Weighted random generation of context-free languages: Analysis of collisions in random urn occupancy models

Danièle Gardy Yann Ponty

PRiSM - Université de Versailles St-Quentin en Yvelines - France
LIX - Polytechnique/CNRS/INRIA AMIB - France

RNA structure(s)

Three ${ }^{1}$ levels of representation:

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure

Secondary structure

Tertiary structures
Source: 5s rRNA (PDB 1K73:B)

[^0]
RNA structure(s)

Three ${ }^{1}$ levels of representation:

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure

Secondary ${ }^{+}$structure

Tertiary structures
Source: 5s rRNA (PDB 1K73:B)

[^1]- Non-canonical base-pairs

Any basepair other than $\{(\mathrm{A}-\mathrm{U}),(\mathrm{C}-\mathrm{G}),(\mathrm{G}-\mathrm{U})\}$
Or interacting using a non-standard edge/orientation (WC/WC-Cis) [LW01].

C/G canonical pair (WC/WC-Cis)

CG non-canonical pair (Sugar/WC-Trans)

- Pseudoknots

Pseudoknots within a group I Ribozyme (PDBID: 1Y0Q:A)
More expressive model, but $a b$ initio folding with pseudoknots: \Rightarrow NP-Complete [LP00]... yet polynomial for restricted classes [CDR $\left.{ }^{+} 04\right]$.

Outer planar graphs
$(((((((\ldots((((\ldots \ldots))))((((((\ldots \ldots)))))) \ldots(((((\ldots \ldots)))))))))).) \ldots$.
Well-parenthesized expressions

Mountain view

Linear

Dot plot

Feynman diagrams

Secondary structures $=$ Motzkin words avoiding plateaux $(\bullet \cdots \bullet)$ of width $<\theta$.

Driving hypothesis for the RNA folding community assumes a Boltzmann distribution $e^{\frac{-E}{R T}}$ based on free-energy on secondary structures compatible with base-pairing constraints.

Functional folding?

III-defined folding: mRNA?

Bistable RNA Kinetics?

Gold standard method: To build a consensus based on a representative sample of the Boltzmann ensemble of low-energy.
\Rightarrow (Weighted)-random generation of $\mathbf{1 0 0 0}$ structures and clustering.
Initial question: Is this magic number sufficient? (What is sufficient?)

Generalization: Drop base-pairing compatibility constraint. . . Secondary structures \rightsquigarrow Context-free language Boltzmann factor \rightsquigarrow Multiplicative weight

Starting point: (Weighted-)Random generation yields (huge) redundancy Remark \#1: Redundancy does not teach us anything. Remark \#2: Some structures/features might be obfuscated by heaviest structures.

Natural questions:
Q1 How many generations are required before some word is drawn twice?
Q2 How many words must be sampled before each word is encountered at least once?

Q3 How many distinct words are there after sampling k objects?
Q4 What is the cumulated non-redundant probability after k generations?

The random allocation analogy

Generator
 - Expected time of first collision
 - \#Distinct words after k generations
 - Coverage after k generations
 - Expected time of full collection

8
5
0
8

The random allocation analogy

- Expected time of first collision
- \#Distinct words after k generations
- Coverage after k generations
- Expected time of full collection

जिकी
$\frac{8}{8}$
ज的泉
8
8
8

The random allocation analogy

- Expected time of first collision
- \#Distinct words after k generations
- Coverage after k generations
- Expected time of full collection

The random allocation analogy

- Expected time of first collision
- \#Distinct words after k generations
- Coverage after k generations
- Expected time of full collection

The random allocation analogy

－Expected time of first collision
－\＃Distinct words after k generations
－Coverage after k generations
－Expected time of full collection

$\begin{array}{r}8 \\ 0 \\ \hline 8\end{array}$
ज的泉
$\frac{8}{8}$
部

The random allocation analogy

- Expected time of first collision
- \#Distinct words after k generations
- Coverage after k generations
- Expected time of full collection

The random allocation analogy

The random allocation analogy

- Expected time of first collision
- \#Distinct words after k generations
- Coverage after k generations
- Expected time of full collection

Definition (Context-free grammar)
Context-free grammar $=4$-tuple $(\Sigma, \mathcal{N}, \mathcal{P}, \mathcal{S})$:

- Σ : Alphabet.
- \mathcal{N} : Non-terminal symbols.
- \mathcal{P} : Set of production rules $N \rightarrow X \in \mathcal{N} \times\{\Sigma \cup \mathcal{N}\}^{*}$.
- \mathcal{S} : Axiom, or initial non-terminal.

Alt.: Context-free grammar $=$ admissible specification using:

- Operators $\{\times,+\}$
- Finite set of atoms $\left\{Z_{1}, Z_{2}, \ldots, Z_{k}\right\}$
- Empty structure 1

Definition (Weighted context-free grammar [DRT00])

A weighted context-free grammar is a 5 -tuple $\mathcal{G}=(\Sigma, \mathcal{N}, \mathcal{P}, \mathcal{S}, \pi)$:

- $\Sigma, \mathcal{N}, \mathcal{P}, \mathcal{S}$: Same as previously.
- π : Weight function $\pi: \Sigma \rightarrow \mathbb{R}$.

Consider the set \mathcal{L}_{n} of words of length n generated by \mathcal{G}.
Definition (Weighted probability distribution)
A WCFG \mathcal{G} implicitly defines a weighted probability distribution over \mathcal{L}_{n} :

$$
\forall \omega \in \mathcal{L}_{\boldsymbol{n}}, \mathbb{P}(\omega)=\frac{\pi(\omega)}{\mu_{\boldsymbol{n}, \pi}}
$$

where $\mu_{\boldsymbol{n}, \pi}=\sum_{w \in \mathcal{L}_{\boldsymbol{n}}} \pi(w)$ is the total weight of $\mathcal{L}_{\boldsymbol{n}}$ (partition function).

Generating k words of size n is in $\mathcal{O}\left(n^{2}+n \log (n) \cdot k\right)$

Furthermore, aiming at observed terminal frequencies:
Asymptotic weights can sometimes be derived analytically [DRTOO] Weights can be determined (Newton iteration)

Definition (Weighted context-free grammar [DRT00])

A weighted context-free grammar is a 5 -tuple $\mathcal{G}=(\Sigma, \mathcal{N}, \mathcal{P}, \mathcal{S}, \pi)$:

- $\Sigma, \mathcal{N}, \mathcal{P}, \mathcal{S}$: Same as previously.
- π : Weight function $\pi: \Sigma \rightarrow \mathbb{R}$.

Consider the set \mathcal{L}_{n} of words of length n generated by \mathcal{G}.

Definition (Weighted probability distribution)

A WCFG \mathcal{G} implicitly defines a weighted probability distribution over \mathcal{L}_{n} :

$$
\forall \omega \in \mathcal{L}_{\boldsymbol{n}}, \mathbb{P}(\omega)=\frac{\pi(\omega)}{\mu_{\boldsymbol{n}, \pi}}
$$

where $\mu_{\boldsymbol{n}, \pi}=\sum_{w \in \mathcal{L}_{\boldsymbol{n}}} \pi(w)$ is the total weight of $\mathcal{L}_{\boldsymbol{n}}$ (partition function).

Generating k words of size n is in $\mathcal{O}\left(n^{2}+n \log (n) \cdot k\right)^{*}$.
Furthermore, aiming at observed terminal frequencies:
\Rightarrow Asymptotic weights can sometimes be derived analytically [DRT00]
\Rightarrow Weights can be determined (Newton iteration)

Definition (Weighted generating function)

A weighted generating function $L_{\pi}(z)$ can be defined as

$$
L_{\pi}(z) \equiv \sum_{w \in \mathcal{L}} \pi(w) z^{|w|}=\sum_{n \geq 0} \mu_{\pi, n} z^{n}
$$

G.f. is constructible as a solution of a weighted system of algebraic equations.

Assuming unicity of the dom. sing, the asymptotics of the total weight follow

$$
\left[z^{n}\right] L_{\pi}(z)=\mu_{\pi, n} \sim \kappa_{\pi} \cdot \rho_{\pi}^{-n} \cdot n^{-k_{\pi}}\left(1+\mathcal{O}\left(n^{-k_{\pi}^{\prime}}\right)\right) .
$$

Definition (Asymptotics of total weights)
The k-th moment of a π-weighted distribution is given by

$$
\alpha_{k, n}=\sum_{i=1}^{m_{n}} p_{i}^{k}=\frac{\sum_{w \in \mathcal{L}_{n}} \pi(w)^{k}}{\mu_{\pi, n^{k}}{ }^{k}}=\frac{\mu_{\pi k, n}}{\mu_{\pi, n^{k}} .}
$$

First collision

C1 Diversity: The probability $p_{n, \pi}^{\triangle}$ of the most probable word within \mathcal{L}_{n} decreases exponentially with n.
C2 Log-positive weights: For each terminal symbol $t \in \Sigma, \pi_{\boldsymbol{t}}>1$.

C3 Bounded dependency: For any rational number $k>1$ and any weight vector π such that Condition C2 holds, $\rho_{\pi}{ }^{k}<\rho_{\pi^{k}}$ holds.

Theorem (First collision)

Under conditions C1, C2 and C3, the expected number of generations $E\left[B_{n, \pi}\right]$ before some word of \mathcal{L}_{n} is drawn twice is such that

$$
E\left[B_{n, \pi}\right] \sim \frac{\sqrt{\pi}}{\sqrt{2 \alpha_{2, n}}}=\frac{\mu_{\pi, n} \sqrt{\pi}}{\sqrt{2 \mu_{\pi^{2}, n}}} \in \Omega\left(\gamma^{n}\right), \quad \gamma:=\frac{\rho_{\pi}}{\sqrt{\rho_{\pi^{2}}}}>1
$$

Proof:

First collision

C1 Diversity: The probability $p_{n, \pi}^{\triangle}$ of the most probable word within \mathcal{L}_{n} decreases exponentially with n.
C2 Log-positive weights: For each terminal symbol $t \in \Sigma, \pi_{\boldsymbol{t}}>1$. \Rightarrow No loss of generality (weighted distribution stable through rescaling)
C3 Bounded dependency: For any rational number $k>1$ and any weight vector π such that Condition C2 holds, $\rho_{\pi}{ }^{k}<\rho_{\pi} k$ holds.

Theorem (First collision)

Under conditions C1, C2 and C3, the expected number of generations $E\left[B_{n, \pi}\right]$ before some word of \mathcal{L}_{n} is drawn twice is such that

$$
E\left[B_{n, \pi}\right] \sim \frac{\sqrt{\pi}}{\sqrt{2 \alpha_{2, n}}}=\frac{\mu_{\pi, n} \sqrt{\pi}}{\sqrt{2 \mu_{\pi^{2}, n}}} \in \Omega\left(\gamma^{n}\right), \quad \gamma:=\frac{\rho_{\pi}}{\sqrt{\rho_{\pi^{2}}}}>1
$$

Proof:

First collision

C1 Diversity: The probability $p_{n, \pi}^{\triangle}$ of the most probable word within \mathcal{L}_{n} decreases exponentially with n.
C2 Log-positive weights: For each terminal symbol $t \in \Sigma, \pi_{\boldsymbol{t}}>1$. \Rightarrow No loss of generality (weighted distribution stable through rescaling)
C3 Bounded dependency: For any rational number $k>1$ and any weight vector π such that Condition C2 holds, $\rho_{\pi}{ }^{k}<\rho_{\pi k}$ holds. (Corollary of C1)

Theorem (First collision)

Under conditions C1, C2 and C3, the expected number of generations $E\left[B_{n, \pi}\right]$ before some word of \mathcal{L}_{n} is drawn twice is such that

$$
E\left[B_{n, \pi}\right] \sim \frac{\sqrt{\pi}}{\sqrt{2 \alpha_{2, n}}}=\frac{\mu_{\pi, n} \sqrt{\pi}}{\sqrt{2 \mu_{\pi^{2}, n}}} \in \Omega\left(\gamma^{n}\right), \quad \gamma:=\frac{\rho_{\pi}}{\sqrt{\rho_{\pi^{2}}}}>1
$$

Proof:

C1 Diversity: The probability $p_{n, \pi}^{\Delta}$ of the most probable word within \mathcal{L}_{n} decreases exponentially with n.
C2 Log-positive weights: For each terminal symbol $t \in \Sigma, \pi_{\boldsymbol{t}}>1$.
C3 Bounded dependency: For any rational number $k>1$ and any weight vector π such that Condition C2 holds, $\rho_{\pi}{ }^{k}<\rho_{\pi^{k}}$ holds.

Theorem (First collision)

Under conditions C1, C2 and C3, the expected number of generations $E\left[B_{n, \pi}\right]$ before some word of \mathcal{L}_{n} is drawn twice is such that

$$
E\left[B_{n, \pi}\right] \sim \frac{\sqrt{\pi}}{\sqrt{2 \alpha_{2, n}}}=\frac{\mu_{\pi, n} \sqrt{\pi}}{\sqrt{2 \mu_{\pi^{2}, n}}} \in \Omega\left(\gamma^{n}\right), \quad \gamma:=\frac{\rho_{\pi}}{\sqrt{\rho_{\pi^{2}}}}>1
$$

Proof: Let $\lambda(t)=\prod_{i=1}^{m}\left(1+p_{i} t\right)$, then Flajolet-Gardy-Thimonier [FGT92]

$$
E[B]=\int_{0}^{+\infty} \lambda(t) e^{-t} d t .
$$

C1 Diversity: The probability $p_{n, \pi}^{\Delta}$ of the most probable word within \mathcal{L}_{n} decreases exponentially with n.
C2 Log-positive weights: For each terminal symbol $t \in \Sigma, \pi_{\boldsymbol{t}}>1$.
C3 Bounded dependency: For any rational number $k>1$ and any weight vector π such that Condition C2 holds, $\rho_{\pi}{ }^{k}<\rho_{\pi^{k}}$ holds.

Theorem (First collision)

Under conditions C1, C2 and C3, the expected number of generations $E\left[B_{n, \pi}\right]$ before some word of \mathcal{L}_{n} is drawn twice is such that

$$
E\left[B_{n, \pi}\right] \sim \frac{\sqrt{\pi}}{\sqrt{2 \alpha_{2, n}}}=\frac{\mu_{\pi, n} \sqrt{\pi}}{\sqrt{2 \mu_{\pi^{2}, n}}} \in \Omega\left(\gamma^{n}\right), \quad \gamma:=\frac{\rho_{\pi}}{\sqrt{\rho_{\pi^{2}}}}>1
$$

Proof: Let $\lambda(t)=\prod_{i=1}^{m}\left(1+p_{i} t\right)$, then Flajolet-Gardy-Thimonier [FGT92]

$$
E[B]=\int_{0}^{\tau} \lambda(t) e^{-t} d t+\int_{\tau}^{+\infty} \lambda(t) e^{-t} d t .
$$

C1 Diversity: The probability $p_{n, \pi}^{\Delta}$ of the most probable word within \mathcal{L}_{n} decreases exponentially with n.
C2 Log-positive weights: For each terminal symbol $t \in \Sigma, \pi_{\boldsymbol{t}}>1$.
C3 Bounded dependency: For any rational number $k>1$ and any weight vector π such that Condition C2 holds, $\rho_{\pi}{ }^{k}<\rho_{\pi^{k}}$ holds.

Theorem (First collision)

Under conditions C1, C2 and C3, the expected number of generations $E\left[B_{n, \pi}\right]$ before some word of \mathcal{L}_{n} is drawn twice is such that

$$
E\left[B_{n, \pi}\right] \sim \frac{\sqrt{\pi}}{\sqrt{2 \alpha_{2, n}}}=\frac{\mu_{\pi, n} \sqrt{\pi}}{\sqrt{2 \mu_{\pi^{2}, n}}} \in \Omega\left(\gamma^{n}\right), \quad \gamma:=\frac{\rho_{\pi}}{\sqrt{\rho_{\pi^{2}}}}>1
$$

Proof: Let $\lambda(t)=\prod_{i=1}^{m}\left(1+p_{i} t\right)$, then Flajolet-Gardy-Thimonier [FGT92]

$$
E[B]=\int_{0}^{\tau} e^{-\alpha_{2} t^{2} / 2} d t \cdot\left(1+\mathcal{O}\left(\alpha_{3} \tau^{3}\right)\right)+\int_{\tau}^{+\infty} \lambda(t) e^{-t} d t
$$

C1 Diversity: The probability $p_{n, \pi}^{\Delta}$ of the most probable word within \mathcal{L}_{n} decreases exponentially with n.
C2 Log-positive weights: For each terminal symbol $t \in \Sigma, \pi_{\boldsymbol{t}}>1$.
C3 Bounded dependency: For any rational number $k>1$ and any weight vector π such that Condition C2 holds, $\rho_{\pi}{ }^{k}<\rho_{\pi^{k}}$ holds.

Theorem (First collision)

Under conditions C1, C2 and C3, the expected number of generations $E\left[B_{n, \pi}\right]$ before some word of \mathcal{L}_{n} is drawn twice is such that

$$
E\left[B_{n, \pi}\right] \sim \frac{\sqrt{\pi}}{\sqrt{2 \alpha_{2, n}}}=\frac{\mu_{\pi, n} \sqrt{\pi}}{\sqrt{2 \mu_{\pi^{2}, n}}} \in \Omega\left(\gamma^{n}\right), \quad \gamma:=\frac{\rho_{\pi}}{\sqrt{\rho_{\pi^{2}}}}>1
$$

Proof: Let $\lambda(t)=\prod_{i=1}^{m}\left(1+p_{i} t\right)$, then Flajolet-Gardy-Thimonier [FGT92]

$$
E[B]=\sqrt{\frac{\pi}{2 \alpha_{2}}}\left(1+\mathcal{O}\left(e^{-\tau^{2} \alpha_{2} / 2}\right)+\mathcal{O}\left(\alpha_{3} \tau^{3}\right)\right)+\int_{\tau}^{+\infty} \lambda(t) e^{-t} d t .
$$

First collision

C1 Diversity: The probability $p_{n, \pi}^{\triangle}$ of the most probable word within \mathcal{L}_{n} decreases exponentially with n.
C2 Log-positive weights: For each terminal symbol $t \in \Sigma, \pi_{\boldsymbol{t}}>1$.
C3 Bounded dependency: For any rational number $k>1$ and any weight vector π such that Condition C2 holds, $\rho_{\pi}{ }^{k}<\rho_{\pi^{k}}$ holds.

Theorem (First collision)

Under conditions C1, C2 and C3, the expected number of generations $E\left[B_{n, \pi}\right]$ before some word of \mathcal{L}_{n} is drawn twice is such that

$$
E\left[B_{n, \pi}\right] \sim \frac{\sqrt{\pi}}{\sqrt{2 \alpha_{2, n}}}=\frac{\mu_{\pi, n} \sqrt{\pi}}{\sqrt{2 \mu_{\pi^{2}, n}}} \in \Omega\left(\gamma^{n}\right), \quad \gamma:=\frac{\rho_{\pi}}{\sqrt{\rho_{\pi^{2}}}}>1
$$

Proof: Let $\lambda(t)=\prod_{i=1}^{m}\left(1+p_{i} t\right)$, then Flajolet-Gardy-Thimonier [FGT92]

$$
E[B]=\sqrt{\frac{\pi}{2 \alpha_{2}}}\left(1+\mathcal{O}\left(e^{-\tau^{2} \alpha_{2} / 2}\right)+\mathcal{O}\left(\alpha_{3} \tau^{3}\right)\right)+\mathcal{O}\left(\frac{\lambda(\tau) e^{-\tau}}{\sum_{i} \frac{p_{i}^{2} \tau}{1+p_{i} \tau}}\right)
$$

First collision

C1 Diversity: The probability $p_{n, \pi}^{\Delta}$ of the most probable word within \mathcal{L}_{n} decreases exponentially with n.
C2 Log-positive weights: For each terminal symbol $t \in \Sigma, \pi_{\boldsymbol{t}}>1$.
C3 Bounded dependency: For any rational number $k>1$ and any weight vector π such that Condition C2 holds, $\rho_{\pi}{ }^{k}<\rho_{\pi^{k}}$ holds.

Theorem (First collision)

Under conditions C1, C2 and C3, the expected number of generations $E\left[B_{n, \pi}\right]$ before some word of \mathcal{L}_{n} is drawn twice is such that

$$
E\left[B_{n, \pi}\right] \sim \frac{\sqrt{\pi}}{\sqrt{2 \alpha_{2, n}}}=\frac{\mu_{\pi, n} \sqrt{\pi}}{\sqrt{2 \mu_{\pi^{2}, n}}} \in \Omega\left(\gamma^{n}\right), \quad \gamma:=\frac{\rho_{\pi}}{\sqrt{\rho_{\pi^{2}}}}>1
$$

Proof: Let $\lambda(t)=\prod_{i=1}^{m}\left(1+p_{i} t\right)$, then Flajolet-Gardy-Thimonier [FGT92]

$$
E[B]=\sqrt{\frac{\pi}{2 \alpha_{2}}}\left(1+\mathcal{O}\left(e^{-\tau^{2} \alpha_{2} / 2}\right)+\mathcal{O}\left(\alpha_{3} \tau^{3}\right)\right)+\mathcal{O}\left(\frac{1}{\sqrt{\alpha_{2}}}\right)
$$

for some τ chosen such that $\alpha_{2} \tau^{2} \rightarrow+\infty$ and $\alpha_{3} \tau^{3} \rightarrow 0$ (e.g. $\tau:=\alpha_{5 / 2}$).

Full collection (Coupon collector)

Theorem (Full weighted collection)

Let $W_{\pi, n}^{\nabla}$ be the weight of the least probable word in \mathcal{L}_{n} and $m_{n}=\left|\mathcal{L}_{n}\right|$. The waiting time $E\left[C_{n, \pi}\right]$ of the full collection is such that

$$
\frac{\mu_{\pi, \boldsymbol{n}}}{W_{\pi, \boldsymbol{n}}^{\nabla}} \leq E\left[C_{\boldsymbol{n}, \pi}\right] \leq 2 \cdot \mathcal{H}_{m_{\boldsymbol{n}}} \cdot \frac{\mu_{\pi, \boldsymbol{n}}}{W_{\pi, \boldsymbol{n}}^{\nabla}}
$$

which, for large values of n, adopts the equivalent

$$
\frac{\kappa_{\pi} \cdot \rho_{\pi}^{-\boldsymbol{n}}}{W_{\pi, \boldsymbol{n}}^{\nabla} \cdot n^{k_{\pi}}} \leq E\left[C_{\boldsymbol{n}, \pi}\right] \leq \frac{2 \cdot \log (1 / \rho) \cdot \kappa_{\pi} \cdot \rho_{\pi}^{-\boldsymbol{n}}}{W_{\pi, \boldsymbol{n}}^{\nabla} \cdot n^{k_{\pi}-\mathbf{1}}}
$$

Proof: Berenbrink and Sauerwald established that waiting time obeys

$$
\frac{\mathcal{U}_{m}}{3 e \cdot \log \log m} \leq E\left[C_{\pi}\right] \leq 2 \mathcal{U}_{m} \quad \text { with } \quad \mathcal{U}_{m_{n}}=\sum_{i=1}^{m_{n}} \frac{1}{i p_{i}} \leq \frac{\mu_{\pi, n}}{W_{\pi, n}^{\nabla}}\left(\sum_{i=1}^{m_{n}} \frac{1}{i}=\mathcal{H}_{m}\right)
$$

where p_{i} is the probability of the i-th least probable word.
Lower bound is simply the expected time for drawing least probable word.

Distinct samples

Random generation $=$ Allocation of undistinguishable balls into distinct urns.
$=$ Sequence (urns) of sets (content) of balls.
$\Rightarrow \Psi_{\pi}(x, y)=\sum_{j \geq 0} \sum_{k \geq 0} a_{j, k} \cdot x^{j} \cdot \frac{y^{k}}{k!}=\prod_{i=1}^{m}\left(1+x\left(e^{p_{i} y}-1\right)\right)$
where $a_{j, k}$ is the probability of reaching j distinct urns upon throwing k balls.

Theorem (Distinct samples - Hwang and Janson [HJ08])

The expected number $E\left[N_{n, \pi, k}\right]$ of distinct words after k generations obeys
$E\left[N_{n, \pi, k}\right]=\sum_{i=1}^{|\mathbf{W}|} m_{n, i} \cdot\left(1-\left(1-\frac{W_{n, i}}{\mu_{\pi, n}}\right)^{k}\right)=\sum_{i=1}^{|\mathbf{W}|} m_{n, i} \cdot\left(1-e^{-\frac{W_{n, i}}{\mu_{\pi, \boldsymbol{n}}} k}\right)+\mathcal{O}(1)$.
where \mathbf{W} is the set of weight classes.

Remark: Since there are at most $\mathcal{O}\left(n^{|\Sigma|}\right)$ classes of distinct weights, this gives a polynomial-time algorithm for computing $E\left[N_{n, \pi, k}\right]$.

Similar analysis is performed for coverage, introducing the weight contribution

$$
\Phi_{\pi}(x, y)=\sum_{j \geq 0} \sum_{k \geq 0} b_{j, k} \cdot x^{j} \cdot \frac{y^{k}}{k!}=\prod_{i=1}^{m}\left(1+x^{w_{i}}\left(e^{p_{i y}}-1\right)\right)
$$

where $b_{j, k}$ is now the probability of reaching distinct urns of total weight j upon throwing k balls.

Theorem (Coverage)

In a weighted distribution, the expected cumulated probability $E\left[P_{n, \pi, k}\right] \in[0,1]$ of the set of distinct words obtained after k generations is given by

$$
E\left[P_{n, \pi, k}\right]=\sum_{i=1}^{|W|} m_{n, i} \cdot \frac{W_{n, i}}{\mu_{\pi, n}} \cdot\left(1-\left(1-\frac{W_{n, i}}{\mu_{\pi, n}}\right)^{k}\right) .
$$

Secondary structures avoiding plateaux of length $\leq \theta$ are generated by

$$
S \rightarrow\left(S_{\geq \theta}\right) S|\bullet S| \varepsilon \quad S_{\geq \theta} \rightarrow\left(S_{\geq \theta}\right) S\left|\bullet S_{\geq \theta}\right| \bullet \bullet^{\theta} .
$$

Weight function: $\pi(\boxed{)})=\pi(\boxed{\bullet})=1$ and $\pi\left(\boxed{(\square)}=e^{\frac{-\bar{R} T}{}}\right.$ with $\Delta \in\{-1,-3\}$ Remark: Every base-pair can form in this homopolymer model.

Example: tRNA ($n=80$)

Expectation	(θ, Δ)	\#Samples
First collision	$(1,-1)$	$\sim 4.7 .10^{13}$
	$(3,-3)$	~ 93.55
Full collection	$(1,-1)$	$\frac{0.64 \cdot 4 \cdot 33^{n}}{n \sqrt{n}} \lesssim \cdot>\frac{1.24 \cdot 4.3}{\sqrt{n}}$
	$(3,-3)$	

Back to RNA

Secondary structures avoiding plateaux of length $\leq \theta$ are generated by

$$
S \rightarrow\left(S_{\geq \theta}\right) S|\bullet S| \varepsilon \quad S_{\geq \theta} \rightarrow\left(S_{\geq \theta}\right) S\left|\bullet S_{\geq \theta}\right| \bullet \theta .
$$

Weight function: $\pi(\boxed{)})=\pi(\boxed{\bullet})=1$ and $\pi(\square)=e^{\frac{-\Delta}{R T}}$ with $\Delta \in\{-1,-3\}$

Example:

Number $s_{n, k, i, \theta}$ of sec. str. of length n with i plateaux and $k \geq i$ bps obeys

$$
\begin{aligned}
& s_{n, k, i, \theta}=\mathcal{N}(i, k)\binom{n-\theta k}{n-2 i-\theta k}=\frac{1}{i}\binom{i}{k}\binom{i}{k-1}\binom{n-\theta k}{n-2 i-\theta k}
\end{aligned}
$$

Back to RNA

Secondary structures avoiding plateaux of length $\leq \theta$ are generated by

$$
S \rightarrow\left(S_{\geq \theta}\right) S|\bullet S| \varepsilon \quad S_{\geq \theta} \rightarrow\left(S_{\geq \theta}\right) S\left|\bullet S_{\geq \theta}\right| \bullet \theta .
$$

Weight function: $\pi(\boxed{)})=\pi(\boxed{\bullet})=1$ and $\pi(\boxed{(})=e^{\frac{-\Delta}{R T}}$ with $\Delta \in\{-1,-3\}$

Example:

Number $s_{n, k, i, \theta}$ of sec. str. of length n with i plateaux and $k \geq i$ bps obeys

$$
\begin{aligned}
& s_{n, k, i, \theta}=\mathcal{N}(i, k)\binom{n-\theta k}{n-2 i-\theta k}=\frac{1}{i}\binom{i}{k}\binom{i}{k-1}\binom{n-\theta k}{n-2 i-\theta k}
\end{aligned}
$$

Back to RNA

Secondary structures avoiding plateaux of length $\leq \theta$ are generated by

$$
S \rightarrow\left(S_{\geq \theta}\right) S|\bullet S| \varepsilon \quad S_{\geq \theta} \rightarrow\left(S_{\geq \theta}\right) S\left|\bullet S_{\geq \theta}\right| \bullet \theta .
$$

Weight function: $\pi(\boxed{)})=\pi(\boxed{\bullet})=1$ and $\pi(\boxed{(})=e^{\frac{-\Delta}{R T}}$ with $\Delta \in\{-1,-3\}$

Example:

Number $s_{n, k, i, \theta}$ of sec. str. of length n with i plateaux and $k \geq i$ bps obeys

$$
\begin{aligned}
& s_{n, k, i, \theta}=\mathcal{N}(i, k)\binom{n-\theta k}{n-2 i-\theta k}=\frac{1}{i}\binom{i}{k}\binom{i}{k-1}\binom{n-\theta k}{n-2 i-\theta k}
\end{aligned}
$$

Back to RNA

Secondary structures avoiding plateaux of length $\leq \theta$ are generated by

$$
S \rightarrow\left(S_{\geq \theta}\right) S|\bullet S| \varepsilon \quad S_{\geq \theta} \rightarrow\left(S_{\geq \theta}\right) S\left|\bullet S_{\geq \theta}\right| \bullet \theta
$$

Weight function: $\pi(\boxed{)})=\pi(\boxed{\bullet})=1$ and $\pi(\boxed{(})=e^{\frac{-\Delta}{R T}}$ with $\Delta \in\{-1,-3\}$

Example:

Number $s_{n, k, i, \theta}$ of sec. str. of length n with i plateaux and $k \geq i$ bps obeys

$$
\begin{aligned}
s_{n, k, i, \theta}=\mathcal{N}(i, k)
\end{aligned}\binom{n-\theta k}{n-2 i-\theta k}=\frac{1}{i}\left(\begin{array}{c}
i \\
n-1 \\
k
\end{array}\right)\binom{i}{k-1}\binom{n-\theta k}{n-2 i-\theta k}
$$

Conclusion

We analyzed the level of redundancy within a sampled set of fixed size, and gave closed formulae/algorithms/asymptotic expansions for:

- Expected time of the first collision
- Expected time of the full collection
- Expected number of distinct samples after k generations
- Expected coverage of distinct samples

Yet certain questions remain open/partially addressed:

- Better characterization of suitable CFG languages. Which CFG satisfy the $p_{1} \in o\left(\alpha^{n}\right), \alpha<1$ property?
- Tighter bounds for the coup on collector $(\Theta(n)$ gap 0
- Perform similar analysis for non-redundant generation ©
- Waiting time for distinct samples? For a desired coverage c? \Rightarrow Determine for which k redundancy can be afforded (rejection).

Thank you!

Conclusion

We analyzed the level of redundancy within a sampled set of fixed size, and gave closed formulae/algorithms/asymptotic expansions for:

- Expected time of the first collision
- Expected time of the full collection
- Expected number of distinct samples after k generations
- Expected coverage of distinct samples

Yet certain questions remain open/partially addressed:

- Better characterization of suitable CFG languages. Which CFG satisfy the $p_{1} \in o\left(\alpha^{n}\right), \alpha<1$ property?
- Tighter bounds for the coupon collector $(\Theta(n)$ gap $)$
- Perform similar analysis for non-redundant generation. ©
- Waiting time for distinct samples? For a desired coverage c? \Rightarrow Determine for which k redundancy can be afforded (rejection).

Thank you!

Conclusion

We analyzed the level of redundancy within a sampled set of fixed size, and gave closed formulae/algorithms/asymptotic expansions for:

- Expected time of the first collision
- Expected time of the full collection
- Expected number of distinct samples after k generations
- Expected coverage of distinct samples

Yet certain questions remain open/partially addressed:

- Better characterization of suitable CFG languages. Which CFG satisfy the $p_{1} \in o\left(\alpha^{n}\right), \alpha<1$ property?
- Tighter bounds for the coupon collector $(\Theta(n)$ gap $)$
- Perform similar analysis for non-redundant generation. ©
- Waiting time for d distinct samples? For a desired coverage c ? \Rightarrow Determine for which k redundancy can be afforded (rejection)

Thank you!

We analyzed the level of redundancy within a sampled set of fixed size, and gave closed formulae/algorithms/asymptotic expansions for:

- Expected time of the first collision
- Expected time of the full collection
- Expected number of distinct samples after k generations
- Expected coverage of distinct samples

Yet certain questions remain open/partially addressed:

- Better characterization of suitable CFG languages. Which CFG satisfy the $p_{1} \in o\left(\alpha^{n}\right), \alpha<1$ property?
- Tighter bounds for the coupon collector $(\Theta(n)$ gap $)$ ©
- Perform similar analysis for non-redundant generation. ©
- Waiting time for d distinct samples? For a desired coverage c ? \Rightarrow Determine for which k redundancy can be afforded (rejection).

Thank you!

A. Condon, B. Davy, B. Rastegari, S. Zhao, and F. Tarrant.

Classifying RNA pseudoknotted structures.
Theoretical Computer Science, 320(1):35-50, 2004.
A. Denise, O. Roques, and M. Termier.

Random generation of words of context-free languagesaccording to the frequencies of letters.
In D. Gardy and A. Mokkadem, editors, Mathematics and Computer Science: Algorithms,Trees, Combinatorics and probabilities, Trends in Mathematics, pages 113-125. Birkhaüser, 2000.

P. Flajolet, D. Gardy, and L. Thimonier.

Birthday paradox, coupon collectors, caching algorithms and self-organizing search.
Discrete Appl. Math., 39(3):207-229, 1992.
H.-K. Hwang and S. Janson.

Local limit theorems for finite and infinite urn models.
Ann. Probab., 36(3):992-1022, 2008.
R. B. Lyngs \varnothing and C. N. S. Pedersen.

RNA pseudoknot prediction in energy-based models.
Journal of Computational Biology, 7(3-4):409-427, 2000.
N. Leontis and E. Westhof.

Geometric nomenclature and classification of RNA base pairs.
RNA, 7:499-512, 2001.

Problem: Our bounds are not tight! $\Theta(n)$ factor between upper and lower bounds.

Figure: Plots of $\frac{W_{\pi, \boldsymbol{n}}^{\nabla}}{\mu_{\pi, \boldsymbol{n}}} \cdot \mathcal{U}_{\boldsymbol{m}}$ for weighted Motzkin words exhibit a linear growth on n, suggesting that the upper bound is reached.

[^0]: ${ }^{1}$ Well, almost...

[^1]: ${ }^{1}$ Well, almost...

