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The tree of life 2/24

Cool story bro. What next?



Comparative genomics: Rationale and objectives

Comparative genomics studies (epi)genomics features of current (extant)
species, to gain insight into their evolution and ancestral traits.

Some examples:

» Accurate inter-species distances by integrating genome-scale
organization (genome rearrangements);

» Inference of ancestral features (genomic adjacencies);
» Reconciliations of species and gene trees. ..

Parsimony as a common framework (but not exclusively!)



Genomic rearrangments: Motivation

At genomic scale + longer periods of time, classic sequence homology
becomes insufficient to infer elapsed time and precise correspondences.
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[Pevzner and Tesler, Genome Research 2003]

How many inversions required to turn a Mouse into a Human?
sort a signed permutation by reversals?



Sorting signed permutations by reversals

SORTING BY REVERSALS problem
Input: Signed permutation =
Output: Shortest sequence of reversals turning 7 into 1,2,3- - - |7|

Surprisingly, can be solved in polynomial-time [Hannenhalli-Pevzner, JACM 1999]
Distance can even be obtained in linear time! [Baden-Moret-Yan, JCB 2004]
At the origin of multiple works on sorting (structured/signed) permutations.

A simple(?) algorithm: [Hannenhalli-Pevzner 1999] + [Bergeron 2005]
@ Mixed sign (+/-) # — Greedy reversals inducing max. #oriented pairs
© Positive sign m — Elimination (cut/merge — reversals) of hurdle(s)

More details to come (lab assignment)



Beyond (simple?) reversals 6/24

Chromosome Abnormalities NHGRI FACT SHEETS

genome.gov
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» Fancy operations:
» Translocations: Exchange ends of chromosomes — Linear time
» Transpositions: Exchange two consecutive sequences of genes — NP-hard
» Double Cut and Join. ..
» Gain/loss of genetic material/syntenic blocks
— Handle multiple copies of genes

» Extension to unsigned permutations — NP-hard.

Strong connection to graph theory and (enumerative) combinatorics
— Very clever/elegant, but headache to extrapolate!



Inferring ancestral characters
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Goal: To infer features of ancestral genomes



Inferring ancestral characters

Goal: To infer features of ancestral genomes



Parsimony-driven inference of ancestral traits

A e M ot [ Y

Phylogenetic tree T = (V, E) + Present/Absent traits for extant species
What are the most likely features of ancestral species?

Parsimony: Find ancestors labeling ¢ : V — {P, A} minimizing total change:

()= > dEw),Ewv)

(u,v)eT

Example: Min. #event — d(&(u), &(v)) = 1if (u) # £(v); O otherwise
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A labeling ¢ is said to extend ¢’ iff their labels coincide on extant species

PARSIMONY LABELING problem
Input: Species tree T; Labeling ¢' : V — {P, A} of extant species
Output: Complete labeling £* extending £’ which minimizes total change

¢ =argmin Y d(&(u),€(v))

fext. &’ (u,v)eT

Solved by dynamic programming (hey, it's been a while!) [Sankoff/Rousseau 1975]
based on a hypothetical game, played at any ancestral/internal node u:
» What if ancestral node u had a given label x € {P,A}?
» Then min change from u with £(u) = x is obtained by minimizing over
possible labels y, y’ for children v, v’ of u, and summing:

> Direct contribution to change: d(x, y) + d(x, y’)
> Min change of a labeling of subtrees v, v/, independent of (u, x) (rec.)

- ) = eTg?A}d(x,y)+f;(V) £ (u) :{0 if x = ¢/ ()

uancestral = u extant/leaf +oo otherwise



Parsimony-driven inference of ancestral traits

fre =

Toy model: Min. #event — d(&(u),&(v)) = 1if £(u) # £(v); 0 otherwise

fi(u) = min}d(x,y)+f;(v) fr(u) = {0 if x = ¢&'(u)

uancestral = YEIPA u extant/leaf +oo otherwise
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fre =3
fre =2

fre =

Toy model: Min. #event — d(&(u),&(v)) = 1if £(u) # £(v); 0 otherwise

fi(u) = min}d(x,y)+f;(v) fr(u) = {0 if x = ¢&'(u)

uancestral T ye{P.A u extant/leaf +oo otherwise



Parsimony inference of ancestral traits

A ) c D 3 F
Sankoff/Rousseau parsimony represents a very general framework, which
can be used to infer:

» presence/absence of regulatory motifs

> ancestral sequences

» ancestral structures (Sankoff algo. for RNA comparative folding)
» ancestral genome architectures (adjacencies, gene loss/gain)
» ancestral allele frequencies (oo #labels — restriction on d)



Species trees vs Gene trees

Much can be learned from apparent contradictions. ..

A, B, A, B,
Y & ol O
Extent species ‘é y (é .g' (ﬁ .g' (é y

Species tree Gene trees

How best to explain those topological discrepancies?
and learn something along the way



Gene/Species Trees Reconciliation

Gene
Gene Duplications

Ay Ly La By Ay By

FLdtiedl

Ancestral events (duplication/losses/. . .) induce apparent inconsistencies

Reconciliations represent evolutionary scenario that explain gene trees by
embedding them within species trees but some more reasonable than others

Goal: Find parsimonious reconciliation



Gene/Species Trees Reconciliation

Gene
Gene Duplications

A, Ly Ly, B, A, B, A Lg Ly Ly Ly By Ay By

G @EP&EY FYPHeHdl

Ancestral events (duplication/losses/. . .) induce apparent inconsistencies

Reconciliations represent evolutionary scenario that explain gene trees by
embedding them within species trees but some more reasonable than others

Goal: Find parsimonious reconciliation



Parsimonious DL reconciliations 14/24

Duplication/Loss reconciliation: Binary tree R such that :
> |eaf labeled with extant gene or Loss operation;
» internal node labeled with Dup or Spec event
All nodes are mapped through o to a species
R congruent with gene tree G if removing
Loss from R + contract 127 branches — G
R congruent with species tree S if:

» For each Spec node u — v, win R, we
have oy — oy,0n in S

Ay Ly Ly Ly Ly By Ay By
» For each Dup node u — v, win R, we 5 101000 0 0
have oy = ov = ow @'b@'bt@@d@@-

DL RECONCILIATION problem
Input: Gene tree G, Species tree S
Output: Reconciliation R congruent to both G and S, minimizing cost

Cost(R) = a x #Loss(R) + 8 x #Dup(R)

Can be solved efficiently using LCA mapping. .. [Page, Syst. Biol. 1994]
...orusing dynamic programming in O(|S| x |G|) time/space



Parsimonious DL reconciliations

DL RECONCILIATION problem
Input: Gene tree G, Species tree S
Output: Reconciliation R, congruent to G and S, minimizing cost

Cost(R) = a x #Loss(R) + 8 x #Dup(R)

Notations:
Clg, s] Best cost of reconciliation for node/subtrees gC_ GandsC S
Ly, Ry Left/right child of node u
o(u) Species of a leaf u within gene tree  (or species tree. ..duh!)

it _
Clg.sj =10  T@=7) g i
g,s leaves 400 otherwise g leaf,s internal

B+ C[Lg, s] + C[Ry,S] Ancestor gene g duplicated in species s
C[Lg,Ls] + C[Rg,Rs]  Speciation event, direct mapping

Clg, s] = ¢ C[Lg, Rs] + C[Ry, Ls] Speciation event, crossed mapping
o+ C[g, Ls] Loss of gene subtree g in right part of species tree
a+ Clg, Rs] Loss of gene subtree g in left part of species tree



DeCo : Parsimoniously inferring ancestral adjacencies

» Efficient algorithms exist for parsimonious scenarios for genomic
characters (genes under DTL, for instance).

» Bérard et al (2012) extended methods to gene adjacencies under gene
Speciation, Duplication, Loss.

» DeCo considers cost of gains/ breaks due to rearrangements.

Problem: Given two reconciliations (Rs, R.) + extant adjacencies, construct

parsimonious evolutionary scenario

Cs
Cy Cs

C C (&) & Cs C;
A +Adj. {A1A2,B1B3,B2Bs}
A B A; Lg Ly By Ay B As; B3 Ay By

S G, G,



Ancestral adjacency events

Output: Adjacency forest

CsCg

C4C7

CCq C3Cy
— Ancestral genome architecture
[ )

AjA3 A)Ay BBy B|B;

A

Cs5Cg
C4Cy
o
Event costs/parameters
C1Cs C3Cr

» Adjacency gain: x
» Adjacency break: y /

AqA3 AAs BBy



Ancestral adjacency events

Output: Adjacency forest

CsCg
C4C7
CCq C3Cy
— Ancestral genome architecture
[ )
AjA3 A)Ay BBy B|B;
A
CsCs
C4Cy
Event costs/parameters
C1CG C3C7

» Adjacency gain: x ’y/
» Adjacency break: y /

A4A3 AsA4 BoBy



Deco Dynamic Programming Scheme

e(g1) = Extant and e(g2) = Extant:

e (1,92) 0 if grga is an adjacency
0 otherwise
colgn.g2) {“ if g1 gz is not an adjacency 8. ¢(g1) = GDup and e(g2) = GDup:
0 otherwise cilag, ,g2) + colbg,, g2). colag, ,92) + c1(bg, , g2).
2. e(g1) = Gloss and e(gz) € {Extant, Spec, GDup}: c1(ag, . g2) + c1(bgy. 92) + 7, colag,.g2) +eolbgy.g2) + v,
e1(g1,92) = calgy, g2) = 0#NnGPuR(az) ‘lf.‘!lv“vz% +ru:y| ;‘uz; fufyhﬂuiﬁ%lfyl ;m;
4 . c1(g1.ags) +c1(g1.bgs) £, colgn, ass) +co(gr,boa) + v,
3 elg) € {Extant, Spec, GDup} and (g2) = Gloss: e1ag1103) + 1(bg1 1 bgs} + colar ,bos) + colban, s2),
c1(91.92) = ca(g1, g2) = 0FNenCOuRs c1(agy,ags) +c1(bor bao} + colag ,bos) + e (bay  aga) + 7,
4. e(g1) = Gloss and e(gz) = GLoss: c1(agy,agy) + c1(byy bgy) +c1lagy bgy) + colbgy agy) + 7,
c1(g1,92) = calg1,92) = 0 c1(agy,agy) +c1(byy by )+ c1lag, bgy) + c1(bgy, ag,) + 22,
5. e(g1) € {Extant, Spec} and e(g2) = GDup: c1(agy s @gy) + co(Bgy s baa ) + coltgy 1 boa) + co(bgys ags) + s
er(agy,ag;) +eo(Bgy  bgy) + colag, bgy) + e1(bgy s agy) + 2+,
er(o0) "“"{n(g,.bmmmu@) eo(ar: boa) +e1(g1,a02), 2] = iy e b+ cx (e boe) + (b ) + 2411
c1(g1.baz) + e1(91.a92) + 2, co(g1, baz) + eolgr,a02) + colag, s agy) + c1(Bgy bas) + colag, 1 bga) + co(bgy, ags) + v,
colg1,g2) = min { 0191:baz) + olgr.29,), co(g, bgy) +e1(g1,ag,) + colagy;@gy) +1(byy bgy) + calag, bgy) + c1(bgy, agy) + 2+,
c1(g1,bgy) + co(91,ag,) + 3, n(g:-bqghu(y;.mgnu colaagy . @gy) + 1By by ) + 01 (agy by + co(bgys agy) + 7 +u,
(g, 8g3) + €0(Byy 1 bz) + €1 (g, bgg) + €1 (b, ag;)
6. e(g1) = GDup and e(gz) € {Extant, Spec} colag,, ag, 015 baz a1+ba as g
colagy @)+ c1(byy bas ) + c1(ag, bos) + c1(bgy, ag,) + 2,
(91,9 m,..{“ 15 92)*‘%« o), eolas,g H“ﬁi“ 92), C1(agy sga) + coBgy ban) + c1(agy - bgy) + €1 (bgy  agg) + 2
(ag,,92) +er(bgy g2) +. colagy,g2) + colbyy, 92) + colagy sgy) + colbey baa) + c1lagy s bgy) + colbay s ags) + 9
eo(o1,02) = min | 000920 F colbar 02).co(gy,0) F 1 (b 02) + colags s @g3) + colbun by )+ colagy bo) + 1 (b agy) + y,
eilag, . g2) + colba,, g2) + ei(ag, . g2) + o1 (ba, _:h)uz colag, @) + co(Dgy ,bas ) + colag,  bga) + co by, ag,) + 2y,
. colag,,92) + co(bg, g2) colag, ,g2) +e1(bgy g2) + 2,
7. e(g1) = Spec and (. Spec: ol o " n
)= 92) = 5 e1(agy,92) +colbg, 92) + 2, crlag,,92) +e1(byy, g2) + 22,
e1(ags,boz) + 1 (bosaga) +0, e (agy, baz) + colbgs ,ag) + y+0. co(g1,92) = min b
K ) . ; : calan, agy) +co(gnbga). o) +erlonboy) + 7,
c1(g1,92) = min § €001 boz) +er(bon, doa) +y 0, colam baa) + colbor, a02) +2y + 0, 101, 002) + co(90,b0,) + 7, ca(g1,055) + 1(01,bg,) + 22
e1(agy;agy) + e1(bgy bgy ) + 0, c1(agy; agy) + co(bgys bga) + 3+ 0.
colag,,ag) +e1(bgy,boy) +y+0,  colag,, ag,) + colby,, bya) +2y +0
colags,bea) + colbgy ags) +0, (,[u.“ bya) + colber, aga) +z + 0,
colgn,9: min colagy,baa) + c1(bgy,agy) +x+0,  c1(ag, bgs) + c1(bgy, ags) + 22 + 0,
eoagy,ags) +eolbyy, byy ) +0, c1(agy, ag;) + co(bgy  byy) + +0,
colagy agy) +€1(bgy by ) +T+0,  c1(agy, agy) + c1(bgy s bgy) + 22 + 0,

Deco algorithm [Berard et al, 2012]
Dyn. prog. scheme for most parsimonious adjacency forest in O(|R; || Rz|).
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7.1 e(gq) = Spec and e(go) = Spec:

cq(a(gq), b(g))+cq(b(g1), algz)), c1(algq), b(ga))+cq(b(gy), a(gp))+ABreak,
co(a(g1), b(go))+¢1(b(g1), algp))+ABreak,

c1(91, g2) = min § cp(a(gq), b(g2))+¢o(b(gy), algp))+2ABreak,
cq(algq), a(g2))+c1(b(91), b(g2)), ¢ (a(91), alga))+¢co(b(g1), b(go))+ABreak,
co(algy), a(ga))+cq(b(gy), b(go))+ABreak, co(a(gq), algz))+Cq(b(gq). b(g2))+2ABreak
co(algy), b(g2))+co(b(gq), algz)), ¢q(algq), b(g2))+Co(b(gy). alg))+AGain,
co(algy), b(go))+cq(b(g1), a(gn))+AGain, cq(a(gy), b(go))+¢1(b(gq), a(go))+2AGain,

(01,92 = MY ¢ (algr). alg,)+en(bl01). blg)). 1 (a(g1). algp))+6o (blgy ). b(gp))-+AGain.

co(algq), a(g2))+c1(b(g1), b(gn))+AGain, c1(algy), a(go))+c1(b(g1), b(g2))+2AGain
8. 1f e(gq) = GDup and e(gp) = GDup:

Deco algorithm [Berard et al, 2012]
Dyn. prog. scheme for most parsimonious adjacency forest in O(|Ri| x |Rz|)

Intuition: Jointly explores both reconciliations in all possible ways, to account
for adjacency breaks/gains.
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Comparative genomics is a vibrant field with strong 2-ways links with

» Phylogenetics, (Epi)genomics, Paleogenomics, Proteomics, Structural
biology, Systems Biology ...

» ...but also string processing, enumerative combinatorics, discrete
algorithms , discrete maths ...

It predicts the past, but also informs studies of the unobservable present

Some = current directions:

» Beyond parsimony, Bayesian approaches (likelihood maximization)
— Mainly based on sampling (ABC), but also more direct opt. (DP)

» Distinguishing between erroneous and informative incongruences

» Expressive models for reconciliations: Horizontal gene transfers,
polytomies. ..

» Integrating multiple steps of analyses into joint optimizations
e.g. comparative genome scaffolding

» Advanced algorithms: FPT algo/kernels, guaranteed approximations,
exp. time (small exponents), ILP... ... for all of the above (+ML)
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Goal: Implement sorting by reversal for signed permutations [Bergeron 2006]
w.l.0.g. assume that input permutation = flanked by 0 and n+1

lnput: 0 3 —4 1 2 5
>
0 -3 4 1 2 5
+—
0 -3 2 -1 4 5
Output: 0 1 2 3 4 5

Some definitions:
» Oriented pair: Two pos. (/,) with consecutive values of opposite signs

Reversal of oriented pairs (/, j):
mitm=4+1= - W Wi e T T
-1 -2 .- —j Ty
7T,'+7Tj:71 — v ‘7ri+1 Tj—1 i

< >

Ti —Tj cee T2 T
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Goal: Implement sorting by reversal for signed permutations [Bergeron 2006]
w.l.0.g. assume that permutations flanked by 0 and n+1

Definitions for positive permutations:
» Framed interval: Interval [/, ] in 7 of the form

T i TI','+2"'7T]'Withﬂ'j:ﬂ',‘+(jfl') and m; < 7k <7Tj,Vi<k<j

or equivalently region [/, j] contains a permutation of [, )]
But... one needs to consider circular ordering of values

ole)s 4 sfelr 7

Framed intervals: [1, 8], [2, 6], [6, 2]

» Hurdles: Mlnlmal framed intervals w.r.t. inclusion

Hurdles: [2, 6], [6,2]
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Goal: Implement sorting by reversal for signed permutations [Bergeron 2006]
w.l.0.g. assume that permutations flanked by 0 and n+1

Definitions for positive permutations:

> Splitting a hurdle [/, j]: Look for position k such that mx = = + 1, and
reverse interval [i + 1,k — 1]

nput: [(0) 2 4 3 (1) 5
Single hurdle: [1, 6]
0 2 4 3 1 5
—
Outpu: 0 -3 4 -2 1 5

»> Merging two hurdles [/, /] and [k, /], j < k: Reverse interval [}, k]

“ol2l5 4 3[s]1 7

—  —

Hurdles: [2, 6], [6,2] — Reversal of [6, 6]

0 2 5 4 3 6 1 7
>
0 2 5 4 3 -6 1 7
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Goal: Implement sorting by reversal for signed permutations [Bergeron 2006]
Final algo. While 7 not sorted:

» |f © negative:

> Identify Oriented Pair (OP) (/,/) that creates max #OPs
»> Reverse OP (i, j)
> [terate until permutation = becomes positive

» If 7 positive, consider hurdles H of :

> H={())}
— split (4, )
> H = {(’7])7 (kv I)}

— merge (i, /)
|H| > 2, |H| even
— Merge two non-consecutive hurdles
|H| > 2, |H| odd
Simple hurdle h*: Cutting h* + reversal of OPs decreases #hurdles

v

v

If H contains simple hurdle h*
— Cut h*
Otherwise
— Merge two non-consecutive hurdles (or consecutive ones if |H| = 3)



