RNA as a combinatorial object Asymptotics of RNA Shapes

Yann Ponty

Bioinformatics Team École Polytechnique/CNRS/INRIA AMIB – France

November 27, 2009

RNA structure

UUA GG CGG CCA CA GC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUA CUGGA GUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure

Secondary structure

Tertiary structure Source: 5s rRNA (PDBID: 1K73:B)

Definition

Secondary structures of RNA =

Maximal non-crossing subset of canonical base-pairs.

RNA structure

UUA GG CGG CCA CA GC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUA CUGGA GUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure

Secondary⁺ structure

Tertiary structure Source: 5s rRNA (PDBID: 1K73:B)

Definition

Secondary structures of RNA =

Maximal non-crossing subset of canonical base-pairs.

Outline

- Foreword
 - Introduction
 - Motivation
- 2 Enumerative combinatorics 10:
 - Generating functions
 - DSV/symbolic method
 - Singularity analysis
- RNA shapes
 - Presentation
 - Motivation
 - \bullet π shapes

Various representations for a versatile molecule

Why use combinatorics?

Boltzmann ensemble is a (weighted) combinatorial class.

Studying it as such *cleans out the details* and helps:

- Assess asymptotic properties of sec. str.
- Investigate worst and average-case complexities
- Obtain better algorithms for RNA

Generating functions

Let | . | be a size function over objects (Sequences, trees, . . .). Combinatorial classes are (infinite) sets \mathcal{C} of objects whose restrictions C_n to objects of size n are of finite cardinality.

Definition (Generating functions)

Let \mathcal{C} be a combinatorial class and $c_n = |\mathcal{C}_n|$ the number of objects of size n in C, then the generating function of C is C(z) s. t.

$$C(z) = \sum_{s \in C} z^{|s|} = \sum_{n \ge 0} c_n z^n$$

Closed forms for C(z) are often easy to find ...

DNA example:
$$\mathcal{D} := \{a, c, g, t\}^* \Rightarrow d_n = 4^n$$
 and $C(z) = 1 + 4z + 16z^2 + 64z^3 + \ldots = \sum_{n \geq 0} 4^n z^n = \frac{1}{1 - 4z}$

... and very often much simpler than for $c_n!!!$

DSV/symbolic method

From a class specification, one can directly establish the gen. fun.

Historically on languages, from Schützenberger's observation that Gen. fun. are commutative images of languages

Grammar	Generating function	Coefficients
$C \to \varepsilon$	$C(z)=z^0=1$	$c_n = \mathbb{1}_{\{0\}}(n)$
$C \rightarrow t$	$C(z)=z^1=z$	$c_n = \mathbb{1}_{\{1\}}(n)$
$C \rightarrow A \mid B$	C(z) = A(z) + B(z)	$c_n = a_n + b_n$
$C \rightarrow A.B$	$C(z) = A(z) \cdot B(z)$	$c_n = \sum_{k=0}^n a_k b_{n-k}$

Remark: One needs to ensure that unions are disjoint and concatenations unambiguous.

DNA example :
$$\{a, c, g, t\}^* \Leftrightarrow D \to a.D \mid c.D \mid g.D \mid t.D \mid \varepsilon$$

$$\Rightarrow D(z) = z \cdot D(z) + z \cdot D(z) + z \cdot D(z) + z \cdot D(z) + 1$$

DSV/symbolic method

From a class specification, one can directly establish the gen. fun.

Historically on languages, from Schützenberger's observation that Gen. fun. are commutative images of languages

Grammar	Generating function	Coefficients
$C \to \varepsilon$	$C(z)=z^0=1$	$c_n = \mathbb{1}_{\{0\}}(n)$
$C \rightarrow t$	$C(z)=z^1=z$	$c_n = \mathbb{1}_{\{1\}}(n)$
$C \rightarrow A \mid B$	C(z) = A(z) + B(z)	$c_n = a_n + b_n$
$C \rightarrow A.B$	$C(z) = A(z) \cdot B(z)$	$c_n = \sum_{k=0}^n a_k b_{n-k}$

Remark: One needs to ensure that unions are disjoint and concatenations unambiguous.

DNA example :
$$\{a,c,g,t\}^*\Leftrightarrow D\to a.D\mid c.D\mid g.D\mid t.D\mid \varepsilon$$

$$\Rightarrow D(z)=4z\cdot D(z)+1$$

DSV/symbolic method

From a class specification, one can directly establish the gen. fun.

Historically on languages, from Schützenberger's observation that Gen. fun. are commutative images of languages

Grammar	Generating function	Coefficients
	$C(z)=z^0=1$	$c_n = \mathbb{1}_{\{0\}}(n)$
$C \rightarrow t$	$C(z)=z^1=z$	$c_n = \mathbb{1}_{\{1\}}(n)$
$C \rightarrow A \mid B$	C(z) = A(z) + B(z)	$c_n = a_n + b_n$
$C \rightarrow A.B$	$C(z) = A(z) \cdot B(z)$	$c_n = \sum_{k=0}^n a_k b_{n-k}$

Remark: One needs to ensure that unions are disjoint and concatenations unambiguous.

DNA example :
$$\{a,c,g,t\}^*\Leftrightarrow D\to a.D\mid c.D\mid g.D\mid t.D\mid arepsilon$$
 $\Rightarrow D(z)=rac{1}{1-4z}$

Main principles

Disclaimer

What follows, although true in this context, is embarassingly simplistic. A rigorous presentation can (and must) be found in Flaj./Sedg. 08.

A singularity is a point $z = \rho$ where C(z) is no longer analytic. Asymptotics of coeff c_n are driven by the singularities of C(z).

1st principle

Location of the dominant (smallest) singularity ρ dictates the exponential growth $\Rightarrow \frac{c_n}{\rho^{-n}} = o(\alpha^n), \ \forall \alpha > 1.$

DNA example:
$$D(z) = 1/(1-4z) \Rightarrow \rho = 1/4 \Rightarrow d_n \sim 4^n P(n)$$
.

Basic scale

2nd principle

Nature of ρ dictates subexponential part P(n) s.t. $c_n \sim \rho^{-n} P(n)$.

Basic scale: If one can rewrite C(z) as

$$C(z) = f(z) + g(z)(1 - z/\rho)^{\alpha}$$

where f and g are analytic $\forall |z| < |
ho|$ and non-null at ho, then

$$c_n \equiv [z^n]C(z) \sim \frac{g(\rho)\rho^{-n}}{\Gamma(-\alpha)n^{\alpha+1}}$$

Example:
$$D(z) = \frac{1}{1-4z} \Rightarrow c_n \sim 4^n$$

 $(\rho = 1/4, \alpha = -1, f(z) = 0, \text{ and } g(z) = 1)$

1	Find the right model

1	Find the right model
2	Translate into grammar

1	Find the right model
2	Translate into grammar
3	Translate into system and solve g. f.

1	Find the right model	
2	Translate into grammar	
3	Translate into system and solve g. f.	
4	Singularity analysis yields asymptotics	

4
$$\rho = 1/3$$
, $M(z) = \frac{1-z}{2z^2} - g(z) \cdot \sqrt{1-z/\rho}$, and $g(z) := \frac{\sqrt{1+z}}{2z^2}$
 $\Rightarrow s_n \equiv [z^n] M(z) \sim \frac{g(\rho)\rho^{-n}}{\Gamma(-\alpha)n^{\alpha+1}} = \frac{3\sqrt{3}}{2\sqrt{\pi}} \cdot \frac{3^n}{n\sqrt{n}} (1 + \mathcal{O}(1/n))$

$$S \rightarrow \bullet S \mid (S_{>0}) S \mid \varepsilon$$

2
$$S \rightarrow \bullet S | (T) S | \varepsilon$$

 $T \rightarrow \bullet S | (T) S$

2
$$S \rightarrow \bullet S | (T) S | \varepsilon$$

 $T \rightarrow \bullet S | (T) S$

$$S(z) = \frac{1-z+z^2-\sqrt{1-2z-z^2-2z^3+z^4}}{2z^2}$$

1
$$\longrightarrow$$
 ≥ 1

2
$$S \rightarrow \bullet S | (T) S | \varepsilon$$

 $T \rightarrow \bullet S | (T) S$

$$S(z) = \frac{1-z+z^2-\sqrt{1-2z-z^2-2z^3+z^4}}{2z^2}$$

4
$$\rho = \frac{3-\sqrt{5}}{2} = 1 - \phi$$

$$[z^n]S(z) = \sqrt{\frac{15+7\sqrt{5}}{8\pi}} \cdot \frac{\left(\frac{3+\sqrt{5}}{2}\right)^n}{n\sqrt{n}} (1 + \mathcal{O}(1/n)) \sim 1.1 \cdot \frac{2.6^n}{n\sqrt{n}}$$

Let us generalize the $\boldsymbol{\theta}$ constraint

Let us generalize the $\boldsymbol{\theta}$ constraint

1
$$\longrightarrow$$
 $\geq \theta$ \vee ε

2 $S \rightarrow U(S_{>\theta})S \mid U \quad U \rightarrow \bullet U \mid \varepsilon$

Let us generalize the $\boldsymbol{\theta}$ constraint

1
$$\longrightarrow$$
 $\geq \theta$ \bigvee ε

2 $S \rightarrow U(T)S|U$ $\downarrow U \rightarrow \bullet U|\varepsilon$ $\downarrow T \rightarrow U(T)S|\bullet^{\theta}U$

Let us generalize the heta constraint

2
$$S \rightarrow U(T)S \mid U \qquad U \rightarrow \bullet U \mid \varepsilon$$

 $T \rightarrow U(T)S \mid \bullet^{\theta} U$

$$S(z) = \frac{1 - 2z + 2z^2 - z^{\theta+2} - \sqrt{1 - 4z + 4z^2 - 2z^{\theta+2} + 4z^{\theta+3} - 4z^{\theta+4} + z^{2\theta+4}}}{(1 - z)2z^2}$$

Let us generalize the heta constraint

1
$$\sum \theta$$
 \forall ϵ

$$S(z) = \frac{1 - 2z + 2z^2 - z^{\theta+2} - \sqrt{1 - 4z + 4z^2 - 2z^{\theta+2} + 4z^{\theta+3} - 4z^{\theta+4} + z^{2\theta+4}}}{(1 - z)2z^2}$$

Message #1

Finding the right decomposition (DP) is a combinatorial task.

Message #2

Applying automatic theorems gives precise asymptotic equivalents

Message #3

There is a large exponential number of structures of size n: Homopolymer model: $\Omega(2^n) = {
m Stickiness model:} \; {\cal O}(1.8^n/n^{3/2})$

Message #1

Finding the right decomposition (DP) is a combinatorial task.

Message #2

Applying automatic theorems gives precise asymptotic equivalents.

Message #1

Finding the right decomposition (DP) is a combinatorial task.

Message #2

Applying automatic theorems gives precise asymptotic equivalents.

Message #1

Finding the right decomposition (DP) is a combinatorial task.

Message #2

Applying automatic theorems gives precise asymptotic equivalents.

Message #3

There is a large exponential number of structures of size n:

Homopolymer model: $\Omega(2^n)$ Stickiness model: $\mathcal{O}(1.8^n/n^{3/2})$

Outline

- Foreword
- 2 Enumerative combinatorics 101
- RNA shapes
 - Presentation
 - Motivation
 - \bullet π shapes

Presentation

Definition (RNA shapes [Giegerich et al])

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the underlying backbone structure.

Presentation

Definition (RNA shapes [Giegerich et al])

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the underlying backbone structure.

Presentation

Definition (RNA shapes [Giegerich et al])

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the underlying backbone structure.

RNA shapes allow a hierarchical search in the Boltzmann ensemble

RNA shapes allow a hierarchical search in the Boltzmann ensemble

RNA shapes allow a hierarchical search in the Boltzmann ensemble

Yann Pontv

RNA shapes combinatorics

RNA shapes allow a hierarchical search in the Boltzmann ensemble

Objective: Count π -shapes with 2n parentheses.

 π -shapes are bracket words avoiding the [[...]] motif.

Objective: Count π -shapes with 2n parentheses.

- π -shapes are bracket words avoiding the [[...]] motif.
- $S \rightarrow [S_{/\{[...]\}}] S | [S_{/\{[...]\}}]$

Objective: Count π -shapes with 2n parentheses.

- π -shapes are bracket words avoiding the [[...]] motif.
- 2 $S \rightarrow [T]S|[T]$ $T \rightarrow [T]S|\varepsilon$

Objective: Count π -shapes with 2n parentheses.

- 1 π -shapes are bracket words avoiding the [[...]] motif.
- 2 $S \rightarrow [T]S|[T]$ $T \rightarrow [T]S|\varepsilon$
- $S(z) = \frac{1 z^2 \sqrt{1 2z^2 3z^4}}{2z^2}$

Objective: Count π -shapes with 2n parentheses.

- π -shapes are bracket words avoiding the [[...]] motif.
- $T \rightarrow [T]S \mid \varepsilon$ $S \rightarrow [T]S[T]$
- $S(z) = \frac{1 z^2 \sqrt{1 2z^2 3z^4}}{2z^2}$ 3
- $s_{2n}\sim rac{\sqrt{3}}{2\sqrt{\pi}}\cdotrac{3^n}{n\sqrt{\pi}}(1+\mathcal{O}(1/n))$ and $s_{2n+1}=0$

Remark: Doesn't this look familiar???

Limitations

Number of π -shapes of size n

$$\neq$$

Number of π -shapes compatible with RNA of size n

Reasons:

- lacktriangle Shapes of size $\leq n$ should be considered
- ② Forming a hairpin loop [] takes at least $\theta + 2$ bases

2
$$S \rightarrow [T]S|[T] \qquad T \rightarrow [T]S|\varepsilon$$

$$S(z) = \frac{1 - z^2 - \sqrt{1 - 2z^2 - 3z^4}}{2z^2}$$

4 For
$$n$$
 even: $s_{2n} \sim \frac{3\sqrt{3}}{4\sqrt{\pi}} \cdot \frac{3^n}{n\sqrt{\pi}} (1 + \mathcal{O}(1/n)) \approx 0.48 \cdot \frac{3^n}{n\sqrt{n}}$

Limitations

Number of π -shapes of size n

 \neq

Number of π -shapes compatible with RNA of size n

Reasons:

- Shapes of size $\leq n$ should be considered
- ② Forming a hairpin loop [] takes at least $\theta + 2$ bases

2
$$S \rightarrow [T]S|[T]$$
 $T \rightarrow [T]S| \bullet^{\theta}$ $R \rightarrow \Box S|\varepsilon$

$$R(z) = \frac{1 - z^2 - \sqrt{1 - 2z^2 - 3z^4}}{2z^2(1 - z)}$$

4
$$r_{2n} \sim \frac{3\sqrt{3}}{4\sqrt{\pi}} \cdot \frac{3^n}{n\sqrt{n}} (1 + \mathcal{O}(1/n)) \Rightarrow r_n \approx 2.07 \cdot \frac{1.73^n}{n\sqrt{n}}$$

Limitations

Number of π -shapes of size n

$$\neq$$

Number of π -shapes compatible with RNA of size n

Reasons:

- Shapes of size $\leq n$ should be considered
- ② Forming a hairpin loop [] takes at least $\theta + 2$ bases

2
$$S \rightarrow [T]S|[T]$$
 $T \rightarrow [T]S| \bullet^{\theta}$ $R \rightarrow \Box S|\varepsilon$

3
$$R(z) = \frac{1 - z^{\theta+2} - \sqrt{1 - 2z^{\theta+2} - 4z^{\theta+4} + z^{2\theta+4}}}{2z^2(1-z)}$$

$$\theta = 3 \Rightarrow r_n \approx 2.44 \frac{1.32^n}{n\sqrt{n}}$$

A surprising bijection

Theorem

 $\#\pi$ shapes of size n=# Motzkin words of length 2n+2

Proof.

$$S(z) = \frac{1 - z^2 - \sqrt{1 - 2z^2 - 3z^4}}{2z^2} \qquad M(z) = \frac{1 - z - \sqrt{1 - 2z - 3z}}{2z^2}$$
$$S(z) = 1 + z^2 M(z^2) \quad \Rightarrow \quad s_n = m_{2n+2}$$

These two classes are in bijection. How to state it? Can we exploit it?

Let
$$\psi, \phi : \{ [,] \}^* \to \{ (,) , \bullet \}$$
 such that
$$\psi((A) B) = \begin{cases} \phi(A) & \text{if } B = \varepsilon \\ \phi(A) \bullet \psi(B) & \text{Otherwise} \end{cases}$$

$$\phi((A) B) = \phi(A)[\psi(B)]$$

$$\phi(\varepsilon) = \varepsilon.$$

Let
$$\psi, \phi : \{ [,] \}^* \to \{ (,) , \bullet \}$$
 such that
$$\psi((A) B) = \begin{cases} \phi(A) & \text{if } B = \varepsilon \\ \phi(A) \bullet \psi(B) & \text{Otherwise} \end{cases}$$

$$\phi((A) B) = \phi(A)[\psi(B)]$$

$$\phi(\varepsilon) = \varepsilon.$$

Let
$$\psi, \phi : \{ [,] \}^* \to \{ (,) , \bullet \}$$
 such that
$$\psi((A)B) = \begin{cases} \phi(A) & \text{if } B = \varepsilon \\ \phi(A) \bullet \psi(B) & \text{Otherwise} \end{cases}$$

$$\phi((A)B) = \phi(A)[\psi(B)]$$

$$\phi(\varepsilon) = \varepsilon.$$

Let
$$\psi, \phi : \{ [,] \}^* \to \{ (,) , \bullet \}$$
 such that
$$\psi((A)B) = \begin{cases} \phi(A) & \text{if } B = \varepsilon \\ \phi(A) \bullet \psi(B) & \text{Otherwise} \end{cases}$$

$$\phi((A)B) = \phi(A)[\psi(B)]$$

$$\phi(\varepsilon) = \varepsilon.$$

Let
$$\psi, \phi : \{ [,] \}^* \to \{ (,) , \bullet \}$$
 such that
$$\psi((A) B) = \begin{cases} \phi(A) & \text{if } B = \varepsilon \\ \phi(A) \bullet \psi(B) & \text{Otherwise} \end{cases}$$

$$\phi((A) B) = \phi(A)[\psi(B)]$$

$$\phi(\varepsilon) = \varepsilon.$$

Let
$$\psi, \phi : \{ [,] \}^* \to \{ (,) , \bullet \}$$
 such that
$$\psi((A)B) = \begin{cases} \phi(A) & \text{if } B = \varepsilon \\ \phi(A) \bullet \psi(B) & \text{Otherwise} \end{cases}$$

$$\phi((A)B) = \phi(A)[\psi(B)]$$

$$\phi(\varepsilon) = \varepsilon.$$

Let
$$\psi, \phi : \{ [,] \}^* \to \{ (,) , \bullet \}$$
 such that
$$\psi((A) B) = \begin{cases} \phi(A) & \text{if } B = \varepsilon \\ \phi(A) \bullet \psi(B) & \text{Otherwise} \end{cases}$$

$$\phi((A) B) = \phi(A)[\psi(B)]$$

$$\phi(\varepsilon) = \varepsilon.$$

Limits of the bijection

Impacts of θ on shapes and Motzkin are drastically different.

Theorem

Expectations of number of term. loops in Motzkin words and π -shapes scale like $m_n^t \sim \frac{n}{6} + \mathcal{O}(1)$ and $s_{2n+2}^t \sim \frac{2n}{3} + \mathcal{O}(1)$

- 1 π' -shapes = bracket words avoiding motifs [[...]] and ullet
- 2) $R \to \square R | S \quad S \to U [T] S | U \quad U \to \diamond | \varepsilon$ $T \to U [T] U [T] S | \diamond [T] | [T] \diamond | \diamond [T] \diamond | \bullet^{\theta}$
- $\theta = 3, \ R(z) = \frac{1 + 2z^2 + 2z^3 + z^4 z^5 z^6 \sqrt{1 4z^3 2z^4 2z^5 + 2z^6 7z^8 z^{10} + 2z^{11} + z^{12}}}{2z^2(1 z^2)}$
- $r_n \sim 1.27 \frac{1.81^n}{n\sqrt{n}}$

- 1 π' -shapes = bracket words avoiding motifs [[...]] and ullet
- 2 $R \rightarrow \square R \mid S$ $S \rightarrow U [T] S \mid U$ $U \rightarrow \diamond \mid \varepsilon$ $T \rightarrow U [T] U [T] S \mid \diamond [T] \mid [T] \diamond \mid \diamond [T] \diamond \mid \bullet^{\theta}$
- 3 $\theta = 3$, $R(z) = \frac{1+2z^2+2z^3+z^4-z^5-z^6-\sqrt{1-4z^3-2z^4-2z^5+2z^6-7z^8-z^{10}+2z^{11}+z^{12}}}{2z^2(1-z^2)}$
- $r_n \sim 1.27 \frac{1.81^n}{n\sqrt{n}}$

- 1 π' -shapes = bracket words avoiding motifs [[...]] and $\bullet \bullet$
- 2 $R \rightarrow \square R \mid S$ $S \rightarrow U [T] S \mid U$ $U \rightarrow \diamond \mid \varepsilon$ $T \rightarrow U [T] U [T] S \mid \diamond [T] \mid [T] \diamond \mid \diamond [T] \diamond \mid \bullet^{\theta}$
- 3 $\theta = 3$, $R(z) = \frac{1+2z^2+2z^3+z^4-z^5-z^6-\sqrt{1-4}z^3-2z^4-2z^5+2z^6-7z^8-z^{10}+2z^{11}+z^{12}}{2z^2(1-z^2)}$

$$r_n \sim 1.27 \frac{1.81}{n\sqrt{n}}$$

- 1 π' -shapes = bracket words avoiding motifs [[...]] and $\bullet \bullet$
- 2 $R \rightarrow \square R \mid S$ $S \rightarrow U [T] S \mid U$ $U \rightarrow \diamond \mid \varepsilon$ $T \rightarrow U [T] U [T] S \mid \diamond [T] \mid [T] \diamond \mid \diamond [T] \diamond \mid \bullet^{\theta}$
- 3 $\theta = 3$, $R(z) = \frac{1+2z^2+2z^3+z^4-z^5-z^6-\sqrt{1-4z^3-2z^4-2z^5+2z^6-7z^8-z^{10}+2z^{11}+z^{12}}}{2z^2(1-z^2)}$
- $r_n \sim 1.27 \frac{1.81^n}{n\sqrt{n}}$

Summary

Model	Asymptotic number
Sec. str. on n — Combinatorial	$1.1 \cdot \frac{2.6^n}{n\sqrt{n}}$
Sec. str. on n – Empirical	$0.04 \cdot \frac{1.4^n}{n\sqrt{n}}$
π -shapes of size n	$1.38 \cdot \frac{1.73^n}{n\sqrt{n}}$
π -shapes compatible with sec. str. on n	$2.44 \cdot \frac{1.32^{n}}{n\sqrt{n}}$
π -shapes – Empirical	$0.21 \cdot \frac{1.1^{n}}{n \cdot \sqrt{n}}$
π' -shapes of size n	$0.99 \cdot \frac{2.41^n}{n\sqrt{n}}$
π' -shapes compatible with sec. str. on n	$1.28 \cdot \frac{1.81^n}{n\sqrt{n}}$

Conclusion

- For context-free objects, finding gen. fun. is easy...
 ...and precise asymptotics estimates follow readily
- ullet Bijection between Motkzin words and π -shapes
- Way less many shapes than sec. str.!
- Homopolymer model overestimates number of shapes
 Need for a probabilistic model for base-pairing
 But stickiness is not enough...

Collaborators: W. A. Lorenz and P. Clote (Boston College)