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RNA structure

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG
CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA
cC

Primary structure Secondary structure Tertiary structure

Source: 5s rRNA (PDBID: 1K73:B)

Definition
Secondary structures of RNA =
Maximal non-crossing subset of canonical base-pairs.
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Various representations for a versatile molecule

. PR NN e (e DN
Well-parenthesized expression

Mountain view

Dot plot

Non intersecting arcs

Different objects
yet
Common combinatorial structure

Feynman's diagram
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Why use combinatorics?

Boltzmann ensemble is a (weighted) combinatorial class.

M A A AR
4 o RO D
A A AR AR AR A

Studying it as such cleans out the details and helps:
@ Assess asymptotic properties of sec. str.
@ Investigate worst and average-case complexities
@ Obtain better algorithms for RNA
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Generating functions

Let | .| be a size function over objects (Sequences, trees, ...).
Combinatorial classes are (infinite) sets C of objects whose
restrictions C, to objects of size n are of finite cardinality.
Definition (Generating functions)

Let C be a combinatorial class and ¢, = |Cp| the number of objects
of size n in C, then the generating function of C is C(z) s. t.

C(z) = Zz'sl = Z cnz”

seC n>0

Closed forms for C(z) are often easy to find ...

DNA example: D := {a,c,g,t}* = d, = 4"
and C(z) =1+4z+ 1622 + 642> + ... = Yonso 42" = >y

...and very often much simpler than for c,!!!
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DSV /symbolic method

From a class specification, one can directly establish the gen. fun.

Historically on languages, from Schiitzenberger's observation that

Gen. fun. are commutative images of languages

Grammar | Generating function | Coefficients
C—e Cz)=2=1 cn = Lgoy(n)
C—t Cz)=zt==2 cn = 1y13(n)
C—A|B|C(z)=A(z)+B(z) | cp=an+ by
C - AB C(Z):A( ) ( ) CHZZZ:O akb,,_k

Remark: One needs to ensure that unions are disjoint and
concatenations unambiguous.

DNA example : {a,c,g,t}* < D —aD|c.D|gD|t.D]e

=D(z)=z-D(z)+z-D(z)+z-D(z)+z-D(z)+1
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DSV /symbolic method

From a class specification, one can directly establish the gen. fun.

Historically on languages, from Schiitzenberger's observation that

Gen. fun. are commutative images of languages

Grammar | Generating function | Coefficients
C—e Cz)=2=1 cn = Lgoy(n)
C—t Cz)=zt==2 cn = 1y13(n)
C—A|B|C(z)=A(z)+B(z) | cp=an+ by
C - AB C(Z):A( ) ( ) CHZZZ:O akb,,_k

Remark: One needs to ensure that unions are disjoint and
concatenations unambiguous.

DNA example : {a,c,g,t}* < D —aD|c.D|gD|t.D]e

= D(z)=4z-D(z)+1
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DSV /symbolic method

From a class specification, one can directly establish the gen. fun.

Historically on languages, from Schiitzenberger's observation that

Gen. fun. are commutative images of languages

Grammar | Generating function | Coefficients
C—e Cz)=2=1 cn = Lgoy(n)
C—t Cz)=zt==2 cn = Ly13(n)
C—A|B|C(z)=A(z)+B(z) | chn=an+ by
C—AB | C(z2)=A(z)-B(z) |cn=2r_oakbn«k
Remark: One needs to ensure that unions are disjoint and
concatenations unambiguous.

DNA example : {a,c,g,t}* < D —aD|c.D|gD|t.D|e
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Main principles

Disclaimer

What follows, although true in this context, is embarassingly simplistic.
A rigorous presentation can (and must) be found in Flaj./Sedg. 08.

A singularity is a point z = p where C(z) is no longer analytic.
Asymptotics of coeff c, are driven by the singularities of C(z).

15 principle
Location of the dominant (smallest) singularity p dictates the

exponential growth = pc_",, =o(a"), Va > 1.

DNA example: D(z) =1/(1 —4z) = p=1/4 = d, ~ 4"P(n). J
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Basic scale

27 principle
Nature of p dictates subexponential part P(n) s.t. ¢, ~ p~"P(n). J

Basic scale: If one can rewrite C(z) as

C(2) = f(2) +&(z)(1 = z/p)*
where f and g are analytic V|z| < |p| and non-null at p, then

= [£71C() ~ 200

1-4z

Example: D(z) = L=, ~4n
(= 1/4,0 = —1,(2) = 0, and g(z) = 1)
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General methodology

Asymptotic estimates are obtained using a 4 steps meta-algorithm:

1 Find the right model
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General methodology

Asymptotic estimates are obtained using a 4 steps meta-algorithm:

1 Find the right model

2 Translate into grammar
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General methodology

Asymptotic estimates are obtained using a 4 steps meta-algorithm:

1 Find the right model
2 Translate into grammar
3 Translate into system and solve g. f.
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General methodology

Asymptotic estimates are obtained using a 4 steps meta-algorithm:

1 Find the right model

2 Translate into grammar

3 Translate into system and solve g. f.
4 Singularity analysis yields asymptotics
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Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

\/@M.\/E
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Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)
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Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

1 = V Qm. Ve
2 M - oM I (M)M | e
3 M(z) = z-M(2) +z-M(z) -z - M(z)+ 1
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Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

1 = v Q—w. v £
2 M - oM (MM e
3 M(z) = z-M(2) +z-M(z) -z - M(z)+ 1
B eyt aesstl U 1 —22200(3)
@:14—14—234—4?4—9%4—0(25)
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Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

1 — v Q—w. v 1S4
3 Mz) = z-ME) 4z M(2)-z- M 1
= @
2z
4 p=1/3 M(2) = 3£ — g(2)v/1-z/p and g(2) := \/212?

= 50 = [2]M(2) ~ (2075 = 33 . (14 O(1/n))
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RNA secondary structures

Consider RNA secondary structures (Waterman 78)

V®w>l Ve
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RNA secondary structures

Consider RNA secondary structures (Waterman 78)

V®w>l Ve

2 S —>.5|(S>0)5|€
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RNA secondary structures

Consider RNA secondary structures (Waterman 78)

» vy

2 s = es|(T)s|e
T — oS|(T)S
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RNA secondary structures

Consider RNA secondary structures (Waterman 78)

1 [ e e e P O —] VQM.\/e
>1
2 S — eS[(T)S|e
T — oS|(T)S
3 5(2) = Lozt —I2r7Tarugt
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RNA secondary structures

Consider RNA secondary structures (Waterman 78)

» vy

2 S — eS|(T)S|e
T — oS|(T)S

3 5(2) = Lozt —I2r7Tarugt

4 p=35-1-¢

[2"]S(z) = /15+7f ( ﬁ>"(1 +O(1/n)) ~1.1- 5\%
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RNA secondary structures

Let us generalize the 6 constraint

1 owwwo:o—---@\/\zho v —--=--9
>0
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RNA secondary structures

Let us generalize the 6 constraint

1 W:h---@vwo v —--=--9
>0

O = === - - O = om0 - == === ° \/ &

2 S — U(S9)S|U U — elUje
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RNA secondary structures

Let us generalize the 6 constraint

1 W:h---@vwo v —--=--9
>0

O = === - - O = om0 - == === ° \/ &

2 S — U(T)S|U U— elU]le
T~ U(T)S| U
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RNA secondary structures

Let us generalize the 6 constraint

1 W:h---@vwo \/ —--=--9
>0

O = === - - O = om0 - == === ° \/ &

2 S — U(T)S|U U— elU]le
T~ U(T)S| U

3 5(2) — 1—22—&—222—29+2—\/1—42—1—422 —270+2 4 479+3 _476+4 1 720+4
(1—2)2z2
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RNA secondary structures

Let us generalize the 6 constraint

1 .NW\/W.:.----Q'M. \/ —--=--9
>0

O = === - - O = om0 - == === ° \/ &

2 S — U(T)S|U U— elU]le
T~ U(T)S|

3 5(2) — 12742727042\ /1474472 070+2 1 470+3_450+4 720+4
(1—2)2z2

6|
gl

0
4 ~ KA (1 0(1/n) 3. I 62 | 2.29 | 2.02
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Half-time report

Message #1
Finding the right decomposition (DP) is a combinatorial task.
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Half-time report

Message #1
Finding the right decomposition (DP) is a combinatorial task. J

Message #2
Applying automatic theorems gives precise asymptotic equivalents. J

2 First order estimate:

1-Rel. Err.

iz n =50 = 95% accuracy

% o . £ ® %
Size

Secondary structures
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Half-time report

Message #1
Finding the right decomposition (DP) is a combinatorial task. J

Message #2
Applying automatic theorems gives precise asymptotic equivalents. J

n = 20 accuracies:
1%t order 88%
2" order 99.8%
37 order 99.992%

1-Rel. Err.

20 EY 160

. £
Size

Secondary structures
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Half-time report

Message #1
Finding the right decomposition (DP) is a combinatorial task. J

Message #2
Applying automatic theorems gives precise asymptotic equivalents.

v

Message #3

There is a large exponential number of structures of size n:
Homopolymer model: Q(2")  Stickiness model: O(1.8"/n/?)
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Presentation

Definition (RNA shapes [Giegerich et al])
Coarse-grain representation hierarchy for RNA sec. struct. J

Based on the underlying backbone structure.

Example

Sec. str. ((((. 20(€&&acacon M) C((C
n’-shape [ e o [ ° ] L
m-shape [ - - [
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Presentation

Definition (RNA shapes [Giegerich et al]) J

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the underlying backbone structure.

Example

Sec. str. ((((. 20C€&&acacon M) (lLoooooo
7/-shape [ o o [ ° ] [ °
m-shape [ s - L

Contract identical consecutive characters
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Presentation

Definition (RNA shapes [Giegerich et al]) J

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the underlying backbone structure.

Example

Sec. str. ((((. G M) C((
n/-shape [ o o [ ° ] [
m-shape [ - - L

Remove unpaired regions
Contract nested helices
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Motivation

RNA shapes allow a hierarchical search in the Boltzmann ensemble

e L e Lt
4 o A DR o

10000 samples = 1727 Secondary structures. . .
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Motivation

RNA shapes allow a hierarchical search in the Boltzmann ensemble

e L e Lt
4 o A DR o

10000 samples = 1727 Secondary structures. . .

B D A

...406 7'-shapes. ..
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Motivation

RNA shapes allow a hierarchical search in the Boltzmann ensemble

R e L E Lt
4 o A DR o

10000 samples = 1727 Secondary structures. . .

L E Rt

...406 7'-shapes. ..

B RO

... but only 9 7-shapes!
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Motivation

RNA shapes allow a hierarchical search in the Boltzmann ensemble

B g A R

Is it reasonable to perform an exhaustive search of
all possible shapes compatible with input structure?

How many shapes must we investigate?

Sl iatatate ta et U

...406 7'-shapes. ..
Yann Ponty RNA shapes combinatorics

... but only 9 7-shapes!



m-shapes

Objective: Count m-shapes with 2n parentheses.

AV,

(L1100 001001¢0101]

1 m-shapes are bracket words avoiding the [[...]] motif.
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m-shapes

Objective: Count m-shapes with 2n parentheses.

TCICITLIC00I0IT0000]

1 m-shapes are bracket words avoiding the [[...]] motif.

2 S = [SqupnlsS ISl
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m-shapes

Objective: Count m-shapes with 2n parentheses.

.-T..T.- : 7"... .
P S S S .
COTCITCI0C0ICII0I0T]

1 m-shapes are bracket words avoiding the [[...]] motif.

2 S = [TIS|[T] T~ [T]S]e
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m-shapes

Objective: Count m-shapes with 2n parentheses.

.-T.. T.- : 7.'... .
P S G S .
COTCITCI0C0ICII0I0T]

1 m-shapes are bracket words avoiding the [[...]] motif.

2 S = [T]S|[T] T = [T]S]|e
1—22-/1-222_37
3 5(2) = 222
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m-shapes

Objective: Count m-shapes with 2n parentheses.

p S A S .
(CICTI0I0 001001 0T]

1 m-shapes are bracket words avoiding the [[...]] motif.

2 S = [T]S|[T] T = [T]S]|e
1—22-/1-222_37
3 5(2) = 222

V3 o 3n
27

4 Sop ~ ——=(1+0(1/n)) and s3py1 =0

Remark: Doesn’t this look familiar???
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Limitations

Number of w-shapes of size n

”

Number of m-shapes compatible with RNA of size n

Reasons:

2 S = [T]IS|[T] T = [T]S]e
2 — 5.2 2.4

3 5(2):1 z Vv1-—2z 3z

272

3v3 3" _ 3"
v \/_(1+(9(1/n))~0.48-n\/ﬁ

4 For n even: sy, ~
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Limitations

Number of 7-shapes of size n

+

Number of m-shapes compatible with RNA of size n

Reasons:

© Shapes of size < n should be considered

2 S = [T]S|[T] T —[T]S]|e
R — OS|e
1—22—V1-222-3z%
’ Riz) = 222(1 — 2)
3v3 3" 1.73"
4 r2n~mn—\/ﬁ(1+0(1/n)):>rn~207 n\/ﬁ
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Limitations

Number of w-shapes of size n

”

Number of m-shapes compatible with RNA of size n

Reasons:
© Shapes of size < n should be considered
@ Forming a hairpin loop [ ] takes at least 6 + 2 bases

2 S = [T]S|[T] T = [T]S|e
R — OS|e
1 — 0+2 _ 1 — 270+2 _ 4,0+4 20+4
3 R(z): z \/ b4 Z + z
2z2(1 — z)
1.32"7
4 0=3=r,~244 e

ny/n
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A surprising bijection

Theorem
#m shapes of size n = #Motzkin words of length 2n + 2

Proof.
S(Z) 1—z f\/zl 2223724 (Z) _ 11— zf\/l 2z—3z
S(z)=1+22M(z?) = sp= m2n+2

These two classes are in bijection.
How to state it? Can we exploit it?
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Explicit bijection

Let v, 0:{[,]}*—{(,),e} such that

B o(A) If B=
Y(A)B) = { »(A) e (B) Otherw?se

o((A)B) = o(A)(B)]
o) = e

Then 1 is a bijection between sy, and mj,.

A

[0 0II0 — ¢ & <—>C<(K e
Jods 0 O\o

2n + 2 letters 2n + 2 edges n edges
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Explicit bijection

Let v, 0:{[,]}*—{(,),e} such that

B o(A) If B=
Y(A)B) = { »(A) e (B) Otherw?se

o((A)B) = o(A)y(B)]

o) = e
Then 1 is a bijection between sy, and mj,.
AN 78

P

LMD — {5 doe—— 0 C e ¢
‘B C\\o O\o

2n + 2 letters 2n + 2 edges n edges
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Explicit bijection

Let v, 0:{[,]}*—{(,),e} such that

B o(A) If B=
Y(A)B) = { »(A) e (B) Otherw?se

o((A)B) = o(A)y(B)]

oe) = .
Then 1 is a bijection between sy, and mj,.
<\ A
[[[][]][][]][]<—>00°°<—>0<O\ — ()
sede \O\ O\O
2n + 2 letters 2n + 2 edges n edges
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Explicit bijection

Let v, 0:{[,]}*—{(,),e} such that

B o(A) If B=
Y(A)B) = { »(A) e (B) Otherw?se

o((A)B) = o(A)y(B)]

oe) = .
Then 1 is a bijection between sy, and mj,.
<\ A
[[[][]][][]][]<—>00°°<—>0<O\ — () (
sede \O\ O\O
2n + 2 letters 2n + 2 edges n edges
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Explicit bijection

Let v, 0:{[,]}*—{(,),e} such that

B o(A) If B=
Y(A)B) = { »(A) e (B) Otherw?se

o((A)B) = o(A)y(B)]

o) = e
Then 1 is a bijection between sy, and mj,.
P A

[COOINNIN —— (5 ¢ oe— /O\ — OC
‘.O:.O. %‘\O

2n + 2 letters 2n + 2 edges n edges

Yann Ponty RNA shapes combinatorics



Explicit bijection

Let v, 0:{[,]}*—{(,),e} such that

B o(A) If B=
Y(A)B) = { »(A) e (B) Otherw?se

o((A)B) = o(A)y(B)]

o) = e
Then 1 is a bijection between sy, and mj,.
PO 72N

[ODIO0I0 e % ¢ »e— /}\ C— 0L
‘.O:.O. %‘\O

2n + 2 letters 2n + 2 edges n edges
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Explicit bijection

Let v, 0:{[,]}*—{(,),e} such that

B o(A) If B=
Y(A)B) = { »(A) e (B) Otherw?se

o((A)B) = o(A)y(B)]

o) = e
Then 1 is a bijection between sy, and mj,.
B
O/O\O //\,\

[COOINNIN —— (5 ¢ oe— /O\ «— O0C).
‘.O:.O. %‘\O

2n + 2 letters 2n + 2 edges n edges
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Limits of the bijection

3
T I
2.8 L Shapes of §1ze. n —e— |
W Shapes of size 2n ---o---
2.6 Jl! Motzkin words/RNA Secondary structures of size n ----e---- |
[
24 b e |
»
2.2 j’\‘ Tu |
2 A “*"1¢¢H4

Asymptotical exponential growth constant (%)

Impacts of 6 on shapes and Motzkin are drastically different.

Theorem

Expectations of number of term. loops in Motzkin words and
m-shapes scale like mf ~ 2 + O(1) and s}, , ~ 2 + O(1)
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7'-shapes

Objective: Count 7’-shapes compatible with RNA of length n.

1 n’-shapes = bracket words avoiding motifs [[...]] and ee

Yann Ponty RNA shapes combinatorics



7'-shapes

Objective: Count 7’-shapes compatible with RNA of length n.

1 n’-shapes = bracket words avoiding motifs [[...]] and ee

2 R-—-0OR|S S—-U[T]S|U U— ole

T - U[TJU[T]S|o[T]I[T]e]|o[T]o |’
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7'-shapes

Objective: Count 7’-shapes compatible with RNA of length n.

m'-shapes = bracket words avoiding motifs [[...]] and ee

2 R—-0OR|S

S—-U[T]S|U U— ole

T - U[TJU[T]S|o[T]I[T]e]|o[T]o |’

3 6=3 R(2)

_ 142724273474 75 26 \/1-423_27% 02751276728 _71040711 712
- 272(1—z2)
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7'-shapes

Objective: Count 7’-shapes compatible with RNA of length n.

m'-shapes = bracket words avoiding motifs [[...]] and ee

2 R—-0OR|S

S—-U[T]S|U U— ole

T - U[TJU[T]S|o[T]I[T]e]|o[T]o |’

3 6=3 R(2)

_ 142724273474 75 26 \/1-423_27% 02751276728 _71040711 712
- 272(1—z2)
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Summary

Model Asymptotic number
Sec. str. on n — Combinatorial il ql - 20
Sec. str. on n — Empirical 0.04 '1".3,@
m-shapes of size n 1.38- ';g/En
m-shapes compatible with sec. str. on n 2.44 . 1’7.\/25
m-shapes — Empirical 0.21. rlh}%
7’-shapes of size n 0.0 . 20

B
[aird
33

7/-shapes compatible with sec. str. on n 1.28 -

5
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Conclusion

e For context-free objects, finding gen. fun. is easy. ..
...and precise asymptotics estimates follow readily

@ Bijection between Motkzin words and 7w-shapes
@ Way less many shapes than sec. str.!

@ Homopolymer model overestimates number of shapes
Need for a probabilistic model for base-pairing
But stickiness is not enough. ..

Collaborators: W. A. Lorenz and P. Clote (Boston College)
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