RT O(n3) O(n2) �

Generalized moments Moments + e
−πT
RT O(4k .n3) O(2k .n2) �
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Basic pseudoknots (Akutsu)
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Basic pseudoknots (Akutsu)

Unambiguous decomposition capturing simple pseudoknots Akutsu et al.
⇒ yields O(n4)/O(n4) time/memory algorithms for nearest neighbor energy
model, and O(n5) time/O(n4) memory for Turner model.

We can now answer new questions:

What probability for the MFE within Akutsu's class of conformations?

What is the expected number of pseudoknots within a given sequence?

. . .
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Conclusion

Using Hypergraphs, we were able to successfully detach conformation space
from application.

Implementation? We still have to mess with indices :(
⇒ Start from CFG? Limited. . . (and already done by ADP) but maybe
worthy
⇒ Use Mathias Möhl's split types?

Account for additional parameters (RNAMutants, RNABor. . . )

Pseudoknots gene scanning (in progress). Non-canonical motifs?

Rebuild distributions from truncated moments (⇒ Economics??)
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Complexity of secondary structure folding

Figure: Alternative strategy for interior loops, creating the symmetric part �rst and
the asymmetric part afterward.

Due to interior loops, the set F-arcs generated for the Q ′ case have apparent
cardinality in O(n4), while we claims O(n3) complexities. A pragmatic answer
may point out that it is common practice to upper bound the interior loop size

(j ′ − j) + (i ′ − i) to a prede�ned constant K = 30, bringing back the overall
complexity to O(n3). A more theoretically-sound approach achieves a similar
complexity while remaining exact by further decomposing internal loops into a
symmetric loop followed by a fully asymmetric one, as illustrated in Figure 1.
Such a modi�cation introduces a new case in the decomposition and captures
with l the asymmetry of the loop, but the log nature of the entropy term in the
Turner model then requires a small approximation.
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