
Combinatorial Optimization in Bioinfo
Lecture 6 – Comparative genomics

Yann Ponty

AMIBio Team
CNRS & École Polytechnique



The tree of life 2/24

Cool story bro. What next?



Comparative genomics: Rationale and objectives 3/24

Comparative genomics studies (epi)genomics features of current (extant)
species, to gain insight into their evolution and ancestral traits.

Some examples:
I Accurate inter-species distances by integrating genome-scale

organization (genome rearrangements);
I Inference of ancestral features (genomic adjacencies);
I Reconciliations of species and gene trees. . .

Parsimony as a common framework (but not exclusively!)



Genomic rearrangments: Motivation 4/24

At genomic scale + longer periods of time, classic sequence homology
becomes insufficient to infer elapsed time and precise correspondences.

[Pevzner and Tesler, Genome Research 2003]

How many inversions required to turn a Mouse into a Human?
How many inversions required to sort a signed permutation by reversals?



Sorting signed permutations by reversals 5/24

SORTING BY REVERSALS problem
Input: Signed permutation π
Output: Shortest sequence of reversals turning π into 1, 2, 3 · · · |π|

Surprisingly, can be solved in polynomial-time [Hannenhalli–Pevzner, JACM 1999]
Distance can even be obtained in linear time! [Baden-Moret-Yan, JCB 2004]
At the origin of multiple works on sorting (structured/signed) permutations.

A simple(?) algorithm: [Hannenhalli–Pevzner 1999] + [Bergeron 2005]

1 Mixed sign (+/-) π → Greedy reversals inducing max. #oriented pairs
2 Positive sign π → Elimination (cut/merge→ reversals) of hurdle(s)

More details to come (lab assignment)



Beyond (simple?) reversals 6/24

I Fancy operations:
I Translocations: Exchange ends of chromosomes → Linear time
I Transpositions: Exchange two consecutive sequences of genes → NP-hard
I Double Cut and Join. . .

I Gain/loss of genetic material/syntenic blocks
→ Handle multiple copies of genes

I Extension to unsigned permutations→ NP-hard.

Strong connection to graph theory and (enumerative) combinatorics
→ Very clever/elegant, but headache to extrapolate!



Inferring ancestral characters 7/24

A B

A B

C

Goal: To infer features of ancestral genomes
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Parsimony-driven inference of ancestral traits 8/24

A B C D E F

?

?

?

?

?

Phylogenetic tree T = (V ,E) + Present/Absent traits for extant species
What are the most likely features of ancestral species?

Parsimony: Find ancestors labeling ξ : V → {P,A} minimizing total change:

f (ξ) =
∑

(u,v)∈T

d(ξ(u), ξ(v))

Example: Min. #event→ d(ξ(u), ξ(v)) = 1 if ξ(u) 6= ξ(v); 0 otherwise
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Inferring traits of ancestral species 9/24

A labeling ξ is said to extend ξ′ iff their labels coincide on extant species

PARSIMONY LABELING problem
Input: Species tree T ; Labeling ξ′ : V → {P,A} of extant species
Output: Complete labeling ξ? extending ξ′ which minimizes total change

ξ? = argmin
ξ ext. ξ′

∑
(u,v)∈T

d(ξ(u), ξ(v))

Solved by dynamic programming (hey, it’s been a while!) [Sankoff/Rousseau 1975]
based on a hypothetical game, played at any ancestral/internal node u:
I What if ancestral node u had a given label x ∈ {P,A}?
I Then min change from u with ξ(u) = x is obtained by minimizing over

possible labels y , y ′ for children v , v ′ of u, and summing:
I Direct contribution to change: d(x , y) + d(x , y ′)
I Min change of a labeling of subtrees v , v ′, independent of (u, x) (rec.)

→ f ?x (u)
u ancestral

=
∑

uv∈T

min
y∈{P,A}

d(x , y) + f ?y (v) f ?x (u)
u extant/leaf

=

{
0 if x = ξ′(u)

+∞ otherwise
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Parsimony inference of ancestral traits 11/24

A B C D E F

Sankoff/Rousseau parsimony represents a very general framework, which
can be used to infer:
I presence/absence of regulatory motifs
I ancestral sequences
I ancestral structures (Sankoff algo. for RNA comparative folding)
I ancestral genome architectures (adjacencies, gene loss/gain)
I ancestral allele frequencies (∞ #labels→ restriction on d)



Species trees vs Gene trees 12/24

Much can be learned from apparent contradictions. . .

A B

Extent species

Species tree

A1 B1 A2 B2A3 B3 A4 B4

Gene trees

How best to explain those topological discrepancies?

and learn something along the way



Gene/Species Trees Reconciliation 13/24

A1 LB LA B1 A2 B2

C1 C2 C3

C4

C5

Gene
DuplicationsGene

Losses

A1 LB LA LB LA B1 A2 B2

C’1 C’2 C’3 C’4

C’5 C’6

C’7

Ancestral events (duplication/losses/. . . ) induce apparent inconsistencies

Reconciliations represent evolutionary scenario that explain gene trees by
embedding them within species trees but some more reasonable than others

Goal: Find parsimonious reconciliation
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Parsimonious DL reconciliations 14/24

Duplication/Loss reconciliation: Binary tree R such that :
I leaf labeled with extant gene or Loss operation;
I internal node labeled with Dup or Spec event

All nodes are mapped through σ to a species
R congruent with gene tree G if removing
Loss from R + contract 1ary branches→ G

R congruent with species tree S if:
I For each Spec node u → v ,w in R, we

have σu → σv , σw in S
I For each Dup node u → v ,w in R, we

have σu = σv = σw

A1 LB LA LB LA B1 A2 B2

C’1 C’2 C’3 C’4

C’5 C’6

C’7

DL RECONCILIATION problem
Input: Gene tree G, Species tree S
Output: Reconciliation R congruent to both G and S, minimizing cost

Cost(R) = α×#Loss(R) + β ×#Dup(R)

Can be solved efficiently using LCA mapping. . . [Page, Syst. Biol. 1994]
. . . or using dynamic programming in O(|S| × |G|) time/space



Parsimonious DL reconciliations 15/24

DL RECONCILIATION problem
Input: Gene tree G, Species tree S
Output: Reconciliation R, congruent to G and S, minimizing cost

Cost(R) = α×#Loss(R) + β ×#Dup(R)

Notations:
C[g, s] Best cost of reconciliation for node/subtrees g v G and s v S

Lu,Ru Left/right child of node u

σ(u) Species of a leaf u within gene tree (or species tree. . . duh!)

C[g, s]
g,s leaves

=

{
0 if σ(g) = σ(s)

+∞ otherwise
C[g, s]

g leaf,s internal
= +∞

C[g, s] =



β + C[Lg , s] + C[Rg , s] Ancestor gene g duplicated in species s

C[Lg , Ls] + C[Rg ,Rs] Speciation event, direct mapping

C[Lg ,Rs] + C[Rg , Ls] Speciation event, crossed mapping

α + C[g, Ls] Loss of gene subtree g in right part of species tree

α + C[g,Rs] Loss of gene subtree g in left part of species tree



DeCo : Parsimoniously inferring ancestral adjacencies 16/24

I Efficient algorithms exist for parsimonious scenarios for genomic
characters (genes under DTL, for instance).

I Bérard et al (2012) extended methods to gene adjacencies under gene
Speciation, Duplication, Loss.

I DeCo considers cost of gains/ breaks due to rearrangements.

Problem: Given two reconciliations (R1,R2) + extant adjacencies, construct
parsimonious evolutionary scenario

A B

C

A1 LB LA B1 A2 B2

S

C1 C2 C3

C4

C5

A3 B3 A4 B4

G1

C6 C7

C8

G2

+ Adj. {A1A2,B1B3,B2B4}



Ancestral adjacency events 17/24

Output: Adjacency forest

A1A3 A2A4 B2B4

C1C6 C3C7

C4C7

C5C8

B1B3

A

→ Ancestral genome architecture

Event costs/parameters
I Adjacency gain: x
I Adjacency break: y

A1A3 A2A4 B2B4

C1C6 C3C7

C4C7

C5C8

A

x
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Output: Adjacency forest

A1A3 A2A4 B2B4

C1C6 C3C7

C4C7

C5C8

B1B3

A

→ Ancestral genome architecture

Event costs/parameters
I Adjacency gain: x
I Adjacency break: y

A1A3 A2A4 B2B4

C1C6 C3C7

C4C7

C5C8

A

y



Deco Dynamic Programming Scheme 18/24

Deco algorithm [Berard et al, 2012]
Dyn. prog. scheme for most parsimonious adjacency forest in O(|R1||R2|).



Deco Dynamic Programming Scheme 19/24

.

.

.
7. If e(g1) = Spec and e(g2) = Spec:

c1(g1, g2) = min



c1(a(g1), b(g2))+c1(b(g1), a(g2)), c1(a(g1), b(g2))+c0(b(g1), a(g2))+ABreak,
c0(a(g1), b(g2))+c1(b(g1), a(g2))+ABreak,
c0(a(g1), b(g2))+c0(b(g1), a(g2))+2ABreak,
c1(a(g1), a(g2))+c1(b(g1), b(g2)), c1(a(g1), a(g2))+c0(b(g1), b(g2))+ABreak,
c0(a(g1), a(g2))+c1(b(g1), b(g2))+ABreak, c0(a(g1), a(g2))+c0(b(g1), b(g2))+2ABreak

c0(g1, g2) = min


c0(a(g1), b(g2))+c0(b(g1), a(g2)), c1(a(g1), b(g2))+c0(b(g1), a(g2))+AGain,
c0(a(g1), b(g2))+c1(b(g1), a(g2))+AGain, c1(a(g1), b(g2))+c1(b(g1), a(g2))+2AGain,
c0(a(g1), a(g2))+c0(b(g1), b(g2)), c1(a(g1), a(g2))+c0(b(g1), b(g2))+AGain,
c0(a(g1), a(g2))+c1(b(g1), b(g2))+AGain, c1(a(g1), a(g2))+c1(b(g1), b(g2))+2AGain

8. If e(g1) = GDup and e(g2) = GDup:
.
.
.

Deco algorithm [Berard et al, 2012]
Dyn. prog. scheme for most parsimonious adjacency forest in O(|R1| × |R2|)

Intuition: Jointly explores both reconciliations in all possible ways, to account
for adjacency breaks/gains.



Overall 20/24

Comparative genomics is a vibrant field with strong 2-ways links with
I Phylogenetics, (Epi)genomics, Paleogenomics, Proteomics, Structural

biology, Systems Biology . . .
I . . . but also string processing, enumerative combinatorics, discrete

algorithms , discrete maths . . .

It predicts the past, but also informs studies of the unobservable present

Some ± current directions:
I Beyond parsimony, Bayesian approaches (likelihood maximization)
→ Mainly based on sampling (ABC), but also more direct opt. (DP)

I Distinguishing between erroneous and informative incongruences
I Expressive models for reconciliations: Horizontal gene transfers,

polytomies. . .
I Integrating multiple steps of analyses into joint optimizations

e.g. comparative genome scaffolding
I Advanced algorithms: FPT algo/kernels, guaranteed approximations,

exp. time (small exponents), ILP. . . . . . for all of the above (+ML)



Onwards to our (final) lab assignment 1/4 21/24

Goal: Implement sorting by reversal for signed permutations [Bergeron 2006]
w.l.o.g. assume that input permutation π flanked by 0 and n+1

0 3 –4 1 2 5Input:

0 –3 –4 1 2 5

0 –3 2 –1 4 5

0 1 2 3 4 5Output:

Some definitions:
I Oriented pair: Two pos. (i, j) with consecutive values of opposite signs

0 3 1 6 5 –2 4 7

Reversal of oriented pairs (i, j):
· · · πi πi+1 · · · πj−1 πj · · ·πi + πj = +1→

· · · –πj−1 –πj−2 · · · –πi πj · · ·

· · · πi πi+1 · · · πj−1 πj · · ·πi + πj = −1→

· · · πi –πj · · · –πi+2 –πi+1 · · ·



Onwards to our (final) lab assignment 2/4 22/24

Goal: Implement sorting by reversal for signed permutations [Bergeron 2006]
w.l.o.g. assume that permutations flanked by 0 and n+1

Definitions for positive permutations:
I Framed interval: Interval [i, j] in π of the form

πi πi+1 πi+2 · · ·πj with πj = πi + (j − i) and πi < πk < πj , ∀i < k < j

or equivalently region [i, j] contains a permutation of [πi , πj ]

But. . . one needs to consider circular ordering of values

0 2 5 4 3 6 1 7

Framed intervals: [1, 8], [2, 6], [6, 2̄]

I Hurdles: Minimal framed intervals w.r.t. inclusion

0 2 5 4 3 6 1 7

Hurdles: [2, 6], [6, 2̄]



Onwards to our (final) lab assignment 3/4 23/24

Goal: Implement sorting by reversal for signed permutations [Bergeron 2006]
w.l.o.g. assume that permutations flanked by 0 and n+1

Definitions for positive permutations:
I Splitting a hurdle [i, j]: Look for position k such that πk = πi + 1, and

reverse interval [i + 1, k − 1]

0 2 4 3 1 5Input:

Single hurdle: [1, 6]

0 2 4 3 1 5

0 –3 –4 –2 1 5Output:

I Merging two hurdles [i, j] and [k , l], j ≤ k : Reverse interval [j, k ]

0 2 5 4 3 6 1 7

Hurdles: [2, 6], [6, 2̄]→ Reversal of [6, 6]

0 2 5 4 3 6 1 7

0 2 5 4 3 –6 1 7



Onwards to our (final) lab assignment 3/4 24/24

Goal: Implement sorting by reversal for signed permutations [Bergeron 2006]

Final algo. While π not sorted:

I If π negative:
I Identify Oriented Pair (OP) (i, j) that creates max #OPs
I Reverse OP (i, j)
I Iterate until permutation π becomes positive

I If π positive, consider hurdles H of π:
I H = {(i, j)}

→ split (i, j)
I H = {(i, j), (k , l)}

→ merge (i, j)
I |H| > 2, |H| even

→ Merge two non-consecutive hurdles
I |H| > 2, |H| odd

Simple hurdle h?: Cutting h? + reversal of OPs decreases #hurdles

If H contains simple hurdle h?
→ Cut h?

Otherwise
→ Merge two non-consecutive hurdles (or consecutive ones if |H| = 3)


