RNA as a combinatorial object Asymptotics of RNA Shapes

Yann Ponty

Bioinformatics Team
École Polytechnique/CNRS/INRIA AMIB - France
November 27, 2009

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure

Secondary structure

Tertiary structure
Source: 5s rRNA (PDBID: $1 \mathrm{K73}$: B)

Definition

Secondary structures of RNA $=$
Maximal non-crossing subset of canonical base-pairs.

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure

Tertiary structure
Source: 5 s rRNA (PDBID: $1 \mathrm{~K} 73: B$)

Definition

Secondary structures of RNA $=$
Maximal non-crossing subset of canonical base-pairs.

Outline

(1) Foreword

- Introduction
- Motivation
(2) Enumerative combinatorics 101
- Generating functions
- DSV/symbolic method
- Singularity analysis
(3) RNA shapes
- Presentation
- Motivation
- π shapes

Various representations for a versatile molecule

Outer planar graph
$(((((((. .((((\ldots \ldots)))).((((((\ldots \ldots)))))) \ldots(((((\ldots \ldots)))))))))))) \ldots$.

Well-parenthesized expression

Non intersecting arcs

Dot plot

Different objects yet
Common combinatorial structure

Why use combinatorics?

Boltzmann ensemble is a (weighted) combinatorial class.

Studying it as such cleans out the details and helps:

- Assess asymptotic properties of sec. str.
- Investigate worst and average-case complexities
- Obtain better algorithms for RNA

Generating functions

Let $|$.$| be a size function over objects (Sequences, trees, ...).$ Combinatorial classes are (infinite) sets \mathcal{C} of objects whose restrictions \mathcal{C}_{n} to objects of size n are of finite cardinality.

Definition (Generating functions)

Let \mathcal{C} be a combinatorial class and $c_{n}=\left|\mathcal{C}_{n}\right|$ the number of objects of size n in \mathcal{C}, then the generating function of \mathcal{C} is $C(z) \mathrm{s}$. t.

$$
C(z)=\sum_{s \in C} z^{|s|}=\sum_{n \geq 0} c_{n} z^{n}
$$

Closed forms for $C(z)$ are often easy to find ...
DNA example: $\mathcal{D}:=\{a, c, g, t\}^{*} \Rightarrow d_{n}=4^{n}$ and $C(z)=1+4 z+16 z^{2}+64 z^{3}+\ldots=\sum_{n \geq 0} 4^{n} z^{n}=\frac{1}{1-4 z}$
\ldots and very often much simpler than for $c_{n}!!!$

DSV/symbolic method

From a class specification, one can directly establish the gen. fun. Historically on languages, from Schützenberger's observation that Gen. fun. are commutative images of languages

Grammar	Generating function	Coefficients
$C \rightarrow \varepsilon$	$C(z)=z^{0}=1$	$c_{n}=\mathbb{1}_{\{0\}}(n)$
$C \rightarrow t$	$C(z)=z^{1}=z$	$c_{n}=\mathbb{1}_{\{1\}}(n)$
$C \rightarrow A \mid B$	$C(z)=A(z)+B(z)$	$c_{n}=a_{n}+b_{n}$
$C \rightarrow A . B$	$C(z)=A(z) \cdot B(z)$	$c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$

Remark: One needs to ensure that unions are disjoint and concatenations unambiguous.
DNA example : $\{a, c, g, t\}^{*} \Leftrightarrow D \rightarrow a . D|c . D| g . D|t . D| \varepsilon$

$$
\Rightarrow D(z)=z \cdot D(z)+z \cdot D(z)+z \cdot D(z)+z \cdot D(z)+1
$$

DSV/symbolic method

From a class specification, one can directly establish the gen. fun. Historically on languages, from Schützenberger's observation that Gen. fun. are commutative images of languages

Grammar	Generating function	Coefficients
$C \rightarrow \varepsilon$	$C(z)=z^{0}=1$	$c_{n}=\mathbb{1}_{\{0\}}(n)$
$C \rightarrow t$	$C(z)=z^{1}=z$	$c_{n}=\mathbb{1}_{\{1\}}(n)$
$C \rightarrow A \mid B$	$C(z)=A(z)+B(z)$	$c_{n}=a_{n}+b_{n}$
$C \rightarrow A . B$	$C(z)=A(z) \cdot B(z)$	$c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$

Remark: One needs to ensure that unions are disjoint and concatenations unambiguous.

$$
\begin{gathered}
\text { DNA example : }\{a, c, g, t\}^{*} \Leftrightarrow D \rightarrow a . D|c . D| g . D|t . D| \varepsilon \\
\Rightarrow D(z)=4 z \cdot D(z)+1
\end{gathered}
$$

DSV/symbolic method

From a class specification, one can directly establish the gen. fun. Historically on languages, from Schützenberger's observation that Gen. fun. are commutative images of languages

Grammar	Generating function	Coefficients
$C \rightarrow \varepsilon$	$C(z)=z^{0}=1$	$c_{n}=\mathbb{1}_{\{0\}}(n)$
$C \rightarrow t$	$C(z)=z^{1}=z$	$c_{n}=\mathbb{1}_{\{1\}}(n)$
$C \rightarrow A \mid B$	$C(z)=A(z)+B(z)$	$c_{n}=a_{n}+b_{n}$
$C \rightarrow A . B$	$C(z)=A(z) \cdot B(z)$	$c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$

Remark: One needs to ensure that unions are disjoint and concatenations unambiguous.
DNA example : $\{a, c, g, t\}^{*} \Leftrightarrow D \rightarrow a . D|c . D| g . D|t . D| \varepsilon$

$$
\Rightarrow D(z)=\frac{1}{1-4 z}
$$

Main principles

Disclaimer

What follows, although true in this context, is embarassingly simplistic. A rigorous presentation can (and must) be found in Flaj./Sedg. 08.

A singularity is a point $z=\rho$ where $C(z)$ is no longer analytic. Asymptotics of coeff c_{n} are driven by the singularities of $C(z)$.

$1^{\text {st }}$ principle

Location of the dominant (smallest) singularity ρ dictates the exponential growth $\Rightarrow \frac{c_{n}}{\rho^{-n}}=o\left(\alpha^{n}\right), \forall \alpha>1$.

DNA example: $D(z)=1 /(1-4 z) \Rightarrow \rho=1 / 4 \Rightarrow d_{n} \sim 4^{n} P(n)$.

$2^{\text {nd }}$ principle

Nature of ρ dictates subexponential part $P(n)$ s.t. $c_{n} \sim \rho^{-n} P(n)$.

Basic scale: If one can rewrite $C(z)$ as

$$
C(z)=f(z)+g(z)(1-z / \rho)^{\alpha}
$$

where f and g are analytic $\forall|z|<|\rho|$ and non-null at ρ, then

$$
c_{n} \equiv\left[z^{n}\right] C(z) \sim \frac{g(\rho) \rho^{-n}}{\Gamma(-\alpha) n^{\alpha+1}}
$$

Example: $D(z)=\frac{1}{1-4 z} \Rightarrow c_{n} \sim 4^{n}$
$(\rho=1 / 4, \alpha=-1, f(z)=0$, and $g(z)=1)$

General methodology

Asymptotic estimates are obtained using a 4 steps meta-algorithm:

General methodology

Asymptotic estimates are obtained using a 4 steps meta-algorithm:

Find the right model
Translate into grammar

General methodology

Asymptotic estimates are obtained using a 4 steps meta-algorithm:

Find the right model
Translate into grammar
3
Translate into system and solve g. f.

General methodology

Asymptotic estimates are obtained using a 4 steps meta-algorithm:

Find the right model
Translate into grammar
3
Translate into system and solve g. f.
Singularity analysis yields asymptotics

Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

2	M	\rightarrow	\quad	M	\mid	(M)

Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

2	M	\rightarrow	$\bullet M$	$(M) M$
3	$M(z)$	$=$	$z \cdot M(z)$	$+z \cdot M(z) \cdot z \cdot M(z)+1$
		$=\frac{1-z \pm \sqrt{1-2 z-3 z^{2}}}{2 z^{2}}$		

Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

2	M	\rightarrow	$\bullet M$	$(M) M$	ε

$$
3 \begin{array}{ll}
M(z) & =\begin{array}{l}
z \cdot M(z) \\
\end{array} \quad+z \cdot M(z) \cdot z \cdot M(z)+1 \\
& =\left\{\begin{array}{l}
\frac{1-z+\sqrt{1-2 z-3 z^{2}}}{2 z^{2}}=\frac{1}{z^{2}}-\frac{1}{z}-1-z-2 z^{2}+\mathcal{O}\left(z^{3}\right) \\
\frac{1-z-\sqrt{1-2 z-3 z^{2}}}{2 z^{2}}=\mathbf{1}+\mathbf{z}+2 \mathbf{z}^{2}+4 z^{3}+9 z^{4}+\mathcal{O}\left(z^{5}\right)
\end{array}\right.
\end{array}
$$

Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

1	\cdots	\cdots	$\bullet M$	$(M) M$	ε
2	M	\rightarrow	$z \cdot M(z)$	$+z \cdot M(z) \cdot z \cdot M(z)+1$	
3	$M(z)$	$=$			
		$=\frac{1-z-\sqrt{1-2 z-3 z^{2}}}{2 z^{2}}$			

$4 \quad \rho=1 / 3, M(z)=\frac{1-z}{2 z^{2}}-g(z) \cdot \sqrt{1-z / \rho}$, and $g(z):=\frac{\sqrt{1+z}}{2 z^{2}}$
$\Rightarrow s_{n} \equiv\left[z^{n}\right] M(z) \sim \frac{g(\rho) \rho^{-n}}{\Gamma(-\alpha) n^{\alpha+1}}=\frac{3 \sqrt{3}}{2 \sqrt{\pi}} \cdot \frac{3^{n}}{n \sqrt{n}}(1+\mathcal{O}(1 / n))$

RNA secondary structures

Consider RNA secondary structures (Waterman 78)

RNA secondary structures

Consider RNA secondary structures (Waterman 78)

$2 \quad S \rightarrow \bullet S\left|\left(S_{>0}\right) S\right| \varepsilon$

RNA secondary structures

Consider RNA secondary structures (Waterman 78)

2	S	$\rightarrow \bullet S\|(\mathbf{T}) S\| \varepsilon$
	\mathbf{T}	$\rightarrow \bullet S \mid(T) S$

RNA secondary structures

Consider RNA secondary structures (Waterman 78)

2	S	$\rightarrow \bullet S\|(T) S\| \varepsilon$
	$\rightarrow \bullet S \mid(T) S$	

$$
3 \quad S(z) \quad=\frac{1-z+z^{2}-\sqrt{1-2 z-z^{2}-2 z^{3}+z^{4}}}{2 z^{2}}
$$

RNA secondary structures

Consider RNA secondary structures (Waterman 78)

$$
\begin{array}{lll}
2 & \rightarrow \bullet S|(\mathbf{T}) S| \varepsilon \\
& \rightarrow & \rightarrow \bullet S \mid(\mathbf{T}) S
\end{array}
$$

$$
3 \quad S(z) \quad=\frac{1-z+z^{2}-\sqrt{1-2 z-z^{2}-2 z^{3}+z^{4}}}{2 z^{2}}
$$

4. $\rho=\frac{3-\sqrt{5}}{2}=1-\phi$
$\left[z^{n}\right] S(z)=\sqrt{\frac{15+7 \sqrt{5}}{8 \pi}} \cdot \frac{\left(\frac{3+\sqrt{5}}{5}\right)^{n}}{n \sqrt{n}}(1+\mathcal{O}(1 / n)) \sim 1.1 \cdot \frac{2.6^{n}}{n \sqrt{n}}$

RNA secondary structures

Let us generalize the θ constraint

RNA secondary structures

Let us generalize the θ constraint

RNA secondary structures

Let us generalize the θ constraint

$$
2 \quad \begin{array}{lll}
S & \rightarrow U(\mathbf{T}) S \mid U & U \rightarrow \bullet U \mid \varepsilon \\
& \mathbf{T} \rightarrow U(T) S \mid \bullet \theta U &
\end{array}
$$

RNA secondary structures

Let us generalize the θ constraint

$$
2 \quad \begin{array}{ll}
S & \rightarrow U(\mathbf{T}) S|U \quad U \rightarrow \bullet U| \varepsilon \\
\mathbf{T} & \rightarrow U(\mathbf{T}) S \mid \bullet \theta U
\end{array}
$$

$$
3 \quad S(z)=\frac{1-2 z+2 z^{2}-z^{\theta+2}-\sqrt{1-4 z+4 z^{2}-2 z^{\theta+2}+4 z^{\theta+3}-4 z^{\theta+4}+z^{2 \theta+4}}}{(1-z) 2 z^{2}}
$$

RNA secondary structures

Let us generalize the θ constraint

$3 S(z)=\frac{1-2 z+2 z^{2}-z^{\theta+2}-\sqrt{1-4 z+4 z^{2}-2 z^{\theta+2}+4 z^{\theta+3}-4 z^{\theta+4}+z^{2 \theta+4}}}{(1-z) 2 z^{2}}$

(4) $s_{n} \sim K \cdot \frac{\beta^{n}}{n \sqrt{n}}(1+\mathcal{O}(1 / n))$| θ | 0 | 1 | 3 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| β | 3. | 2.62 | 2.29 | 2.02 |

Half-time report

Message \#1
Finding the right decomposition (DP) is a combinatorial task.

Half-time report

Message \#1

Finding the right decomposition (DP) is a combinatorial task.

Message \#2

Applying automatic theorems gives precise asymptotic equivalents.

Half-time report

Message \#1

Finding the right decomposition (DP) is a combinatorial task.

Message \#2

Applying automatic theorems gives precise asymptotic equivalents.

Half-time report

Message \#1

Finding the right decomposition (DP) is a combinatorial task.

Message \#2
Applying automatic theorems gives precise asymptotic equivalents.

Message \#3

There is a large exponential number of structures of size n : Homopolymer model: $\Omega\left(2^{n}\right) \quad$ Stickiness model: $\mathcal{O}\left(1.8^{n} / n^{3 / 2}\right)$

Outline

(1) Foreword

(2) Enumerative combinatorics 101

(3) RNA shapes

- Presentation
- Motivation
- π shapes

Presentation

Definition (RNA shapes [Giegerich et al])

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the underlying backbone structure.
Example

Presentation

Definition (RNA shapes [Giegerich et al])

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the underlying backbone structure.

Example

Contract identical consecutive characters

Presentation

Definition (RNA shapes [Giegerich et al])

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the underlying backbone structure.

Example

Remove unpaired regions
Contract nested helices

Motivation

RNA shapes allow a hierarchical search in the Boltzmann ensemble

10000 samples $\Rightarrow 1727$ Secondary structures. . .

Motivation

RNA shapes allow a hierarchical search in the Boltzmann ensemble

10000 samples $\Rightarrow 1727$ Secondary structures. . .

... $406 \pi^{\prime}$-shapes...

RNA shapes allow a hierarchical search in the Boltzmann ensemble

10000 samples $\Rightarrow 1727$ Secondary structures. . .

屋
... $406 \pi^{\prime}$-shapes...

... but only 9π-shapes!

Motivation

RNA shapes allow a hierarchical search in the Boltzmann ensemble

Is it reasonable to perform an exhaustive search of all possible shapes compatible with input structure?

How many shapes must we investigate?

... $406 \pi^{\prime}$-shapes...

... but only 9π-shapes!

π-shapes

Objective: Count π-shapes with $2 n$ parentheses.

π-shapes

Objective: Count π-shapes with $2 n$ parentheses.

1 -shapes are bracket words avoiding the [[...]] motif.
$2 S \rightarrow\left[S_{/\{[\ldots]\}}\right] S \mid\left[S_{/\{[\ldots]\}}\right]$

π-shapes

Objective: Count π-shapes with $2 n$ parentheses.

1 -shapes are bracket words avoiding the [[...]] motif.
$2 S \rightarrow[\mathbf{T}] S|[\mathbf{T}] \quad \mathbf{T} \rightarrow[\mathbf{T}] S| \varepsilon$

π-shapes

Objective: Count π-shapes with $2 n$ parentheses.

1π-shapes are bracket words avoiding the [[...]] motif.
$2 \quad S \rightarrow[\mathrm{~T}] S|[\mathrm{~T}] \quad \mathbf{T} \rightarrow[\mathbf{T}] S| \varepsilon$

3

$$
S(z)=\frac{1-z^{2}-\sqrt{1-2 z^{2}-3 z^{4}}}{2 z^{2}}
$$

π-shapes

Objective: Count π-shapes with $2 n$ parentheses.

1 -shapes are bracket words avoiding the [[...]] motif.
$2 \quad S \rightarrow[\mathbf{T}] S|[\mathbf{T}] \quad \mathbf{T} \rightarrow[\mathbf{T}] S| \varepsilon$
$3 \quad S(z)=\frac{1-z^{2}-\sqrt{1-2 z^{2}-3 z^{4}}}{2 z^{2}}$
$4 \quad s_{2 n} \sim \frac{\sqrt{3}}{2 \sqrt{\pi}} \cdot \frac{3^{n}}{n \sqrt{\pi}}(1+\mathcal{O}(1 / n)) \quad$ and $\quad s_{2 n+1}=0$
Remark: Doesn't this look familiar???

Limitations

Number of π-shapes of size n \neq
Number of π-shapes compatible with RNA of size n

Reasons:

(1) Shapes of size $\leq n$ should be considered
(2) Forming a hairpin loop [] takes at least $\theta+2$ bases
$2 S \rightarrow[T] S \mid[T]$
$T \rightarrow[T] S \mid \varepsilon$
$3 \quad S(z)=\frac{1-z^{2}-\sqrt{1-2 z^{2}-3 z^{4}}}{2 z^{2}}$
4 For n even: $s_{2 n} \sim \frac{3 \sqrt{3}}{4 \sqrt{\pi}} \cdot \frac{3^{n}}{n \sqrt{\pi}}(1+\mathcal{O}(1 / n)) \approx 0.48 \cdot \frac{3^{n}}{n \sqrt{n}}$

Limitations

Number of π-shapes of size n \neq

Number of π-shapes compatible with RNA of size n

Reasons:

(1) Shapes of size $\leq n$ should be considered
(3) Forming a hairpin loop [] takes at least $\theta+2$ bases

$$
\begin{gathered}
2 \quad S \rightarrow[T] S|[T] \quad T \rightarrow[T] S| \bullet^{\theta} \\
R \rightarrow \square S \mid \varepsilon
\end{gathered}
$$

3

$$
R(z)=\frac{1-z^{2}-\sqrt{1-2 z^{2}-3 z^{4}}}{2 z^{2}(\mathbf{1}-\mathbf{z})}
$$

$4 \quad r_{2 n} \sim \frac{3 \sqrt{3}}{4 \sqrt{\pi}} \cdot \frac{3^{n}}{n \sqrt{n}}(1+\mathcal{O}(1 / n)) \Rightarrow r_{n} \approx 2.07 \cdot \frac{1.73^{n}}{n \sqrt{n}}$

Limitations

Number of π-shapes of size n \neq
Number of π-shapes compatible with RNA of size n

Reasons:

(1) Shapes of size $\leq n$ should be considered
(2) Forming a hairpin loop [] takes at least $\theta+2$ bases

$$
\text { (2) } \begin{gathered}
S \rightarrow[T] S \mid[T] \\
R \rightarrow \square S \mid \varepsilon
\end{gathered}
$$

$3 \quad R(z)=\frac{1-z^{\theta+2}-\sqrt{1-2 z^{\theta+2}-4 z^{\theta+4}+z^{2 \theta+4}}}{2 z^{2}(1-z)}$

4

$$
\theta=3 \Rightarrow r_{n} \approx 2.44 \frac{1.32^{n}}{n \sqrt{n}}
$$

A surprising bijection

Theorem $\# \pi$ shapes of size $n=\#$ Motzkin words of length $2 n+2$

Proof.

$$
\begin{aligned}
& S(z)=\frac{1-z^{2}-\sqrt{1-2 z^{2}-3 z^{4}}}{2 z^{2}} \\
& S(z)=1+z^{2} M\left(z^{2}\right) \quad \Rightarrow \quad s_{n}=m_{2 n+2}
\end{aligned}
$$

These two classes are in bijection.
How to state it? Can we exploit it?

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{array}{rlr}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise }
\end{array}\right. \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon . &
\end{array}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{array}{rlr}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise }
\end{array}\right. \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon . &
\end{array}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{array}{rlr}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise }
\end{array}\right. \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon . &
\end{array}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{array}{rlr}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise }
\end{array}\right. \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon . &
\end{array}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{array}{rlr}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise }
\end{array}\right. \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon . &
\end{array}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{array}{rlr}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise }
\end{array}\right. \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon .
\end{array}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Let $\psi, \phi:\{[,]\}^{*} \rightarrow\{(),, \bullet\}$ such that

$$
\begin{array}{rlr}
\psi((A) B) & =\left\{\begin{array}{cl}
\phi(A) & \text { If } B=\varepsilon \\
\phi(A) \bullet \psi(B) & \text { Otherwise }
\end{array}\right. \\
\phi((A) B) & =\phi(A)[\psi(B)] \\
\phi(\varepsilon) & =\varepsilon .
\end{array}
$$

Then ψ is a bijection between $s_{2 n+2}$ and m_{n}.

Limits of the bijection

Impacts of θ on shapes and Motzkin are drastically different.

Theorem

Expectations of number of term. loops in Motzkin words and π-shapes scale like $m_{n}^{t} \sim \frac{n}{6}+\mathcal{O}(1)$ and $s_{2 n+2}^{t} \sim \frac{2 n}{3}+\mathcal{O}(1)$

π^{\prime}-shapes

Objective: Count π^{\prime}-shapes compatible with RNA of length n.
$1 \quad \pi^{\prime}$-shapes $=$ bracket words avoiding motifs [[...]] and $\bullet \bullet$

π^{\prime}-shapes

Objective: Count π^{\prime}-shapes compatible with RNA of length n.
$1 \quad \pi^{\prime}$-shapes $=$ bracket words avoiding motifs $[[\ldots]]$ and $\bullet \bullet$

$$
\begin{aligned}
2 \quad R & \rightarrow \square R|S \quad S \rightarrow U[T] S| U \quad U \rightarrow \diamond \mid \varepsilon \\
& T \rightarrow U[T] \cup[T] S|\diamond[T]|[T] \diamond|\diamond[T] \diamond| \diamond \theta
\end{aligned}
$$

π^{\prime}-shapes

Objective: Count π^{\prime}-shapes compatible with RNA of length n.
$1 \quad \pi^{\prime}$-shapes $=$ bracket words avoiding motifs [[. .]] and $\bullet \bullet$

$$
\begin{aligned}
2 \quad R & \rightarrow \square R|S \quad S \rightarrow U[T] S| U \quad U \rightarrow \diamond \mid \varepsilon \\
T & \rightarrow U[T] \cup[T] S|\diamond[T]|[T] \diamond|\diamond[T] \diamond| \diamond \theta
\end{aligned}
$$

$3 \quad \theta=3, R(z)=\frac{1+2 z^{2}+2 z^{3}+z^{4}-z^{5}-z^{6}-\sqrt{1-4 z^{3}-2 z^{4}-2 z^{5}+2 z^{6}-7 z^{8}-z^{10}+2 z^{11}+z^{12}}}{2 z^{2}\left(1-z^{2}\right)}$

π^{\prime}-shapes

Objective: Count π^{\prime}-shapes compatible with RNA of length n.

1 $\quad \pi^{\prime}$-shapes $=$ bracket words avoiding motifs [[...]] and $\bullet \bullet$

$$
\begin{aligned}
2 \quad R & \rightarrow \square R|S \quad S \rightarrow U[T] S| U \quad U \rightarrow \diamond \mid \varepsilon \\
& T \rightarrow U[T] \cup[T] S|\diamond[T]|[T] \diamond|\diamond[T] \diamond| \diamond \theta
\end{aligned}
$$

$3 \quad \theta=3, R(z)=\frac{1+2 z^{2}+2 z^{3}+z^{4}-z^{5}-z^{6}-\sqrt{11-4 z^{3}-2 z^{4}-2 z^{5}+2 z^{6}-7 z^{8}-z^{10}+2 z^{11}+z^{12}}}{2 z^{2}\left(1-z^{2}\right)}$

4

$$
r_{n} \sim 1.27 \frac{1.81^{n}}{n \sqrt{n}}
$$

Model	Asymptotic number
Sec. str. on n - Combinatorial	$1.1 \cdot \frac{2.6^{n}}{\sqrt{n}}$
Sec. str. on n - Empirical	$0.04 \cdot \frac{1.4^{n}}{n \sqrt{n}}$
π-shapes of size n	$1.38 \cdot \frac{1.73^{n}}{n \sqrt{n}}$
π-shapes compatible with sec. str. on n	$2.44 \cdot \frac{1.32^{n}}{n \sqrt{n}}$
π-shapes - Empirical	$0.21 \cdot \frac{1.1^{n}}{n \sqrt{n}}$
π^{\prime}-shapes of size n	$0.99 \cdot \frac{2.41^{n}}{n \sqrt{n}}$
π^{\prime}-shapes compatible with sec. str. on n	$1.28 \cdot \frac{1.81^{n}}{n \sqrt{n}}$

- For context-free objects, finding gen. fun. is easy... and precise asymptotics estimates follow readily
- Bijection between Motkzin words and π-shapes
- Way less many shapes than sec. str.!
- Homopolymer model overestimates number of shapes Need for a probabilistic model for base-pairing But stickiness is not enough...

Collaborators: W. A. Lorenz and P. Clote (Boston College)

