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Challenge Dynamics of proteins: specification
. Input: structure(s) of biomolecules + potential energy model

. Output
I Thermodynamics: meta-stable states and observables
I Dynamics: Markov state model – requires rare transition events

. Time-scales
I Biological time-scale > millisecond
I Integration time step in molecular dynamics: ∆t ∼ 10−15s

I 5.058ms of
simulation
time;

I ∼ 230 GPU
years on
NVIDIA
GeForce GTX
980 proc.

.Ref: Chodera et al, eLife, 2019
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Combined RMSD : TBEV glycoprotein in two different
conformations pre and post fusion

. Classical analysis:

Statistics from Apurva:
I 370 a.a. aligned
I lRMSD: 11.1Å

. Our motifs:

Motif Alignment size lRMSD
Large 88 1.69
Small 40 0.38



Structural Motif
. Input: We are given two polypeptide chains SA and SB

Definition 1. Given two sets of a.a. MA = {ai1 , . . . , ais} ⊂ SA and
MB = {bi1 , . . . , bis} ⊂ SB , and a one-to-one alignment {(aij ↔ bij )} between
them, we define the least RMSD ratio as follows:

rlRMSD(MA,MB) = lRMSD(MA,MB)/lRMSD(SA,SB). (1)

The sets MA and MB are called structural motifs provided that

|MA| = |MB | ≥ s0 and rlRMSD(MA,MB) ≤ r0,

for appropriate thresholds s0 and r0.



Key idea: exploiting quasi-isometric deformations
to identify almost rigid | isometric regions in structures

. Quasi-isometric deformation: (selected) distances (almost) preserved

d1

d2d3

d′1

d′3
d′2

d1 ∼ d′1
d2 ∼ d′2
d3 6= d′3

. Tracking such deformation may be done at two scales:
I Global preservation: maximal cliques – NP-hard problem.
I Local preservation: spanning trees connecting atoms whose relative distances

are conserved.



Multi-scale rigidity: embodied in the notion of filtration
. Key ideas

I Filtration: sequence of nested topological space – read: sequence of
nested sets of amino-acids

I Ordering of a.a.: by decreasing rigidity index – those involved in rigid
blocks come first



Motifs for two structures A and B: a generic approach
I Step 1: use an aligner for the seed alignment and scores

I (A and B) Compute a seed alignment
I (A, then B) Sort residues by decreasing structural conservation

I Step 2: use a filtration to perform a multiscale analysis
I (A, then B) Identify structurally conserved regions

I Step 3: reuse the aligner to bootstrap the alignment
I (A and B) Re-compute a structural alignment between pairs of

regions

Build filtrations:

• from conserved distances (CD)

• from space filling diagram (SFD)

For each chain: build the per-
sistence diagram of connected
components of the filtration

Identification of struc-
tural motifs

Step 2: Filtrations and
persistence diagrams

Step 3: Identifying
structural motifs

Death

Birth

Given two structures,
compute a pairwise structural alignment

Step 1: Seed alignments, scores

Statistical assessment
of structural motifs

Step 4: Filtering
structural motifs

sij = |dAij − dBij |

Compute distance
conservation scores Hierarchical representation

with Hasse diagrams

. NB: sij is the distance variation | Dpi pj (t, t
′) | applied to Cα carbons.



Generic method: instantiations

. Main steps:
I step 1 ≡ alignment to rigidity scores;
I step 2 ≡ rigidity scores to filtrations;
I step 3 ≡ filtrations to motifs via local alignments.

. Ingredient 1: an aligner for steps 1 and 3
I Options: Kpax, Apurva, (FATCAT)

. Ingredient 2: filtration encoding based on rigidity scores
I Option 1: based on conserved distances (cf Kruskal’s MST algorithm)
I Option 2: based on space filling diagrams (Voronoi / α-shapes)

. Resulting programs: Align-Kpax-CD, Align-Kpax-SFD, Align-Apurva-CD,
Align-Apurva-SFD

. Nb: conformation vs homologous proteins: (trivial) alignment



Motifs reveal the multi-scale structural conservation
within global alignments

. Size of motifs vs lRMSD on challenging cases

1BGE vs 2GMF 1CEW vs 1MOL

1CID vs 2RHE 1CRL vs 1EDE

.Ref: Pairs of structures: from Godzik et al, Bioinformatics, 2003
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Comparing two molecules: the combined RMSD
. Rationale: use one rigid motion for each rigid/structurally conserved region

. Motifs for two molecules A and B, and their intersection graph
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Definition 2. Consider two structures A and B for which non-overlapping
domains {C (A)

i ,C
(B)
i }i=1,...,m have been identified. Assume that a lRMSD has been

computed for each pair (C (A)
i ,C

(B)
i ). Let wi be the weights associated with an

individual lRMSD . The combined RMSD is defined by

RMSDComb.(A,B) =

√√√√ m∑
i=1

wi∑
i wi

lRMSD2(C
(A)
i ,C

(B)
i ). (2)

. Rmk: comes into two guises, namely vertex weighted and edge weighted



Combined RMSD : TBEV glycoprotein in two different
conformations pre and post fusion

. Classical analysis:

Statistics from Apurva:
I 370 a.a. aligned
I lRMSD: 11.1Å

. Our motifs:

Motif Alignment size lRMSD
Large 88 1.69
Small 40 0.38
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The Structural Bioinformatics Library

http://sbl.inria.fr

.Ref: Cazals and Dreyfus; Bioinformatics, 2016

http://sbl.inria.fr


SBL and Jupyter notebooks: guided tour

http://sbl.inria.fr/applications

http://sbl.inria.fr/applications
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Summary and outlook

. Combined RMSD – RMSDComb.

I Structural comparisons based on (relatively) independent sets

. Multiscale analysis of structural conservation
I Segregating dof (internal coords.) into active and passive
I Towards more efficient algorithms for thermodynamics - dynamics

. Software: all tools in the SBL

. Ongoing
I Design of move sets
I Applications to energy landscapes: exploration, thermodynamics
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Step 1: rigidity score as Cα ranks for chains A and B

. Input: a structural alignment yields
I dA

i,j : dist. between Cα i and j on
chain A

I dB
i,j : dist. between Cα i and j on

chain B

i j
Chain A

Chain B

dAi,j

dBi,j

. Distance difference matrix between A and B:

sij =| dA
i,j − dB

i,j |, i = 1, . . . ,N, j = 1, . . . ,N. (3)

. Cα rank of residue i: index of the smallest sij involving this residue in the sorted
sequence Sorted{sij}.

Assuming the ordering of scores
depicted, the ranks are as follows:

I one for C1 and C2

I two for C3 and C4

I likewise for the second chain.

a1

a2 a3
a4

b1

b2
b4 b3

Sorted scores: s12 < s34 < s23 < s13 < s14 < s24



Step 1: illustration for 1SVB - 1URZ
. Plots:

I Cα distance plot: for chain A, the function dA
i,j (or d

B
i,j) as a function of

the Cα rank.
I Sequence shift plot: for chain A (or chain B), the function j − i as a

function of the Cα rank.
I Score plot: score sij as a function of the Cα rank.



Step 2a – filtration using Space Filling Diagrams
building the filtration

. Filtration = sequence of nested sets

. Model a collection of amino-acids with its Solvent Accessible Surface

. For both structures, independently:
I insert a.a. by increasing Cα ranks,
I maintain the corresponding space filling model of the Solvent Accessible

Model

(A) (B)
A(1) A(2)

A(3)

A(4)

A(5)

A(6)

A(1) A(2)

A(3)

A(4)

A(5)

A(6) A(7)



Step 2a – filtration using Space Filling Diagrams
persistence diagram of the connected components

. Assessing the stability of conserved regions:
I compute its connected components
I maintain the associated persistence diagram

(A) (B)
A(1) A(2)

A(3)

A(4)

A(5)

A(6)

A(1) A(2)

A(3)

A(4)

A(5)

A(6) A(7)

2 6

7
8

(D)(C)

Birth

Death

c.c. involving A(6)

c.c. involving
A(2), A(3), A(4), A(5), A(6), A(7)

y = x

A(1) A(2)

A(3)

A(4)

A(5)

A(6) A(7)

A(8)



Step 3: identifying motifs – rationale
. Motifs from local structural alignments inferred from the PD:

I points nearby in the pers. diag. have a comparable rigidity signature
I each such point corresponds to a set of a.a. in one structure
I therefore: run a local alignment between these regions

I motif: rlRMSD ≤ r0 and |MA| = |MB | ≥ s0

. Topological changes and accretion:
I accretion: insertion of an a.a. connected to an already existing connected

component.
I concomitant birth and death i.e. 0-persistence i.e. point on the diagonal of the

PD for c.c.
I pitfall: accretion may be such that a PD has very few points!



Step 3: identifying motifs – details

. Identifying motifs:

– For each critical value (death date) t of either persistence diagram:
– compute the c.c. FA = {c1, . . . , cnA} of F

A
t

– compute the c.c. FB = {c ′1, . . . , c ′nB } of F
B
t

– (simple) compute a structural alignment for each pair (ci , c
′
j ) ∈ FA × FB

– (involved) solve a k-partition matching for FA and FB ,
and run a structural alignment on the resulting meta-clusters

. Filtering motifs:
I compute the Hasse diagram (for the inclusion) of the motifs found

NB: inclusion owes to the nested-ness of sublevel ets.
I retain the roots of the Hasse diagrams only.



Steps 2-3: illustration for 1SVB - 1URZ
. Step 2, Building the filtration and its persistence diagram (Align-Identity-CD)

. Step 3, Computing structural motifs with bootstrap: run a local alignment for
regions associated with connected components defined by critical values in the
persistence diagram
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