Non-redundant random generation from weighted context-free languages

Yann Ponty

Boston College → Paris 6 (Dept de biologie)

June 23, 2008

Context-free grammars

Definition (Context-free grammar)

Context-free grammar = 4-tuple $(\Sigma, \mathcal{N}, \mathcal{P}, \mathcal{S})$:

- Σ: Alphabet.
- \bullet \mathcal{N} : Non-terminal symbols.
- \mathcal{P} : Set of production rules $N \to X \in \mathcal{N} \times \{\Sigma \cup \mathcal{N}\}^*$.
- S: Axiom, or initial non-terminal.

Alt.: Context-free grammar = **admissible specification** using:

- Operators $\{\times, +\}$
- Finite set of atoms $\{Z_1, Z_2, \dots, Z_k\}$
- Empty structure 1

Uniform random generation

Rationale

Nature dislikes uniformity (S. Brlek 05)

Example: RNA secondary structures

Rationale

Nature dislikes uniformity (S. Brlek 05)

Example: RNA secondary structures = *Peakless* Motzkin words

Random uniform RNAs

Rationale

Nature dislikes uniformity (S. Brlek 05)

Example: RNA secondary structures = *Peakless* Motzkin words

Random uniform RNAs

Rationale

Nature dislikes uniformity (S. Brlek 05)

Example: RNA secondary structures

Random uniform RNAs

Weighted grammars

Definition (Weighted context-free grammar [Denise et al., 2000])

A weighted context-free grammar is a **5**-tuple $\mathcal{G} = (\Sigma, \mathcal{N}, \mathcal{P}, \mathcal{S}, \pi)$:

- Σ , \mathcal{N} , \mathcal{P} , \mathcal{S} : Same as previously.
- π : Weight function $\pi: \Sigma \to \mathbb{R}$.

Definition (Weighted probability distribution)

A WCFG $\mathcal G$ implicitly defines a weighted probability distribution $\mathcal W$:

$$\forall \omega \in \mathcal{L}(\mathcal{G}), \ \mathbb{P}(\omega) = \frac{\pi(\omega)}{\pi(\mathcal{L}(\mathcal{G}))}.$$

Definition (Weighted context-free grammar [Denise et al., 2000])

A **weighted** context-free grammar is a **5**-tuple $\mathcal{G} = (\Sigma, \mathcal{N}, \mathcal{P}, \mathcal{S}, \pi)$:

- Σ , \mathcal{N} , \mathcal{P} , \mathcal{S} : Same as previously.
- π : Weight function $\pi: \Sigma \to \mathbb{R}$

Definition (Weighted probability distribution)

A WCFG ${\mathcal G}$ implicitly defines a weighted probability distribution ${\mathcal W}$:

$$\forall \omega \in \mathcal{L}(\mathcal{G}), \ \mathbb{P}(\omega) = \frac{\pi(\omega)}{\pi(\mathcal{L}(\mathcal{G}))}.$$

Generating k words of size n is in $\mathcal{O}(n^2 + n \log(n).k)^*$.

Furthermore, aiming at **observed** terminal frequencies:

- ⇒ Asymptotic weights can *sometimes* be computed [Denise *et al.*, 2000]
- ⇒ Weights can be heuristically determined

Example

RNA secondary structures

Random uniform RNAs

Example

RNA secondary structures

Random weighted RNAs

Motivation

In biology: Use random sampling to estimate features of interest.

Example: RNA secondary structures

- Depth/Radius?
- Probability of observing same substructure twice?
- Entropy of the Boltzmann ensemble of low energy?
- •

Need to eliminate **redundancy** in the recursive generation:

- No additional information
- Mixed performances for generating k distinct words with a rejection approach.

Motivation

In biology: Use random sampling to estimate features of interest.

Example: RNA secondary structures

- Depth/Radius?
- Probability of observing same substructure twice?
- Entropy of the Boltzmann ensemble of low energy?
- •

Need to eliminate **redundancy** in the recursive generation:

- No additional information.
- Mixed performances for generating k distinct words with a rejection approach.

Motivation

In biology: Use random sampling to estimate features of interest.

Example: RNA secondary structures

- Depth/Radius?
- Probability of observing same substructure twice?
- Entropy of the Boltzmann ensemble of low energy?
- •

Need to eliminate **redundancy** in the recursive generation:

- No additional information.
- Mixed performances for generating k distinct words with a rejection approach.

The uniform case

Generating k distinct samples (or PowerSet of size k) takes an expected number of attempts in $\mathcal{O}(k \log k)$ with a rejection approach.

Argument: Expected number of attempts is strictly increasing with k.

+ Bounded by $\Theta(k \log k)$ (Coupon collector)

(Better algorithms found in [Zimmermann, 1995])

Weighted distribution: Claim #1

Rejecting for generating of k distinct words can be **exponential** in k.

$$\mathcal{P}: S \rightarrow aS \mid T$$
 $\pi(a) = 2$ $\pi(b) = 1$

Among words of length n:

$$\pi(a^n) = 2^n \quad \pi(a^{n-1}b) = 2^{n-1} \quad \dots \\ \pi(\mathcal{L}(S)) = 2^{n+1} - 1$$

Sampling k distinct words implies sampling at least a word from

$$\mathcal{R} = \{a^{n-(k-1)-i}b^{k-1+i}\}_{i \in [0, n-(k-1)]}.$$

Since $\pi(\mathcal{R}) = 2^{n-k+2} - 1$, then a word from \mathcal{R} is drawn after $\Theta(2^k)$ attempts on the average.

Simple type grammars

Weighted distribution: Claim #2

However, for simple type grammars, the probabilities associated with every words are exponentially decreasing on n.

Assume that \mathcal{G} is a *simple type* grammar (aperiodic, strongly connected), whose heaviest word ω_n^* of length n is such that:

$$\pi(\omega_n^*) \sim \kappa \alpha^n$$

Then, $\pi(\omega_n^*)$ is **exponentially lower** than the weight of the whole language:

$$\pi(\mathcal{L}(\mathcal{G})) \sim \kappa' {\alpha'}^n n^{-3/2} (1 + \mathcal{O}(1/n)), \ \alpha' > \alpha$$

Therefore, generating a polynomial set of words can be performed in an asymptotically linear number of attempts.

Weight dependency

Weighted distribution: Claim #3

Weights involve non-negligible constant factors in the weighted generation of k distinct words.

Example: Motzkin words

Recursive approach [Wilf, 1977]:

• Perform local probabilistic choices with probabilities proportional to numbers (resp. weights) of accessible words.

Example

Cardinalities can be precomputed recursively.

$$S
ightarrow arepsilon$$
 $s_n = \left\{ egin{array}{ll} 1 & ext{If } n = 0 \\ 0 & ext{Otherwise} \end{array}
ight.$ $S
ightarrow t$ $s_n = \left\{ egin{array}{ll} 1 & ext{If } n = 1 \\ 0 & ext{Otherwise} \end{array}
ight.$ $S
ightarrow T \mid U$ $s_n = t_n + u_n$ $s_n = t_n + u_n$ $t_n = t_n + t_n$

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$$

$$\pi(c)=2$$
 $\pi(a)=\pi(b)=1$

◀ Return

$$S
ightarrow T \mid arepsilon \quad T
ightarrow U S \quad U
ightarrow a S b \mid c \qquad \pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$$

$$\pi(c) = 2$$
 $\pi(a) = \pi(b) = 1$

$$\pi(c) = 2$$
 $\pi(a) = \pi(b) = 1$

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$$

$$\begin{array}{c}
S_5 \\
\downarrow \\
T_5 \\
\downarrow \\
U_2 S_3
\end{array}$$

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow U S \quad U \rightarrow a S b \mid c$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c \quad \pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

$$\pi(c) = 2$$
 $\pi(a) = \pi(b) = 1$

$$S
ightarrow T \mid \varepsilon \quad T
ightarrow U S \quad U
ightarrow a S b \mid c$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

 $\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$

$$S
ightarrow T \mid \varepsilon \quad T
ightarrow U S \quad U
ightarrow a S b \mid c$$

$$S_5$$
 T_5
 S_3
 S_0
 S_0

 $S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$ $\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$

◀ Return

$$S \to T \mid \varepsilon \quad T \to U S \quad U \to a S b \mid c$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

◀ Return

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow U S \quad U \rightarrow a S b \mid c$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

$$S
ightarrow T \mid \varepsilon \quad T
ightarrow U S \quad U
ightarrow a S b \mid c$$

 $\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow U S \quad U \rightarrow a S b \mid c$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

$$S
ightarrow T \mid arepsilon \quad T
ightarrow U S \quad U
ightarrow a S b \mid c \qquad \pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

$$\pi(c) = 2$$
 $\pi(a) = \pi(b) = 1$

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

Recursive approach [Wilf, 1977]:

• Perform local probabilistic choices with probabilities proportional to numbers (resp. weights) of accessible words.

Example

(Weighted) Cardinalities can be precomputed recursively.

Example

$$S
ightarrow arepsilon \ s_n = \left\{ egin{array}{ll} 1 & ext{If } n=0 \\ 0 & ext{Otherwise} \end{array}
ight. \ S
ightarrow t \ s_n = \left\{ egin{array}{ll} 1 & ext{If } n=1 \\ 0 & ext{Otherwise} \end{array}
ight. \ S
ightarrow T \mid U \ s_n = t_n + u_n \ s_n = \sum_{i=0}^n t_i.u_{n-i} \end{array}
ight.$$

Recursive approach [Wilf, 1977]:

• Perform local probabilistic choices with probabilities proportional to numbers (resp. weights) of accessible words.

Example

(Weighted) Cardinalities can be precomputed recursively.

Example

$$S
ightarrow arepsilon$$
 $s_n = \left\{egin{array}{ll} 1 & ext{If } n=0 \ 0 & ext{Otherwise} \end{array}
ight.$ $S
ightarrow t$ $s_n = \left\{egin{array}{ll} \pi(t) & ext{If } n=1 \ 0 & ext{Otherwise} \end{array}
ight.$ $S
ightarrow T \mid U$ $s_n = t_n + u_n$ $s_n = \sum_{i=0}^n t_i.u_{n-i}$

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$$

$$\pi(c) = 2$$
 $\pi(a) = \pi(b) = 1$

◀ Return

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow U S \quad U \rightarrow a S b \mid c \qquad \pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

Main principle

Let $\mathcal{F} \subset \mathcal{L}(\mathcal{G})$ be the set of **forbidden** words.

Goal: Generate from $\mathcal{L}(\mathcal{G})/\mathcal{F}$ in the weighted distribution.

► Example

Problem: We cannot simply modify the s_i 's !!! (Same non-terminals occur in different contexts)

Idea

• Capture context by linearizing the generation process.

► Example

ullet Data structure to efficiently subtract contributions from ${\cal F}.$

▶ Example

Remark: We can get PowerSet by starting from $\mathcal{F} = \emptyset$.

◀ Return

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c \qquad \pi$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

◀ Return

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

Main principle

Let $\mathcal{F} \subset \mathcal{L}(\mathcal{G})$ be the set of **forbidden** words.

Goal: Generate from $\mathcal{L}(\mathcal{G})/\mathcal{F}$ in the weighted distribution.

► Example

Problem: We cannot simply modify the s_i 's !!! (Same non-terminals occur in different contexts)

Idea

• Capture context by linearizing the generation process.

▶ Example

ullet Data structure to efficiently subtract contributions from ${\cal F}.$

▶ Example

Remark: We can get PowerSet by starting from $\mathcal{F} = \emptyset$.

◆ Ret urn

◀ Ret urn

◀ Return

Main principle

Let $\mathcal{F} \subset \mathcal{L}(\mathcal{G})$ be the set of **forbidden** words.

Goal: Generate from $\mathcal{L}(\mathcal{G})/\mathcal{F}$ in the weighted distribution.

► Example

Problem: We cannot simply modify the s_i 's !!! (Same non-terminals occur in different contexts)

Idea

• Capture context by linearizing the generation process.

► Example

ullet Data structure to efficiently subtract contributions from ${\cal F}.$

▶ Example

Remark: We can get PowerSet by starting from $\mathcal{F} = \emptyset$.

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c \quad \pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

abcab: 2 ccabc: 8

◆ Return

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

maa

◆ Return

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

maa

◆ Return

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$$

$$T \rightarrow US \quad U \rightarrow aSb \mid c \qquad \pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

$$42 \quad S_5$$

$$40 \quad U_1S_4 \quad U_2S_3 \quad 2$$

$$40 \quad cS_4 \quad abS_3 \quad 2$$

$$40 \quad cU_1S_3 \quad abS_3 \quad 2$$

$$40 \quad cU_1S_3 \quad abCab$$

$$\pi = 32 \quad T \quad \pi = 8 \quad \pi = 2$$

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow U S \quad U \rightarrow a S b \mid c$$

$$\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$$

Example (Weighted Motzkin words):

 $S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$

 $\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$

Example (Weighted Motzkin words):

 $S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$

 $\pi(c) = 2 \quad \pi(a) = \pi(b) = 1$

$$S \rightarrow T \mid \varepsilon \quad T \rightarrow US \quad U \rightarrow aSb \mid c$$

$$\pi(c) = 2$$
 $\pi(a) = \pi(b) = 1$

Algorithm A

- Precompute the weights s_n of words of length n generated from S.
- ullet Turn ${\mathcal F}$ into parse traces, gathered in a weighted prefix tree ${\mathcal T}$.
- During the generation, walk in \mathcal{T} to obtain the contributions $k_{\pi}(x)$ of words from $\mathcal{L}(x) \cap \mathcal{F}$.
- Iterate atomic derivations $w \to w'$ w.p. $\frac{\pi(\mathcal{L}(w')) k_{\pi}(w')}{\pi(\mathcal{L}(w)) k_{\pi}(w)}$.

Theorem

Algorithm $\mathcal A$ draws a word $\omega \in \mathcal L(\mathcal G)_n/\mathcal F$ with respect to the weighted (renormalized) distribution.

$$\mathbb{P}(\omega) = \frac{\pi\left(\mathcal{L}(w_2)/\mathcal{F}\right)}{\pi\left(\mathcal{L}(w_1)/\mathcal{F}\right)} \frac{\pi\left(\mathcal{L}(w_3)/\mathcal{F}\right)}{\pi\left(\mathcal{L}(w_2)/\mathcal{F}\right)} \frac{\pi\left(\mathcal{L}(w_4)/\mathcal{F}\right)}{\pi\left(\mathcal{L}(w_3)/\mathcal{F}\right)} \cdots \frac{\pi\left(\omega\right)}{\pi\left(\mathcal{L}(w_m)/\mathcal{F}\right)}.$$

Algorithm \mathcal{A}

- Precompute the weights s_n of words of length n generated from S.
- ullet Turn ${\mathcal F}$ into parse traces, gathered in a weighted prefix tree ${\mathcal T}$.
- During the generation, walk in \mathcal{T} to obtain the contributions $k_{\pi}(x)$ of words from $\mathcal{L}(x) \cap \mathcal{F}$.
- Iterate atomic derivations $w \to w'$ w.p. $\frac{\pi(\mathcal{L}(w')) k_{\pi}(w')}{\pi(\mathcal{L}(w)) k_{\pi}(w)}$.

Theorem

Algorithm $\mathcal A$ draws a word $\omega \in \mathcal L(\mathcal G)_n/\mathcal F$ with respect to the weighted (renormalized) distribution.

$$\mathbb{P}(\omega) = \frac{\pi\left(\mathcal{L}(w_2)/\mathcal{F}\right)}{\pi\left(\mathcal{L}(w_1)/\mathcal{F}\right)} \frac{\pi\left(\mathcal{L}(w_3)/\mathcal{F}\right)}{\pi\left(\mathcal{L}(w_2)/\mathcal{F}\right)} \frac{\pi\left(\mathcal{L}(w_4)/\mathcal{F}\right)}{\pi\left(\mathcal{L}(w_3)/\mathcal{F}\right)} \cdots \frac{\pi\left(\omega\right)}{\pi\left(\mathcal{L}(w_m)/\mathcal{F}\right)}.$$

Algorithm \mathcal{A}

- Precompute the weights s_n of words of length n generated from S.
- ullet Turn ${\mathcal F}$ into parse traces, gathered in a weighted prefix tree ${\mathcal T}$.
- During the generation, walk in \mathcal{T} to obtain the contributions $k_{\pi}(x)$ of words from $\mathcal{L}(x) \cap \mathcal{F}$.
- Iterate atomic derivations $w \to w'$ w.p. $\frac{\pi(\mathcal{L}(w')) k_{\pi}(w')}{\pi(\mathcal{L}(w)) k_{\pi}(w)}$.

Theorem

Algorithm \mathcal{A} draws a word $\omega \in \mathcal{L}(\mathcal{G})_n/\mathcal{F}$ with respect to the weighted (renormalized) distribution.

$$\mathbb{P}(\omega) = \frac{1}{\pi \left(\mathcal{L}(w_1)/\mathcal{F}\right)} \frac{\pi \left(\mathcal{L}(w_2)/\mathcal{F}\right)}{1} \frac{\pi \left(\mathcal{L}(w_4)/\mathcal{F}\right)}{\pi \left(\mathcal{L}(w_2)/\mathcal{F}\right)} \cdots \frac{\pi \left(\omega\right)}{\pi \left(\mathcal{L}(w_m)/\mathcal{F}\right)}.$$

Algorithm A

- Precompute the weights s_n of words of length n generated from S.
- ullet Turn ${\mathcal F}$ into parse traces, gathered in a weighted prefix tree ${\mathcal T}$.
- During the generation, walk in \mathcal{T} to obtain the contributions $k_{\pi}(x)$ of words from $\mathcal{L}(x) \cap \mathcal{F}$.
- Iterate atomic derivations $w \to w'$ w.p. $\frac{\pi(\mathcal{L}(w')) k_{\pi}(w')}{\pi(\mathcal{L}(w)) k_{\pi}(w)}$.

Theorem

Algorithm \mathcal{A} draws a word $\omega \in \mathcal{L}(\mathcal{G})_n/\mathcal{F}$ with respect to the weighted (renormalized) distribution.

$$\mathbb{P}(\omega) = \frac{1}{\pi \left(\mathcal{L}(w_1) / \mathcal{F} \right)} \frac{1}{1} \frac{\pi \left(\mathcal{L}(w_4) / \mathcal{F} \right)}{1} \dots \frac{\pi \left(\omega \right)}{\pi \left(\mathcal{L}(w_m) / \mathcal{F} \right)}.$$

Algorithm A

- Precompute the weights s_n of words of length n generated from S.
- ullet Turn ${\mathcal F}$ into parse traces, gathered in a weighted prefix tree ${\mathcal T}$.
- During the generation, walk in \mathcal{T} to obtain the contributions $k_{\pi}(x)$ of words from $\mathcal{L}(x) \cap \mathcal{F}$.
- Iterate atomic derivations $w \to w'$ w.p. $\frac{\pi(\mathcal{L}(w')) k_{\pi}(w')}{\pi(\mathcal{L}(w)) k_{\pi}(w)}$.

Theorem

Algorithm \mathcal{A} draws a word $\omega \in \mathcal{L}(\mathcal{G})_n/\mathcal{F}$ with respect to the weighted (renormalized) distribution.

$$\mathbb{P}(\omega) = \frac{\pi\left(\omega\right)}{\pi\left(\mathcal{L}(w_1)/\mathcal{F}\right)} = \frac{\pi\left(\omega\right)}{\pi\left(\mathcal{L}(\mathcal{S}_{|\omega|})/\mathcal{F}\right)} = \frac{\pi\left(\omega\right)}{\pi\left(\mathcal{L}(\mathcal{G})_n/\mathcal{F}\right)}.$$

Complexity considerations

- Don't store the partial words in internal nodes! Only **diff** with parent node will suffice.
 - $\Rightarrow \mathcal{O}(1)$ memory for each node.
- Numbers stored in the internal nodes are encoded on $\mathcal{O}(n)$ bits.
 - \Rightarrow Keeping them could take up to $\mathcal{O}(n^2.k)$ bits? No, there is $\mathcal{O}(k)$ different numbers on the tree. (In any tree, the number of nodes of degree>1 is smaller than the number of leaves.)

Starting from $\mathcal{F} := \emptyset$, the overhead is negligible:

 \Rightarrow Generating k distinct samples of size n takes $\mathcal{O}(kn\log n)$ arithmetic operations and requires the storage of $\mathcal{O}(kn)$ numbers.

Perspectives

- **Speeding up generation:** Transposition of classic optimizations for the recursive generation (Boustrophedon search, linear recurrences for coeffs, ...) and beyond (Boltzmann sampling, unranking ...)
- Implementation: Watching the computer explode ??? Potential numerical stability issues ...
- Applications: Adapt techniques to RNA structure (Folding) and sequence (Design) sampling. Alternative to local search for hard optimization problems?
- Open problem: Precise complexity study of the rejection approach under a weighted model. Upper bounds (Coupon collector) could be obtained in the spirit of [Flajolet et al., 1992].

Thanks for listening !!!

And to Alain Denise for advise and support over the years...

Denise, A., Roques, O., & Termier, M. 2000.

Random generation of words of context-free languages according to the frequencies of letters.

Pages 113–125 of: Mathematics and computer science: Algorithms, trees, combinatorics and probabilities.

Flajolet, Philippe, Gardy, Danièle, & Thimonier, Loßs. 1992. Birthday paradox, coupon collectors, caching algorithms and self-organizing search.

Discrete appl. math., **39**(3), 207–229.

Wilf. H. S. 1977.

A unified setting for sequencing, ranking, and selection algorithms for combinatorial objects.

Advances in mathematics, 24, 281–291.

Zimmermann, P. 1995.

Uniform random generation for the powerset construction.

Pages 589-600 of: Proceedings of the 7th conference on formal power series and algebraic combinatorics.