
For the memory of Dave Ritchie

al,m =

Z
r(θ, φ)ylm(θ, φ)dΩ

Z
ylm(θ, φ)yl0m0(θ, φ)dΩ = δmm0δll0

Sergei Grudinin

Surface Equations in 2D

Pa

r(θ, φ) =
15
∑

l=0

l
∑

m=−l

almylm(θ, φ)

Example: 2D radial functions (256 coefficients)

๏ Fits well for finding similarities between 2 surfaces

Ritchie & Kemp (1999) J Comp Chem 20 383–395

๏ Not suitable for docking!

Sergei Grudinin

ParaFit - High Throughput SH Surface & Property
Matching

Distance: D =

∫
(rA(θ, φ) − rB(θ, φ)′)2dΩ

Orthogonality: D = |a|2 + |b|2 − 2a.b′

Rotation: b′

lm =
∑
m′

R
(l)
mm′(α, β, γ)blm′

Hodgkin: S = 2a.b′/(|a|2 + |b|2)

Carbo: S = a.b′/(|a|.|b|)

Tanimoto: S = a.b′/(|a|2 + |b|2 − a.b′)

Multi-property: S = pSshape + qSMEP + rSIEL + sSEAL + tSαL

Sergei Grudinin

Drug screening applications

Gaussian Ensemble Screening

V. Perez-Nueno et al., (2012) J. Chem. Inf. Model.
52(8) 1948-1961

Shape-Based Virtual Screening

V. Perez-Nueno et al., (2008) J. Chem. Inf. Model.
48(3) 509-533

• Assembled 602 known actives against CXCR4 & CCR5

• Performed virtual screening against 4700 inactives

Sergei Grudinin

Shape Equations in 3D

GTO: shape Rnl(r) = N
(q)
nl e−ρ/2ρl/2L

(l+1/2)
n−l−1 (ρ);

Orthogonality:
∫

∞

0

Rnl(r)Rn′l(r)r2dr = δnn′

ρ = r2/q, q = 20

30

R15,0(r)

30

R20,0(r)

30

R25,0(r)

30

R30,0(r)

Ritchie & Kemp (2000) Proteins 39 178–194

Sergei Grudinin

3D Shape Reconstruction – CAPRI T21: Orc1/Sir1

Gaussian
surface

wdV
surface

DW Ritchie (2008) Curr. Prot. Pep. Sci. 9(1) 1-15

aσ

n,l,m =

Z
σ(r)Rnl(r)ylm(θ, φ)dV aτ

n,l,m =

Z
τ(r)Rnl(r)ylm(θ, φ)dV

=

X

nlm

a
σ

n,l,mb
τ

n,l,m + b
σ

n,l,ma
τ

n,l,m

=

X

nlm

a
τ

n,l,mb
τ

n,l,m

Sergei Grudinin

FFT-based Spherical Polar pair-wise docking

τ
σ(r)

(r)

densities:

favorable:

result:

non-favorable:

σ(r) =
N

∑

nlm

aσ
nlmRnl(r)ylm(θ, φ) τ (r) =

N
∑

nlm

aτ
nlmRnl(r)ylm(θ, φ)

ns

∫

(σA(rA)τB(rB) + τA(rA)σB(rB))dV

∫

τA(rA)τB(rB)dV

SAB =

∫

(σAτB + τAσB − QτAτB)dV Penalty Factor: Q = 11

expansion

coefficients:

Ritchie & Kemp (2000) Proteins 39 178–194

Sergei Grudinin

A(x)←→ B(x)

T̂ (x, y, z) R̂(α,β, γ)

A(r) ←→ T̂ (x, y, z)R̂(α,β, γ)B(r)

The aim is to find six parameters (x, y, z,α,β, γ)

such that the overlap integral, or the “docking score”

is maximisedS =

Z

A(r)∗
⇥

T̂ (x, y, z)R̂(α,β, γ)B(r)
⇤

dr

A(r) =
X

nlm

AnlmRnl(r)Ylm(θ,φ) B(r) =
X

nlm

BnlmRnl(r)Ylm(θ,φ)

R̂(α,β, γ)Bnlm =
X

m0

D
(l)
mm0(α,β, γ)Bnlm0rotation of coefficients :

translation of coefficients : T̂ (0, 0, z)Bnlm =
X

nlm

X

n0l0

T
(|m|)
nl,n0l0(z)Bn0l0m

"docking equation" –

translation operator – rotation operator –

D.W. Ritchie. J. Appl. Cryst. 2005

The rigid-body “docking equation”

Sergei Grudinin

The docking

1 translation and 5 rotations to adjust

discretised to enable exhaustive search

r ∈ [0 : 1 : 40 Å]
α ∈ [0 : 7.5 : 360o]
(β, γ) ∈ [0 : 7.5 : 180o]

R

about 109 conformations in ~ 1 min on a laptop

equivalent to a 1 μs MD simulation ~ days - months

Truncated expressions for f and g using Polar Fourier correlation

S(r,βA, γA,βB , γB ,αB) = DFT−1 [DFT(R(βA, γA) fA) .DFT(Tz(r)R(βB , γB)gB)]αB

S(r,βA,βB , γA, γB ,αB) = DFT−1 [DFT(R(βA) fA) .DFT(Tz(r)R(βB)gB)]γA,γB ,αB

S(r; βA, γA,αB ,βB , γB)RB “docking score” :

The exploration of the search space

D.W. Ritchie et al, Bioinformatics 2008

Sergei Grudinin

GPU Implementation – Perform Multiple FFTs

Calculate multiple 1D FFTs of the form:

SAB(αB) =
X

m

e
−imαB

X

nl

A
σ

nlm
(R,βA, γA)× B

τ

nlm
(βB , γB)

Cross-multiply transformed A with rotated B coefficients

Perform batch of 1D FFTs using cuFFT and save best orientations

3D FFTs in (αB ,βB, γB) can be calculated in a similar way...

D.W. Ritchie, V. Venkatraman (2010). Bioinformatics, 26, 2398-2405

๏ 1D FFT in α

๏ takes ~20 seconds on a laptop for Cn groups

S(ω;D;α,β, γ) =
X

nlmp

e�i(p�m)αd(l)mp(ω)A
0

nlpA
00⇤

nlm
maximizes the
“docking score”

T̂z(D)R̂(α,β, γ)A(r) ←→ R̂y(ω)T̂z(D)R̂(α,β, γ)A(r)

fixedfree	parameters free	parameters

Docking	:

C
3
 axis

y

x

z

A B

C

ω

D.W. Ritchie and S. Grudinin. J. Appl. Cryst. 2016

nd
n
o

by

C2 / 1m4g C3 / 1f8o / 1f8o C4 / 1f8o C5 / 1g / 1g8z

C11/ 1qaw D2 / 1x / 1xib D3 / 1gun D

D4 / 1b / 1b9l D5 / 1l6w D6 / 1znnD6 / 1znn D7 / 1yg6

r

four
,

D8 / 1q3r / 1q3r T / 1cc9c9 O / 1ies / 1ies I / 1hqI / 1hqk

F 3. Illustrations of the correctly predicted complexes. For

SAM – Symmetry Assembler

Sergei Grudinin

The future of FFT-based shape matching / docking
๏ New polynomial expansions and interconversions between them

๏ New stable relations for polynomials of very high order

๏ New spherical-Bessel-based bases sets for FFT-based docking

๏ FFT-based docking with evolution grids, new orientation-independent shape invariants, FFT-based

docking of flexible shapes, exhaustive FFT-based search of protein domains and many more!

Hn(ρ) = (−1)neρ
2 dn

dρn
e−ρ

2

Tnm(∆) = NnNmπ1/2e−∆2/4

min(n,m)
∑

k=0

(−1)m−k2kk!

(

n

k

)(

m

k

)

∆
n+m−2k.

(j1 −m1)(j2 +m2)G

✓

j1 j2 j3
m1 m2 m3

◆

=

⇥

j3(j3 + 1)− j2(j2 + 1)− j1(j1 + 1)− 2(m1 + 1)(m2 − 1)
⇤

G

✓

j1 j2 j3
m1 + 1 m2 − 1 m3

◆

− (j1 +m1 + 2)(j2 −m2 + 2)G

✓

j1 j2 j3
m1 + 2 m2 − 2 m3

◆

.

Ritchie, D., 2018. Whole Number Recursion Formulae for High Order Clebsch-Gordan Coupling Coefficients.

B
(n)
lm (r) =

r

2

π
βnjl(βnr)ylm(θ,φ),

Ritchie, D., 2019. High Angular Resolution FFT Protein Docking Using Spherical Wave Basis Functions.

Sergei Grudinin

In my mailbox I’ve found 1,840 e-mails sent to Dave…

Sergei Grudinin

Jan 23, 2012:

Hi Sergei,

I am trying to see how to exploit symmetry in FFTs etc. I think you know more about this that me?

I found this old paper by Lynn Ten Eyck. Is this something like what you already have? I am still trying to understand the basic concepts ("reciprocal space", "miller

indices", ...). I think I "understand" the low level steps, but I don't yet really "see" it all well enough to be able to use it properly.

Cheers,

Dave

Feb 15, 2012:

Hi Dave,

thank you! I switched to the proposed notation for spatial transform operators and everything is getting cleaner! Could you please look at the last "docking equation"

and say if can advance further?

Cheers,

sergei

On 10/25/2012 05:49 PM, Sergei Grudinin wrote:

Hi Dave,

I've looked into our symmetry equations. It's possible to express it as either 1D or 2D translational correlation. For rotational correlations, it's NOT possible to

choose the twist angle as the correlation coordinate. It can be separated in a combination with some other rotations, which do not lead to the Fourier correlation, I'll

write it in a more detail later. Hopefully, we will find a different generalised rotational coordinate.

Cheers,

Sergei

On Oct 26, 2012, at 9:32 PM, Dave Ritchie <Dave.Ritchie@inria.fr> wrote:

Hi Sergei,

OK, I am convinced. For Cn symmetry, to generate symmetry-related poses, a rotation must be applied to each monomer before a translation (as we had on the

white-board). I suppose it follows that this also applies to Dn. Furthermore, I believe we must apply a 3D rotation to each monomer before doing a translation (i.e. it

is not possible to "delay" applying one rotation). This leaves just one translational degree of freedom which must be applied last. In other words: I agree with you

that the only possible FFT dimension is perpendicular to the principal rotational symmetry axis of Cn or Dn.

But I think we can still do the whole calculation efficiently in a single basis (Hermite or Gauss-Laguerre). So this could still be our computational advantage and

"selling point".

I think the need to apply an explicit 3D rotation first will favour using the Gauss-Laguerre basis. But then the final translation is relatively expensive. So do we stay

mailto:Dave.Ritchie@inria.fr

Sergei Grudinin

On Nov 1, 2012, at 8:57 PM, Dave Ritchie <Dave.Ritchie@inria.fr> wrote:

Hi Sergei,

I think I have cracked it. I think I can expose a 3D rotational FFT with one z-translation. Or equally a series of 1D FFTs for better GPU performance.

I was making a few edits to your equations to try to follow the Euler convention more closely when it hit me. Your working on the last section reminded me of the

trick about factoring y-rotations in polar coordinates. And your final conclusion is correct. Basically, to go any further one has to write out our famous starting

equation (your equation 13 or similar) and then expand everything as complex exponentials and collect like terms. Apart from some basic "house-keeping", it

should be straight-forward. I will try to write it all out properly tomorrow.

Dave

On Dec 30, 2012, at 2:30 PM, Dave Ritchie <Dave.Ritchie@loria.fr> wrote:

Hi Sergei,

I have been doing some experiments to simulate the cost of FFT-based symmetry docking. Even the fastest method will take several CPU-hours per symmetry

type. So basically, I do not think that symmetry-constrained FFTs will be feasible. On the other hand, I think it will be very straight-forward to do unconstrained

FFT docking using Hex (or any other program for that matter), and then applying a symmetry filter to the solutions.

Please see sections 5.2, 5.5, and especially 5.6, and let me know what you think?

Cheers,

Dave

On 02/01/13 10:05, Dave Ritchie wrote:

Hi Sergei,

That looks great! You have cracked it!

Doing the explicit translation of coefficients is much faster than the reduced translation/overlap matrix. My old machine can do about 60 translations/second/cpu. So

now we should be looking at a matter of minutes for the whole FFT calculation!

Cheers

Dave

mailto:Dave.Ritchie@inria.fr
mailto:Dave.Ritchie@loria.fr

Sergei Grudinin

On Jan 2, 2013, at 5:04 PM, Dave Ritchie <Dave.Ritchie@loria.fr> wrote:

Hi Sergei,

Sorry, I am starting to have a doubt.

When we did the original factorisation with beta1 and beta2, there was no requirement that the initial translation was along the z axis, even though we set it up that

way.

The factorisation started from

T(x,y,z)^{-1}.Ry(omega).T(x,y,z) = R2.Tz(D).R1

The next argument was that because we are in the xz plane, this can be reduced to

T(0,0,z)^{-1}.Ry(omega).T(0,0,z) = Ry(beta2).Tz(D).Ry(beta1).

Now, since we are still working in the xz plane, my doubt is whether it is really possible to solve for x and z which can give

T(x,0,z)^{-1}.Ry(omega).T(x,0,z) = Ry(omega).Tz(D).Ry(0).

...loosely speaking, we add one degree of freedom, and expect it to satisfy two criteria (i.e. beta2=omega and beta1=0).

I tried writing out the simultanous equations, but I cannot get a solution.

What do you think? If we are to use the "new alpha" method, we have to be able place the FFT solutions back in the global coordinate system - i.e. we have to be

able to solve for x, and z above?

Cheers,

Dave

mailto:Dave.Ritchie@loria.fr

Sergei Grudinin

On Jan 2, 2013, at 8:02 PM, Dave Ritchie <Dave.Ritchie@loria.fr> wrote:

Hi Sergei,

Please forget my previous e-mail. It proves nothing!

On the other hand, I still think the new alpha method is good. Here is a much simpler development. We start from:

Ry(omega).Tz(delta).R(alpha,beta,gamma).B <-> Tz(delta).R(alpha,beta,gamma).A

Pull the alpha rotations to the left because they commute with Tz

Ry(omega).Rz(alpha).Tz(delta).R(0,beta,gamma).B <-> Rz(alpha).Tz(delta).R(0,beta,gamma).A

Multiply both sides by Rz(alpha)^{-1}

Rz(alpha)^{-1}.Ry(omega).Rz(alpha).Tz(delta).R(0,beta,gamma).B <-> Rz(alpha).Tz(delta).R(0,beta,gamma).A

Substitute for rotated/translated A and B (which are of course equal)

Rz(alpha)^{-1}.Ry(omega).Rz(alpha).Tz(delta).B' <-> Tz(delta).A'

Proceed with new alpha route.... :-)

Dave

mailto:Dave.Ritchie@loria.fr

Sergei Grudinin

Hi Dave,

I've shot a trimer :) Top view (viewer 1, CCW):

Bottom view (viewer 2, CW):

Now, if I apply a \pi alpha rotation I obtain the opposite arrangement (but the same trimer!). Attention, my rotation axis connects the geometrical centre with the

centre of the first monomer!:

Top view (viewer 1, CW):

Bottom view (viewer 2, CCW):

The relative trimer's arrangement is the same after changing the alpha angle by \pi. Do I miss something?

Sergei

Sergei Grudinin

Hi Dave,

Hi Sergei,

Nice pictures! But I can see that you only took two photos to save time! ;-)

The pictures from the bottom were of a very bad quality, but I did them too!

In picture #1, the cable of the top mouse goes to the top left corner. If you rotate the mouse by pi about its axis, the cable will still go to the top left but you will seem

the underside of the mouse.

OK, now I see why we don't agree! The last rotation by \alpha is about the z-axis (according to figure 3, below)

, which is perpendicular to the cable and connects the mouse' centre with the origin. So, if I apply the rotation, the cable will go to the opposite direction!

Sergei Grudinin

FFT-free shape matching

A.W. Ghoorah et al. Bioinformatics, 27:20,

2820-2827 (2011)

Problem Similar cases

Suggested solutions

Case-base

retrieve

reuse
and

adapt

Ranked solutions

refine and rank

๏ Case-based reasoning for 3D protein complexes

D.W. Ritchie, Bioinformatics, 32:17, 2650–2658 (2016)

D.W. Ritchie et al., Bioinformatics, 28:24, 3274–3281 (2012)

๏ A fast protein structure alignment and database

search program

๏ Extended to flexible structure alignments, and

multiple structure alignments

EROS-DOCK : protein–protein docking using exhaustive branch-and-bound rotational search

Maria Elisa Ruiz Echartea et al, Bioinformatics, 2019, btz434, https://doi.org/10.1093/bioinformatics/btz434

https://doi.org/10.1093/bioinformatics/btz434

