RNA as a combinatorial object
Asymptotics of RNA Shapes

Yann Ponty

Bioinformatics Team
École Polytechnique/CNRS/INRIA AMIB – France

November 27, 2009
RNA structure

Denition
Secondary structures of RNA =
Maximal non-crossing subset of canonical base-pairs.

Source: 5s rRNA (PDBID: 1K73:B)
RNA structure

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCGCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG
CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA
CC
U
U
A
G
C
G
G
C
G
C
C
A
C
A
G
C
G
G
U
G
G
GG
U
U
G
C
C
U
C
C
C
G
U
A
C
C
C
A
U
C
C
G
C
C
G
C
C
A
CC
1
10
20
30
40
50
60
70
80
90
100
110
120
122

Primary structure Secondary+ structure Tertiary structure

Source: 5s rRNA (PDBID: 1K73:B)

Definition

Secondary structures of RNA =
Maximal non-crossing subset of canonical base-pairs.
Outline

1. **Foreword**
 - Introduction
 - Motivation

2. **Enumerative combinatorics 101**
 - Generating functions
 - DSV/symbolic method
 - Singularity analysis

3. **RNA shapes**
 - Presentation
 - Motivation
 - π shapes

Yann Ponty RNA shapes combinatorics
Various representations for a versatile molecule

Outer planar graph

Well-parenthesized expression

Mountain view

Non intersecting arcs

Different objects
yet
Common combinatorial structure

Dot plot
Feynman’s diagram
Why use combinatorics?

Boltzmann ensemble is a (weighted) combinatorial class.

Studying it as such cleans out the details and helps:
- Assess asymptotic properties of sec. str.
- Investigate worst and average-case complexities
- Obtain better algorithms for RNA
Let $|\cdot|$ be a size function over objects (Sequences, trees, ...). Combinatorial classes are (infinite) sets C of objects whose restrictions C_n to objects of size n are of finite cardinality.

Definition (Generating functions)

Let C be a combinatorial class and $c_n = |C_n|$ the number of objects of size n in C, then the generating function of C is $C(z)$ s. t.

$$C(z) = \sum_{s \in C} z^{|s|} = \sum_{n \geq 0} c_n z^n$$

Closed forms for $C(z)$ are often easy to find . . .

DNA example: $\mathcal{D} := \{a, c, g, t\}^* \Rightarrow d_n = 4^n$
and $C(z) = 1 + 4z + 16z^2 + 64z^3 + \ldots = \sum_{n \geq 0} 4^n z^n = \frac{1}{1-4z}$

... and very often much simpler than for c_n!!!
From a **class specification**, one can directly establish the gen. fun.

Historically on languages, from Schützenberger’s observation that

Gen. fun. are commutative images of languages

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Generating function</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C \rightarrow \varepsilon$</td>
<td>$C(z) = z^0 = 1$</td>
<td>$c_n = \mathbb{1}_{{0}}(n)$</td>
</tr>
<tr>
<td>$C \rightarrow t$</td>
<td>$C(z) = z^1 = z$</td>
<td>$c_n = \mathbb{1}_{{1}}(n)$</td>
</tr>
<tr>
<td>$C \rightarrow A \mid B$</td>
<td>$C(z) = A(z) + B(z)$</td>
<td>$c_n = a_n + b_n$</td>
</tr>
<tr>
<td>$C \rightarrow A.B$</td>
<td>$C(z) = A(z) \cdot B(z)$</td>
<td>$c_n = \sum_{k=0}^{n} a_k b_{n-k}$</td>
</tr>
</tbody>
</table>

Remark: One needs to ensure that unions are disjoint and concatenations unambiguous.

DNA example: $\{a, c, g, t\}^* \Leftrightarrow D \rightarrow a.D \mid c.D \mid g.D \mid t.D \mid \varepsilon$

\[\Rightarrow D(z) = z \cdot D(z) + z \cdot D(z) + z \cdot D(z) + z \cdot D(z) + 1 \]
DSV/symbolic method

From a **class specification**, one can directly establish the gen. fun.

Historically on languages, from Schützenberger’s observation that

Gen. fun. are commutative images of languages

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Generating function</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C \rightarrow \varepsilon$</td>
<td>$C(z) = z^0 = 1$</td>
<td>$c_n = \mathbb{1}_{{0}}(n)$</td>
</tr>
<tr>
<td>$C \rightarrow t$</td>
<td>$C(z) = z^1 = z$</td>
<td>$c_n = \mathbb{1}_{{1}}(n)$</td>
</tr>
<tr>
<td>$C \rightarrow A \mid B$</td>
<td>$C(z) = A(z) + B(z)$</td>
<td>$c_n = a_n + b_n$</td>
</tr>
<tr>
<td>$C \rightarrow A.B$</td>
<td>$C(z) = A(z) \cdot B(z)$</td>
<td>$c_n = \sum_{k=0}^{n} a_k b_{n-k}$</td>
</tr>
</tbody>
</table>

Remark: One needs to ensure that unions are disjoint and concatenations unambiguous.

DNA example: $\{a, c, g, t\}^* \iff D \rightarrow a.D \mid c.D \mid g.D \mid t.D \mid \varepsilon$

$\Rightarrow D(z) = 4z \cdot D(z) + 1$
DSV/symbolic method

From a **class specification**, one can directly establish the gen. fun.

Historically on languages, from Schützenberger’s observation that

Gen. fun. are commutative images of languages

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Generating function</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C \rightarrow \varepsilon$</td>
<td>$C(z) = z^0 = 1$</td>
<td>$c_n = \mathbb{1}_{{0}}(n)$</td>
</tr>
<tr>
<td>$C \rightarrow t$</td>
<td>$C(z) = z^1 = z$</td>
<td>$c_n = \mathbb{1}_{{1}}(n)$</td>
</tr>
<tr>
<td>$C \rightarrow A \mid B$</td>
<td>$C(z) = A(z) + B(z)$</td>
<td>$c_n = a_n + b_n$</td>
</tr>
<tr>
<td>$C \rightarrow A.B$</td>
<td>$C(z) = A(z) \cdot B(z)$</td>
<td>$c_n = \sum_{k=0}^{n} a_k b_{n-k}$</td>
</tr>
</tbody>
</table>

Remark: One needs to ensure that unions are disjoint and concatenations unambiguous.

DNA example: $\{a, c, g, t\}^* \Leftrightarrow D \rightarrow a.D \mid c.D \mid g.D \mid t.D \mid \varepsilon$

\[\Rightarrow D(z) = \frac{1}{1 - 4z} \]
Main principles

Disclaimer
What follows, although true in this context, is embarrassingly simplistic.
A rigorous presentation can (and must) be found in Flaj./Sedg. 08.

A singularity is a point \(z = \rho \) where \(C(z) \) is no longer analytic.
Asymptotics of coeff \(c_n \) are driven by the singularities of \(C(z) \).

1\(^{st}\) principle
Location of the dominant (smallest) singularity \(\rho \) dictates the exponential growth
\[\Rightarrow \frac{c_n}{\rho^{-n}} = o(\alpha^n), \ \forall \alpha > 1. \]

DNA example: \(D(z) = 1/(1 - 4z) \Rightarrow \rho = 1/4 \Rightarrow d_n \sim 4^n P(n) \).
Basic scale

2nd principle

Nature of \(\rho \) dictates subexponential part \(P(n) \) s.t. \(c_n \sim \rho^{-n}P(n) \).

Basic scale: If one can rewrite \(C(z) \) as

\[
C(z) = f(z) + g(z)(1 - z/\rho)^\alpha
\]

where \(f \) and \(g \) are analytic \(\forall |z| < |\rho| \) and non-null at \(\rho \), then

\[
c_n \equiv [z^n]C(z) \sim \frac{g(\rho)\rho^{-n}}{\Gamma(-\alpha)n^{\alpha+1}}
\]

Example: \(D(z) = \frac{1}{1 - 4z} \Rightarrow c_n \sim 4^n \)

(\(\rho = 1/4, \alpha = -1, f(z) = 0, \) and \(g(z) = 1 \))
Asymptotic estimates are obtained using a 4 steps meta-algorithm:

1. **Find the right model**

2. **Translate into grammar**

3. **Translate into system and solve g. f.**

4. **Singularity analysis yields asymptotics**
Asymptotic estimates are obtained using a 4 steps meta-algorithm:

1. Find the right model
2. Translate into grammar
3. Translate into system and solve g. f.
4. Singularity analysis yields asymptotics
Asymptotic estimates are obtained using a 4 steps meta-algorithm:

1. Find the right model
2. Translate into grammar
3. Translate into system and solve g. f.
4. Singularity analysis yields asymptotics
Asymptotic estimates are obtained using a 4 steps meta-algorithm:

1. Find the right model
2. Translate into grammar
3. Translate into system and solve g. f.
4. Singularity analysis yields asymptotics
Let us count dot-bracket notations (Motzkin words)
Let us count dot-bracket notations (Motzkin words)

1. ϵ

2. $M \rightarrow \bullet M \mid (M) M \mid \epsilon$
Let us count dot-bracket notations (Motzkin words)

1. \[M = \bullet M \lor (M) M \lor \varepsilon \]

2. \[M(z) = z \cdot M(z) + z \cdot M(z) \cdot z \cdot M(z) + 1 \]
 \[= \frac{1 - z \pm \sqrt{1 - 2z - 3z^2}}{2z^2} \]
Let us count dot-bracket notations (Motzkin words)

1. \[\bullet \cdots \bullet = \bullet \cdots \bullet \lor \bullet \cdots \bullet \lor \varepsilon \]

2. \[M \rightarrow \bullet M \lor (M)M \lor \varepsilon \]

3. \[M(z) = z \cdot M(z) + z \cdot M(z) \cdot z \cdot M(z) + 1 \]

 \[= \left\{ \begin{array}{l}
 \frac{1 - z + \sqrt{1 - 2z - 3z^2}}{2z^2} = \frac{1}{z^2} - \frac{1}{z} - 1 - z - 2z^2 + O(z^3) \\
 \frac{1 - z - \sqrt{1 - 2z - 3z^2}}{2z^2} = 1 + z + 2z^2 + 4z^3 + 9z^4 + O(z^5)
 \end{array} \right. \]
Appetizer: Motzkin words

Let us count dot-bracket notations (Motzkin words)

1. $\begin{array}{c}
\bullet \quad \bullet \\
\end{array} = \begin{array}{c}
\bullet \quad \bullet \\
\end{array} \lor \begin{array}{c}
\bullet \quad \bullet \\
\end{array} \lor \varepsilon$

2. $M \rightarrow \bullet M \quad | \quad (M) M \quad | \quad \varepsilon$

3. $M(z) = z \cdot M(z) + z \cdot M(z) \cdot z \cdot M(z) + 1$

\[= \frac{1-z-\sqrt{1-2z-3z^2}}{2z^2}\]

4. $\rho = 1/3$, $M(z) = \frac{1-z}{2z^2} - g(z) \cdot \sqrt{1-z}/\rho$, and $g(z) := \frac{\sqrt{1+z}}{2z^2}$

\[\Rightarrow s_n \equiv [z^n]M(z) \sim \frac{g(\rho)\rho^{-n}}{\Gamma(-\alpha)n^{\alpha+1}} = \frac{3\sqrt{3}}{2\sqrt{\pi}} \cdot \frac{3^n}{n^{3/2}}(1 + O(1/n))\]
Consider RNA secondary structures (Waterman 78)
Consider RNA secondary structures (Waterman 78)

1. \[\bullet \rightarrow \epsilon \]

2. \[S \rightarrow \bullet S | (S_{>0}) S | \epsilon \]
Consider RNA secondary structures (Waterman 78)

1. $\cdot \cdots \cdot = \cdot \cdots \cdot \vee \geq 1 \vee \varepsilon$

2. $S \rightarrow \bullet S \mid (T) S \mid \varepsilon$
 $T \rightarrow \bullet S \mid (T) S$
Consider RNA secondary structures (Waterman 78)

1. \[\bullet \ldots \bullet = \bullet \ldots \bullet \lor \bullet \ldots \bullet \lor \varepsilon \geq 1 \]

2.
 - \(S \rightarrow \bullet S \mid (T) S \mid \varepsilon \)
 - \(T \rightarrow \bullet S \mid (T) S \)

3. \[S(z) = \frac{1-z+z^2-\sqrt{1-2z-z^2-2z^3+z^4}}{2z^2} \]
Consider RNA secondary structures (Waterman 78)

1. $1 = \cdot \cdot \cdot \lor \cdot \cdot \cdot \lor \varepsilon$

2. $S \rightarrow \cdot S \mid (T) S \mid \varepsilon$
 $T \rightarrow \cdot S \mid (T) S$

3. $S(z) = \frac{1-z+z^2-\sqrt{1-2z-z^2-2z^3+z^4}}{2z^2}$

4. $\rho = \frac{3-\sqrt{5}}{2} = 1 - \phi$
 $[z^n]S(z) = \sqrt{\frac{15+7\sqrt{5}}{8\pi}} \cdot \left(\frac{3+\sqrt{5}}{2}\right)^n \frac{2}{n\sqrt{n}} (1 + O(1/n)) \sim 1.1 \cdot \frac{2.6^n}{n\sqrt{n}}$
Let us generalize the θ constraint

1

$\text{----------------------} = \text{----------------------} \geq \theta \text{----------------------} \lor \text{----------------------}$

$\text{----------------------} = \text{----------------------} \lor \varepsilon$
Let us generalize the θ constraint

1.

2.

$S \rightarrow U(S \geq \theta) S | U$

$U \rightarrow \bullet U | \varepsilon$
Let us generalize the θ constraint

1. $\begin{array}{c}
\text{---} = \text{---} \geq \theta \text{---} \lor \text{---} \\
\text{---} = \text{---} \lor \varepsilon
\end{array}$

2. $\begin{array}{ll}
S & \rightarrow \ U (T) \ S \ | \ U \\
T & \rightarrow \ U (T) \ S \ | \ U^\theta
\end{array}$
Let us generalize the θ constraint

1. $\cdots \implies \cdots \geq \theta \implies \cdots$

2. $S \rightarrow U(T) S | U$
 $T \rightarrow U(T) S | \cdot^{\theta} U$
 $U \rightarrow \cdot U | \varepsilon$

3. $S(z) = \frac{1-2z+2z^2-z^{\theta+2}-\sqrt{1-4z+4z^2-2z^{\theta+2}+4z^{\theta+3}-4z^{\theta+4}+z^{2\theta+4}}}{(1-z)2z^2}$
Let us generalize the θ constraint

$$S(z) = \frac{1-2z+2z^2-z^{\theta+2}-\sqrt{1-4z+4z^2-2z^{\theta+2}+4z^{\theta+3}-4z^{\theta+4}+z^{2\theta+4}}}{(1-z)2z^2}$$

$$s_n \sim K. \frac{\beta^n}{n\sqrt{n}} (1 + \mathcal{O}(1/n))$$
Message #1
Finding the right decomposition (DP) is a combinatorial task.

Message #2
Applying automatic theorems gives precise asymptotic equivalents.

Message #3
There is a large exponential number of structures of size n:
Homopolymer model: $\Omega(2^n)$ Stickiness model: $\mathcal{O}(1.8^n/n^{3/2})$
Message #1
Finding the right decomposition (DP) is a combinatorial task.

Message #2
Applying automatic theorems gives precise asymptotic equivalents.

First order estimate:
\(n = 50 \Rightarrow 95\% \) accuracy
Message #1
Finding the right decomposition (DP) is a combinatorial task.

Message #2
Applying automatic theorems gives precise asymptotic equivalents.

$n = 20$ accuracies:
- 1^{st} order 88%
- 2^{nd} order 99.8%
- 3^{nd} order 99.992%

Secondary structures
Message #1
Finding the right decomposition (DP) is a combinatorial task.

Message #2
Applying automatic theorems gives precise asymptotic equivalents.

Message #3
There is a large exponential number of structures of size n:
Homopolymer model: $\Omega(2^n)$
Stickiness model: $O\left(1.8^n/n^{3/2}\right)$
Outline

1. Foreword
2. Enumerative combinatorics 101
3. RNA shapes
 - Presentation
 - Motivation
 - π shapes
Definition (RNA shapes [Giegerich et al.])

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the *underlying backbone* structure.

Example

Sec. str. ((((((.((((((....))))))))))))(((((......))))))

π'-shape [[[[]]] [[]]]]

π-shape [[[]] [] []]
Definition (RNA shapes [Giegerich et al])

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the *underlying backbone* structure.

Example

Sec. str. ((((((.((((...((((.......))))))))((((.......)))))))....))))

Contract identical consecutive characters
Definition (RNA shapes [Giegerich et al])

Coarse-grain representation hierarchy for RNA sec. struct.

Based on the *underlying backbone* structure.

Example

Sec. str. ((((((...((((((((((((........))))))))))))))))))))((((((........))))))...))

\[\pi'-\text{shape} \ [\bullet \ [\bullet \ [\bullet \ [\bullet \]]]] \ [\bullet \] \bullet \]\]

\[\pi-\text{shape} \ [\ [\ [\ - \ - \]] \ [\bullet \] \]\]

Remove unpaired regions

Contract nested helices
Motivation

RNA shapes allow a hierarchical search in the Boltzmann ensemble

10000 samples \(\Rightarrow \) 1727 Secondary structures...
Motivation

RNA shapes allow a hierarchical search in the Boltzmann ensemble

10000 samples ⇒ 1727 Secondary structures...

... 406 π'-shapes...
Motivation

RNA shapes allow a hierarchical search in the Boltzmann ensemble

10000 samples ⇒ 1727 Secondary structures...

... 406 π'-shapes...

... but only 9 π-shapes!
RNA shapes allow a hierarchical search in the Boltzmann ensemble

Is it reasonable to perform an exhaustive search of all possible shapes compatible with input structure?

10000 samples \Rightarrow 1727 Secondary structures...

How many shapes must we investigate?

... 406 π'-shapes...

... but only 9 π-shapes!
Objective: Count π-shapes with $2n$ parentheses.

π-shapes are bracket words avoiding the $[[\ldots]]$ motif.
Objective: Count π-shapes with $2n$ parentheses.

1. π-shapes are bracket words avoiding the $[[\ldots]]$ motif.

2. $S \rightarrow [S/\{[\ldots]\}] S \mid [S/\{[\ldots]\}]$
Objective: Count π-shapes with $2n$ parentheses.

1. π-shapes are bracket words avoiding the $[[\ldots]]$ motif.
2. $S \rightarrow [T]S | [T]$ \hspace{1cm} $T \rightarrow [T]S | \varepsilon$
Objective: Count \(\pi \)-shapes with \(2n \) parentheses.

1. \(\pi \)-shapes are bracket words avoiding the \([[[...]]]\) motif.

2. \[\begin{align*} S & \rightarrow [T]S | [T] \\ T & \rightarrow [T]S | \varepsilon \end{align*} \]

3. \[S(z) = \frac{1 - z^2 - \sqrt{1 - 2z^2 - 3z^4}}{2z^2} \]
Objective: Count \(\pi \)-shapes with \(2n \) parentheses.

1. \(\pi \)-shapes are bracket words avoiding the \([\ldots]\) motif.

2. \(S \rightarrow [T]S | [T] \quad T \rightarrow [T]S | \varepsilon \)

3. \[
S(z) = \frac{1 - z^2 - \sqrt{1 - 2z^2 - 3z^4}}{2z^2}
\]

4. \[
s_{2n} \sim \frac{\sqrt{3}}{2 \sqrt{\pi}} \cdot \frac{3^n}{n \sqrt{\pi}} (1 + \mathcal{O}(1/n)) \quad \text{and} \quad s_{2n+1} = 0
\]

Remark: Doesn’t this look familiar???
Limitations

Number of π-shapes of size n

\[\neq \]

Number of π-shapes compatible with RNA of size n

Reasons:

1. Shapes of size $\leq n$ should be considered
2. Forming a hairpin loop \([\]\) takes at least $\theta + 2$ bases

2. \[S \rightarrow [T]S | [T] \quad T \rightarrow [T]S | \varepsilon \]

3. \[S(z) = \frac{1 - z^2 - \sqrt{1 - 2z^2 - 3z^4}}{2z^2} \]

4. For n even: \[s_{2n} \sim \frac{3\sqrt{3}}{4\sqrt{\pi}} \cdot \frac{3^n}{n \sqrt{\pi}} \left(1 + O(1/n)\right) \approx 0.48 \cdot \frac{3^n}{n \sqrt{n}} \]
Limitations

Number of π-shapes of size n
\[\neq \]
Number of π-shapes compatible with RNA of size n

Reasons:

1. Shapes of size $\leq n$ should be considered
2. Forming a hairpin loop $[]$ takes at least $\theta + 2$ bases

\[S \rightarrow [T] S | [T] \quad T \rightarrow [T] S | \bullet^\theta \]
\[R \rightarrow \square S | \varepsilon \]

\[R(z) = \frac{1 - z^2 - \sqrt{1 - 2z^2 - 3z^4}}{2z^2(1 - z)} \]

\[r_{2n} \sim \frac{3\sqrt{3}}{4\sqrt{\pi}} \cdot \frac{3^n}{n\sqrt{n}}(1 + O(1/n)) \Rightarrow r_n \approx 2.07 \cdot \frac{1.73^n}{n\sqrt{n}} \]
Limitations

Number of π-shapes of size n

\neq

Number of π-shapes compatible with RNA of size n

Reasons:

1. Shapes of size $\leq n$ should be considered
2. Forming a hairpin loop $[]$ takes at least $\theta + 2$ bases

2. $S \rightarrow [T] SS | [T]$ $T \rightarrow [T] SS | \bullet^\theta$

$R \rightarrow \Box S | \varepsilon$

3. $R(z) = \frac{1 - z^{\theta+2} - \sqrt{1 - 2z^{\theta+2} - 4z^{\theta+4} + z^{2\theta+4}}}{2z^2(1 - z)}$

4. $\theta = 3 \Rightarrow r_n \approx 2.44 \frac{1.32^n}{n\sqrt{n}}$
A surprising bijection

Theorem

$\#\pi$ shapes of size $n = \#\text{Motzkin words of length } 2n + 2$

Proof.

\[
S(z) = \frac{1-z^2-\sqrt{1-2z^2-3z^4}}{2z^2}, \quad M(z) = \frac{1-z-\sqrt{1-2z-3z}}{2z^2}
\]

\[
S(z) = 1 + z^2 M(z^2) \implies s_n = m_{2n+2}
\]

These two classes are in bijection.
How to state it? Can we exploit it?
Explicit bijection

Let \(\psi, \phi : \{ [,] \}^* \rightarrow \{ (,) , \bullet \} \) such that

\[
\psi((A) B) = \begin{cases}
\phi(A) & \text{if } B = \varepsilon \\
\phi(A) \bullet \psi(B) & \text{otherwise}
\end{cases}
\]

\[
\phi((A) B) = \phi(A)[\psi(B)] \\
\phi(\varepsilon) = \varepsilon.
\]

Then \(\psi \) is a bijection between \(s_{2n+2} \) and \(m_n \).
Explicit bijection

Let $\psi, \phi : \{ [,] \}^* \rightarrow \{ (,) , \bullet \}$ such that

\[
\psi((A) B) = \begin{cases}
\phi(A) & \text{if } B = \varepsilon \\
\phi(A) \bullet \psi(B) & \text{otherwise}
\end{cases}
\]

\[
\phi((A) B) = \phi(A)[\psi(B)]
\]

$\phi(\varepsilon) = \varepsilon.$

Then ψ is a bijection between s_{2n+2} and m_n.

$2n + 2$ letters $\rightarrow 2n + 2$ edges $\rightarrow n$ edges
Explicit bijection

Let $\psi, \phi : \{[,]\}^* \rightarrow \{(,) , \bullet\}$ such that

$$
\psi((A) B) = \begin{cases}
\phi(A) & \text{if } B = \varepsilon \\
\phi(A) \bullet \psi(B) & \text{otherwise}
\end{cases}
$$

$$
\phi((A) B) = \phi(A)[\psi(B)]
$$

$\phi(\varepsilon) = \varepsilon.$

Then ψ is a bijection between s_{2n+2} and m_n.
Let $\psi, \phi : \{ [,] \}^* \to \{ (,) , \cdot \}$ such that

$$
\psi((A)B) = \begin{cases}
\phi(A) & \text{if } B = \epsilon \\
\phi(A) \cdot \psi(B) & \text{otherwise}
\end{cases}
$$

$$
\phi((A)B) = \phi(A)[\psi(B)]
$$

$\phi(\epsilon) = \epsilon.$

Then ψ is a bijection between s_{2n+2} and m_n.

2n + 2 letters

2n + 2 edges

n edges
Let $\psi, \phi : \{ [,] \}^* \rightarrow \{ (,) , \bullet \}$ such that

\[
\psi((A) B) = \begin{cases}
\phi(A) & \text{if } B = \varepsilon \\
\phi(A) \bullet \psi(B) & \text{otherwise}
\end{cases}
\]

\[
\phi((A) B) = \phi(A)[\psi(B)]
\]

$\phi(\varepsilon) = \varepsilon$.

Then ψ is a bijection between s_{2n+2} and m_n.

Yann Ponty
RNA shapes combinatorics
Explicit bijection

Let \(\psi, \phi : \{ [,] \}^* \rightarrow \{ (,) , \bullet \} \) such that

\[
\psi((A) B) = \begin{cases}
\phi(A) & \text{if } B = \varepsilon \\
\phi(A) \bullet \psi(B) & \text{otherwise}
\end{cases}
\]

\[
\phi((A) B) = \phi(A)[\psi(B)]
\]

\[
\phi(\varepsilon) = \varepsilon.
\]

Then \(\psi \) is a bijection between \(s_{2n+2} \) and \(m_n \).

\[
\begin{align*}
\text{[[[[] []]]] } & \quad \longleftrightarrow \quad \text{[[[[]]]] []] [] [] [] [] [[]] [] } \\
2n + 2 \text{ letters} & \quad \longleftrightarrow \quad 2n + 2 \text{ edges} \quad \longleftrightarrow \quad n \text{ edges} \\
\end{align*}
\]
Explicit bijection

Let \(\psi, \phi : \{ [,] \}^* \rightarrow \{ (,) , \bullet \} \) such that

\[
\psi((A)B) = \begin{cases}
\phi(A) & \text{if } B = \varepsilon \\
\phi(A) \bullet \psi(B) & \text{otherwise}
\end{cases}
\]

\[
\phi((A)B) = \phi(A)[\psi(B)]
\]

\[
\phi(\varepsilon) = \varepsilon.
\]

Then \(\psi \) is a bijection between \(s_{2n+2} \) and \(m_n \).
Limits of the bijection

Impacts of θ on shapes and Motzkin are drastically different.

Theorem

Expectations of number of term. loops in Motzkin words and π-shapes scale like $m_n^t \sim \frac{n}{6} + \mathcal{O}(1)$ and $s_{2n+2}^t \sim \frac{2n}{3} + \mathcal{O}(1)$
Objective: Count \(\pi' \)-shapes compatible with RNA of length \(n \).

1. \(\pi' \)-shapes = bracket words avoiding motifs \([[\cdots]]\) and \(\bullet\bullet\)

2. \(\begin{align*} R &\rightarrow \square R | S \\ S &\rightarrow U[T]S | U \\ U &\rightarrow \diamond | \varepsilon \\ T &\rightarrow U[T]U[T]S | \diamond[T] | [T] \diamond | \diamond[T] \diamond | \bullet^\theta \end{align*} \)

3. \(\theta = 3, \ R(z) = \frac{1 + 2z^2 + 2z^3 + z^4 - z^5}{z^6 - \sqrt{1 - 4z^3 - 2z^4 - 2z^5 + 2z^6 - 7z^8 - z^{10} + 2z^{11} + z^{12}} - \frac{2z^2(1 - z^2)}{2z^2}} \)

4. \(r_n \sim 1.27 \frac{1.81^n}{n\sqrt{n}} \)
Objective: Count π'-shapes compatible with RNA of length n.

1. π'-shapes = bracket words avoiding motifs $[[\ldots]]$ and $\bullet\bullet$

2.
 \[
 \begin{align*}
 R & \rightarrow \square R \mid S \\
 S & \rightarrow U [T] S \mid U \\
 U & \rightarrow \Diamond \mid \varepsilon \\
 T & \rightarrow U [T] U [T] S \mid \Diamond [T] [T] \Diamond \mid \Diamond [T] \Diamond \mid \bullet^\theta
 \end{align*}
 \]

3. \[\theta = 3, \quad R(z) = \frac{1+2z^2+2z^3+z^4-z^5-z^6-\sqrt{1-4z^3-2z^4-2z^5+2z^6-7z^8-z^{10}+2z^{11}+z^{12}}}{2z^2(1-z^2)}\]

4. \[r_n \sim 1.27 \frac{1.81^n}{n\sqrt{n}}\]
Objective: Count π'-shapes compatible with RNA of length n.

1. π'-shapes = bracket words avoiding motifs $[[\ldots]]$ and ••

2. $R \rightarrow \square R \mid S$
 $S \rightarrow U [T] S \mid U$
 $U \rightarrow \diamond \mid \varepsilon$

 $T \rightarrow U [T] U [T] S \mid \diamond [T] \mid [T]\diamond \mid \diamond [T]\diamond \mid \bullet^\theta$

3. $\theta = 3$, $R(z) = \frac{1 + 2z^2 + 2z^3 + z^4 - z^5 - z^6 - \sqrt{1 - 4z^3 - 2z^4 - 2z^5 + 2z^6 - 7z^8 - z^{10} + 2z^{11} + z^{12}}}{2z^2(1 - z^2)}$

4. $r_n \sim 1.27 \frac{1.81^n}{n\sqrt{n}}$
Objective: Count π'-shapes compatible with RNA of length n.

1. π'-shapes = bracket words avoiding motifs $[[\ldots]]$ and $\bullet\bullet$

2. $R \rightarrow \square R | S$
 $S \rightarrow U [T] S | U$
 $U \rightarrow \diamond | \varepsilon$

 $T \rightarrow U [T] U [T] S | \diamond [T] | [T] \diamond | \diamond [T] \diamond | \bullet^\theta$

3. $\theta = 3$, $R(z) = \frac{1 + 2z^2 + 2z^3 + z^4 - z^5 - z^7 - \sqrt{1 - 4z^3 - 2z^4 - 2z^5 + 2z^6 - 7z^8 - z^{10} + 2z^{11} + z^{12}}}{2z^2(1-z^2)}$

4. $r_n \sim 1.27 \frac{1.81^n}{n \sqrt{n}}$
<table>
<thead>
<tr>
<th>Model</th>
<th>Asymptotic number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sec. str. on n – Combinatorial</td>
<td>$1.1 \cdot \frac{2.6^n}{n\sqrt{n}}$</td>
</tr>
<tr>
<td>Sec. str. on n – Empirical</td>
<td>$0.04 \cdot \frac{1.4^n}{n\sqrt{n}}$</td>
</tr>
<tr>
<td>π-shapes of size n</td>
<td>$1.38 \cdot \frac{1.73^n}{n\sqrt{n}}$</td>
</tr>
<tr>
<td>π-shapes compatible with sec. str. on n</td>
<td>$2.44 \cdot \frac{1.32^n}{n\sqrt{n}}$</td>
</tr>
<tr>
<td>π-shapes – Empirical</td>
<td>$0.21 \cdot \frac{1.1^n}{n\sqrt{n}}$</td>
</tr>
<tr>
<td>π'-shapes of size n</td>
<td>$0.99 \cdot \frac{2.41^n}{n\sqrt{n}}$</td>
</tr>
<tr>
<td>π'-shapes compatible with sec. str. on n</td>
<td>$1.28 \cdot \frac{1.81^n}{n\sqrt{n}}$</td>
</tr>
</tbody>
</table>
Conclusion

- For context-free objects, finding gen. fun. is easy...
 ... and precise asymptotics estimates follow readily.
- Bijection between Motkzin words and π-shapes
- Way less many shapes than sec. str.!
- Homopolymer model overestimates number of shapes
 Need for a probabilistic model for base-pairing
 But stickiness is not enough...

Collaborators: W. A. Lorenz and P. Clote (Boston College)