Combinatorial Optimization in Bioinfo Lecture 6 – Comparative genomics

Yann Ponty

AMIBio Team CNRS & École Polytechnique

Cool story bro. What next?

Comparative genomics studies (epi)genomics features of current (extant) species, to gain insight into their evolution and ancestral traits.

Some examples:

- Accurate inter-species distances by integrating genome-scale organization (genome rearrangements);
- Inference of ancestral features (genomic adjacencies);
- Reconciliations of species and gene trees...

Parsimony as a common framework

(but not exclusively!)

At **genomic scale** + **longer periods of time**, classic sequence homology becomes insufficient to infer elapsed time and precise correspondences.

[Pevzner and Tesler, Genome Research 2003]

How many inversions required to turn a Mouse into a Human? sort a signed permutation by reversals?

SORTING BY REVERSALS problem

Input: Signed permutation π

Output: Shortest sequence of reversals turning π into 1, 2, 3 · · · $|\pi|$

Surprisingly, can be solved in polynomial-time [Hannenhalli–Pevzner, JACM 1999] Distance can even be obtained in linear time! [Baden-Moret-Yan, JCB 2004] At the origin of multiple works on sorting (structured/signed) permutations.

A simple(?) algorithm: [Hannenhalli–Pevzner 1999] + [Bergeron 2005]
 Mixed sign (+/-) π → Greedy reversals inducing max. #oriented pairs
 Positive sign π → Elimination (cut/merge → reversals) of hurdle(s)
 More details to come (lab assignment)

Beyond (simple?) reversals

Fancy operations:

- ▶ Translocations: Exchange ends of chromosomes \rightarrow Linear time
- Franspositions: Exchange two consecutive sequences of genes \rightarrow NP-hard
- Double Cut and Join...
- Gain/loss of genetic material/syntenic blocks
 - ightarrow Handle multiple copies of genes
- Extension to unsigned permutations \rightarrow NP-hard.

Strong connection to graph theory and (enumerative) combinatorics

 \rightarrow Very clever/elegant, but headache to extrapolate!

Goal: To infer features of ancestral genomes

Goal: To infer features of ancestral genomes

Phylogenetic tree T = (V, E) + Present/Absent **traits** for extant species What are the **most likely** features of ancestral species?

Parsimony: Find ancestors labeling $\xi : V \to \{P, A\}$ minimizing total change:

$$f(\xi) = \sum_{(u,v)\in\mathcal{T}} d(\xi(u),\xi(v))$$

Phylogenetic tree T = (V, E) + Present/Absent **traits** for extant species What are the **most likely** features of ancestral species?

Parsimony: Find ancestors labeling $\xi : V \to \{P, A\}$ minimizing total change:

$$f(\xi) = \sum_{(u,v)\in\mathcal{T}} d(\xi(u),\xi(v))$$

Phylogenetic tree T = (V, E) + Present/Absent **traits** for extant species What are the **most likely** features of ancestral species?

Parsimony: Find ancestors labeling $\xi : V \to \{P, A\}$ minimizing total change:

$$f(\xi) = \sum_{(u,v)\in\mathcal{T}} d(\xi(u),\xi(v))$$

Phylogenetic tree T = (V, E) + Present/Absent **traits** for extant species What are the **most likely** features of ancestral species?

Parsimony: Find ancestors labeling $\xi : V \to \{P, A\}$ minimizing total change:

$$f(\xi) = \sum_{(u,v)\in\mathcal{T}} d(\xi(u),\xi(v))$$

Phylogenetic tree T = (V, E) + Present/Absent **traits** for extant species What are the **most likely** features of ancestral species?

Parsimony: Find ancestors labeling $\xi : V \to \{P, A\}$ minimizing total change:

$$f(\xi) = \sum_{(u,v)\in\mathcal{T}} d(\xi(u),\xi(v))$$

A labeling ξ is said to **extend** ξ' iff their labels coincide on extant species

PARSIMONY LABELING problem

Input: Species tree \mathcal{T} ; Labeling $\xi' : V \to \{P, A\}$ of extant species **Output:** Complete labeling ξ^* extending ξ' which minimizes total change

$$\xi^{\star} = \underset{\xi \text{ ext. } \xi'}{\operatorname{argmin}} \sum_{(u,v) \in \mathcal{T}} d(\xi(u),\xi(v))$$

Solved by dynamic programming (hey, it's been a while!) [Sankoff/Rousseau 1975] based on a *hypothetical game*, *played* at any ancestral/internal node *u*:

- ▶ What if ancestral node *u* had a given label $x \in \{P, A\}$?
- Then min change from u with ξ(u) = x is obtained by minimizing over possible labels y, y' for children v, v' of u, and summing:
 - Direct contribution to change: d(x, y) + d(x, y')
 - Min change of a labeling of subtrees v, v', independent of (u, x) (rec.)

$$\rightarrow f_x^{\star}(u) = \sum_{uv \in \mathcal{T}} \min_{y \in \{\mathsf{P},\mathsf{A}\}} d(x,y) + f_y^{\star}(v) \quad f_x^{\star}(u) = \begin{cases} 0 & \text{if } x = \xi'(u) \\ +\infty & \text{otherwise} \end{cases}$$

 $f_x^{\star}(u) = \sum_{uv \in \mathcal{T}} \min_{y \in \{P,A\}} d(x,y) + f_y^{\star}(v) \quad f_x^{\star}(u) = \begin{cases} 0 & \text{if } x = \xi'(u) \\ +\infty & \text{otherwise} \end{cases}$

 $f_x^{\star}(u) = \sum_{uv \in \mathcal{T}} \min_{y \in \{P,A\}} d(x,y) + f_y^{\star}(v) \quad f_x^{\star}(u) = \begin{cases} 0 & \text{if } x = \xi'(u) \\ +\infty & \text{otherwise} \end{cases}$

 $f_x^{\star}(u) = \sum_{uv \in \mathcal{T}} \min_{y \in \{P,A\}} d(x,y) + f_y^{\star}(v) \quad f_x^{\star}(u) = \begin{cases} 0 & \text{if } x = \xi'(u) \\ +\infty & \text{otherwise} \end{cases}$

 $f_x^{\star}(u) = \sum_{uv \in \mathcal{T}} \min_{y \in \{P, A\}} d(x, y) + f_y^{\star}(v) \quad f_x^{\star}(u) = \begin{cases} 0 & \text{if } x = \xi'(u) \\ +\infty & \text{otherwise} \end{cases}$

 $f_x^{\star}(u) = \sum_{uv \in \mathcal{T}} \min_{y \in \{P,A\}} d(x,y) + f_y^{\star}(v) \quad f_x^{\star}(u) = \begin{cases} 0 & \text{if } x = \xi'(u) \\ +\infty & \text{otherwise} \end{cases}$

Toy model: Min. #event $\rightarrow d(\xi(u), \xi(v)) = 1$ if $\xi(u) \neq \xi(v)$; 0 otherwise

 $f_{x}^{\star}(u) = \sum_{uv \in \mathcal{T}} \min_{y \in \{P,A\}} d(x,y) + f_{y}^{\star}(v) \quad f_{x}^{\star}(u) = \begin{cases} 0 & \text{if } x = \xi'(u) \\ +\infty & \text{otherwise} \end{cases}$

10/2<u>4</u>

Toy model: Min. #event $\rightarrow d(\xi(u), \xi(v)) = 1$ if $\xi(u) \neq \xi(v)$; 0 otherwise

 $f_{x}^{\star}(u) = \sum_{uv \in \mathcal{T}} \min_{y \in \{P,A\}} d(x,y) + f_{y}^{\star}(v) \quad f_{x}^{\star}(u) = \begin{cases} 0 & \text{if } x = \xi'(u) \\ +\infty & \text{otherwise} \end{cases}$

10/2<u>4</u>

Toy model: Min. #event $\rightarrow d(\xi(u), \xi(v)) = 1$ if $\xi(u) \neq \xi(v)$; 0 otherwise

 $f_{x}^{\star}(u) = \sum_{uv \in \mathcal{T}} \min_{y \in \{P,A\}} d(x,y) + f_{y}^{\star}(v) \quad f_{x}^{\star}(u) = \begin{cases} 0 & \text{if } x = \xi'(u) \\ +\infty & \text{otherwise} \end{cases}$

10/2<u>4</u>

Toy model: Min. #event $\rightarrow d(\xi(u), \xi(v)) = 1$ if $\xi(u) \neq \xi(v)$; 0 otherwise

 $f_{x}^{\star}(u) = \sum_{uv \in \mathcal{T}} \min_{y \in \{P,A\}} d(x,y) + f_{y}^{\star}(v) \quad f_{x}^{\star}(u) = \begin{cases} 0 & \text{if } x = \xi'(u) \\ +\infty & \text{otherwise} \end{cases}$

Sankoff/Rousseau parsimony represents a very general framework, which can be used to infer:

- presence/absence of regulatory motifs
- ancestral sequences
- ancestral structures (Sankoff algo. for RNA comparative folding)
- ancestral genome architectures
- ancestral allele frequencies

(adjacencies, gene loss/gain)

(∞ #labels \rightarrow restriction on *d*)

Much can be learned from apparent contradictions...

How best to **explain** those topological discrepancies? and **learn** something along the way

Ancestral events (duplication/losses/...) induce apparent inconsistencies

Reconciliations represent evolutionary scenario that **explain** gene trees by embedding them within species trees **but** some more *reasonable* than others

Goal: Find parsimonious reconciliation

Ancestral events (duplication/losses/...) induce apparent inconsistencies

Reconciliations represent evolutionary scenario that **explain** gene trees by embedding them within species trees **but** some more *reasonable* than others

Goal: Find parsimonious reconciliation

Parsimonious DL reconciliations

Duplication/Loss reconciliation: Binary tree R such that :

- leaf labeled with extant gene or Loss operation;
- internal node labeled with Dup or Spec event

All nodes are mapped through σ to a species

R congruent with gene tree *G* if removing Loss from *R* + contract 1^{ary} branches $\rightarrow G$

R congruent with species tree S if:

- For each Spec node $u \to v$, w in R, we have $\sigma_u \to \sigma_v, \sigma_w$ in S
- For each Dup node u → v, w in R, we have σ_u = σ_v = σ_w

DL RECONCILIATION problem

Input: Gene tree G, Species tree S

Output: Reconciliation R congruent to both G and S, minimizing cost

 $Cost(R) = \alpha \times \#Loss(R) + \beta \times \#Dup(R)$

Can be solved efficiently using LCA mapping... [Page, Syst. Biol. 1994] ... or using dynamic programming in $\mathcal{O}(|S| \times |G|)$ time/space

DL RECONCILIATION **problem**

Input: Gene tree G, Species tree S

Output: Reconciliation R, congruent to G and S, minimizing cost

 $\mathsf{Cost}(R) = \alpha \times \#\mathsf{Loss}(R) + \beta \times \#\mathsf{Dup}(R)$

Notations:

C[g, s] Best cost of reconciliation for node/subtrees $g \sqsubseteq G$ and $s \sqsubseteq S$ L_u, R_u Left/right child of node u

 $\sigma(u)$ Species of a leaf *u* within gene tree (or species tree...duh!)

$$C[g, s] = \begin{cases} 0 & \text{if } \sigma(g) = \sigma(s) \\ +\infty & \text{otherwise} \end{cases} \begin{array}{l} C[g, s] \\ g \mid \text{eaf,s internal} \end{array} = +\infty \\ \\ C[g, s] = \begin{cases} \beta + C[L_g, s] + C[R_g, s] & \text{Ancestor gene } g \text{ duplicated in species } s \\ C[L_g, L_s] + C[R_g, R_s] & \text{Speciation event, direct mapping} \\ C[L_g, R_s] + C[R_g, L_s] & \text{Speciation event, crossed mapping} \\ \alpha + C[g, L_s] & \text{Loss of gene subtree } g \text{ in right part of species tree} \\ \alpha + C[g, R_s] & \text{Loss of gene subtree } g \text{ in left part of species tree} \end{cases}$$

- Efficient algorithms exist for parsimonious scenarios for genomic characters (genes under DTL, for instance).
- Bérard et al (2012) extended methods to gene adjacencies under gene Speciation, Duplication, Loss.
- ▶ DeCo considers cost of gains/ breaks due to rearrangements.

Problem: Given two reconciliations (R_1, R_2) + extant adjacencies, construct parsimonious evolutionary scenario

Output: Adjacency forest

Event costs/parameters

- Adjacency gain: x
- Adjacency break: y

Output: Adjacency forest

Event costs/parameters

- Adjacency gain: x
- Adjacency break: y

1. $e(q_1) = \text{Extant}$ and $e(q_2) = \text{Extant}$: $c_1(g_1, g_2) = \begin{cases} 0 & \text{if } g_1g_2 \text{ is an adjacency} \\ 0 & \text{otherwise} \end{cases}$ $c_0(g_1, g_2) = \begin{cases} 0 & \text{if } g_1g_2 \text{ is not an adjacency} \\ 0 & \text{otherwise} \end{cases}$ e(g₁) = GLoss and e(g₂) ∈ {Extant, Spec, GDup}: $c_1(g_1, g_2) = c_0(g_1, g_2) = 0^{\#NonGDup(g_2)}$ 3. $e(g_1) \in \{\text{Extant}, \text{Spec}, \text{GDup}\} \text{ and } e(g_2) = \text{GLoss}:$ $c_1(g_1, g_2) = c_0(g_1, g_2) = 0^{\# NonGDup(g_1)}$ 4. $e(q_1) = \text{GLoss and } e(q_2) = \text{GLoss}$: $c_1(g_1, g_2) = c_0(g_1, g_2) = 0$ 5. $e(q_1) \in \{\text{Extant}, \text{Spec}\}\ \text{and}\ e(q_2) = \text{GD}$
$$\begin{split} c_1(g_1,g_2) &= \min \begin{cases} c_1(g_1,b_{22}) + c_0(g_1,a_{22}) + x, \\ c_1(g_1,g_2) = g_1(g_1,g_2) + x, \\ c_1(g_1,g_2) = g_2(g_1,g_2) + x, \\ c_0(g_1,g_2) = g_2(g_1,g_2) + g_2(g_1,g_2) + x, \\ c_0(g_1,g_2) + g_2(g_1,g_2) + g_2(g_1,g_2) + x, \\ c_1(g_1,b_{22}) + c_0(g_1,a_{22}) + x, \\ c_1(g_1,b_{22}) + c_0(g_1,b_{22}) + x, \\ c_1(g_1,b_{22}) + c_0(g_1,b_{22}) + x, \\ c_1(g_1$$
6. $e(q_1) = \mathsf{GDup}$ and $e(q_2) \in \{\mathsf{Extant}, \mathsf{Spec}\}$:
$$\begin{split} c_1(g_1,g_2) &= \min \begin{cases} c_1(a_g_1,g_2) + c_0(b_g_1,g_2), & c_0(a_g_1,g_2) + c_1(b_g_1,g_2), \\ c_1(a_g_1,g_2) + c_1(b_g_1,g_2) + x, & c_0(a_g_1,g_2) + c_0(b_g_1,g_2) + y \end{cases} \\ c_0(g_1,g_2) &= \min \begin{cases} c_0(a_g_1,g_2) + c_0(b_{g_1},g_2), & c_0(a_g_1,g_2) + c_1(b_{g_1},g_2) + x, \\ c_1(a_g_1,g_2) + c_0(b_{g_1},g_2), & c_0(a_{g_1},g_2) + c_1(c_{g_1},g_2) + x, \end{cases} \end{split}$$
7. $e(q_1) =$ Spec and $e(q_2) =$ Spec: $c_1(g_1,g_2) = \min \begin{cases} c_1(a_{g_1},b_{g_2}) + c_1(b_{g_1},a_{g_2}) + 0, & c_1(a_{g_1},b_{g_2}) + c_0(b_{g_1},a_{g_2}) + y + 0, \\ c_0(a_{g_1},a_{g_2}) + c_1(b_{g_1},a_{g_2}) + y + 0, & c_0(a_{g_1},b_{g_2}) + c_0(b_{g_1},a_{g_2}) + 2y + 0, \\ c_1(a_{g_1},a_{g_2}) + c_1(b_{g_1},b_{g_2}) + 0, & c_1(a_{g_1},a_{g_2}) + c_0(b_{g_1},b_{g_2}) + y + 0, \\ c_0(a_{g_1},a_{g_2}) + c_1(b_{g_1},b_{g_2}) + y + 0, & c_0(a_{g_1},a_{g_2}) + c_0(b_{g_1},b_{g_2}) + y + 0, \end{cases}$ $c_0(g_1,g_2) = \min \begin{cases} c_0(a_1,a_2) + c_1(y_0,y_2) + y \neq v, & c_0(y_0,y_1,y_2) + c_0(y_0,y_1,y_2), & ..., \\ c_0(a_2,b_2) + c_0(b_{21},a_{22}) + c_0(b_{21},a_{22}) + c_0(b_{21},b_{22}) + c_0(b_{21},a_{22}) + x + 0, \\ c_0(a_2,b_2) + c_1(b_{21},a_{22}) + x + 0, & c_1(a_1,b_2) + c_1(b_{21},a_{22}) + 2x + 0, \\ c_0(a_2,a_{22}) + c_0(b_{21},b_{22}) + x + 0, & c_1(a_2,b_{22}) + c_0(b_{21},b_{22}) + x + 0, \\ c_0(a_2,a_{22}) + c_0(b_{21},b_{22}) + x + 0, & c_1(a_2,a_{22}) + c_0(b_{21},b_{22}) + x + 0, \\ c_0(a_2,a_{22}) + c_0(b_{21},b_{22}) + x + 0, & c_1(a_2,a_{22}) + c_0(b_{21},b_{22}) + x + 0, \\ c_0(a_2,a_{22}) + c_0(b_{21},b_{22}) + x + 0, & c_1(a_2,a_{22}) + c_0(b_{21},b_{22}) + x + 0, \\ c_0(a_2,a_{22}) + c_0(b_{21},b_{22}) + c_0(b_{21},b_{22}) + c_0(b_{21},b_{22}) + x + 0, \\ c_0(a_2,a_{22}) + c_0(b_{21},b_{22}) + c_0(b_{21},b_{22}) + c_0(b_{21},b_{22}) + x + 0, \\ c_0(a_2,a_{22}) + c_0(b_{21},b_{22}) + c_0(b_{21},b_{22}) + c_0(b_{21},b_{22}) + x + 0, \\ c_0(a_2,a_{22}) + c_0(b_{21},b_{22}) + c_0(b_{21},b_{22})$

 $c_0(a_{g_1}, a_{g_2}) + c_1(b_{g_1}, b_{g_2}) + x + 0$, $c_1(a_{g_1}, a_{g_2}) + c_1(b_{g_1}, b_{g_2}) + 2x + 0$,

8. $e(q_1) = \mathsf{GDup}$ and $e(q_2) = \mathsf{GDup}$:

		$(c_1(a_{g_1}, g_2) + c_0(b_{g_1}, g_2)),$	$c_0(a_{g_1}, g_2) + c_1(b_{g_1}, g_2),$
	$c_1(g_1,g_2)=\min \phi$	$c_1(a_{g_1}, g_2) + c_1(b_{g_1}, g_2) + x,$	$c_0(a_{g_1}, g_2) + c_0(b_{g_1}, g_2) + y,$
		$c_1(g_1, a_{g_2}) + c_0(g_1, b_{g_2}),$	$c_0(g_1, a_{g_2}) + c_1(g_1, b_{g_2}),$
		$c_1(g_1, a_{g_2}) + c_1(g_1, b_{g_2}) + x,$	$c_0(g_1, a_{g_2}) + c_0(g_1, b_{g_2}) + y,$
		$c_1(a_{g_1}, a_{g_2}) + c_1(b_{g_1}, b_{g_2}) + c_0$	$(a_{g_1}, b_{g_2}) + c_0(b_{g_1}, a_{g_2}),$
		$c_1(a_{g_1}, a_{g_2}) + c_1(b_{g_1}, b_{g_2}) + c_0$	$(a_{g_1}, b_{g_2}) + c_1(b_{g_1}, a_{g_2}) + x,$
		$c_1(a_{g_1}, a_{g_2}) + c_1(b_{g_1}, b_{g_2}) + c_1$	$(a_{g_1}, b_{g_2}) + c_0(b_{g_1}, a_{g_2}) + x,$
		$c_1(a_{g_1}, a_{g_2}) + c_1(b_{g_1}, b_{g_2}) + c_1$	$(a_{g_1}, b_{g_2}) + c_1(b_{g_1}, a_{g_2}) + 2x,$
		$c_1(a_{g_1}, a_{g_2}) + c_0(b_{g_1}, b_{g_2}) + c_0$	$(a_{g_1}, b_{g_2}) + c_0(b_{g_1}, a_{g_2}) + y,$
		$c_1(a_{g_1}, a_{g_2}) + c_0(b_{g_1}, b_{g_2}) + c_0$	$(a_{g_1}, b_{g_2}) + c_1(b_{g_1}, a_{g_2}) + x + y$
		$c_1(a_{q_1}, a_{q_2}) + c_0(b_{q_1}, b_{q_2}) + c_1$	$(a_{q_1}, b_{q_2}) + c_0(b_{q_1}, a_{q_2}) + x + y$
		$c_0(a_{q_1}, a_{q_2}) + c_1(b_{q_1}, b_{q_2}) + c_0$	$(a_{q_1}, b_{q_2}) + c_0(b_{q_1}, a_{q_2}) + y,$
		$c_0(a_{q_1}, a_{q_2}) + c_1(b_{q_1}, b_{q_2}) + c_0$	$(a_{q_1}, b_{q_2}) + c_1(b_{q_1}, a_{q_2}) + x + y$
		$c_0(a_{q_1}, a_{q_2}) + c_1(b_{q_1}, b_{q_2}) + c_1$	$(a_{q_1}, b_{q_2}) + c_0(b_{q_1}, a_{q_2}) + x + y$
		$c_0(a_{q_1}, a_{q_2}) + c_0(b_{q_1}, b_{q_2}) + c_1$	$(a_{q_1}, b_{q_2}) + c_1(b_{q_1}, a_{q_2}),$
		$c_0(a_{q_1}, a_{q_2}) + c_1(b_{q_1}, b_{q_2}) + c_1$	$(a_{q_1}, b_{q_2}) + c_1(b_{q_1}, a_{q_2}) + x,$
		$c_1(a_{a_1}, a_{a_2}) + c_0(b_{a_1}, b_{a_2}) + c_1$	$(a_{a_1}, b_{a_2}) + c_1(b_{a_1}, a_{a_2}) + x,$
		$c_0(a_{a_1}, a_{a_2}) + c_0(b_{a_1}, b_{a_2}) + c_1$	$(a_{a_1}, b_{a_2}) + c_0(b_{a_1}, a_{a_2}) + y_i$
		$c_0(a_{a_1}, a_{a_2}) + c_0(b_{a_1}, b_{a_2}) + c_0$	$(a_{a_1}, b_{a_2}) + c_1(b_{a_1}, a_{a_2}) + y_1$
		$c_0(a_{a_1}, a_{a_2}) + c_0(b_{a_1}, b_{a_2}) + c_0$	$(a_{a_1}, b_{a_2}) + c_0(b_{a_1}, a_{a_2}) + 2y,$
	$c_0(g_1, g_2) = \min \{$	$(c_0(a_{a_1}, a_2) + c_0(b_{a_1}, a_2))$	$c_0(a_{a_1}, a_2) + c_1(b_{a_1}, a_2) + x_1$
		$c_1(a_{a_1}, a_2) + c_0(b_{a_1}, a_2) + x_1$	$c_1(a_{a_1}, a_2) + c_1(b_{a_1}, a_2) + 2x$
		$c_0(a_1, a_{a_2}) + c_0(a_1, b_{a_2})$	$c_0(a_1, a_{a_2}) + c_1(a_1, b_{a_2}) + x.$
		$c_1(a_1, a_2) + c_2(a_1, b_2) + \tau$	$c_1(a_1, a_2) + c_1(a_1, b_2) + 2r$
		$(v_1(g_1) \circ g_2) + o((g_1) \circ g_2) + o)$	~1(g1) ~g2/ · ~1(g1) ~g2/ + at.

Deco algorithm [Berard et al. 2012] **Dyn. prog. scheme** for most parsimonious adjacency forest in $\mathcal{O}(|R_1||R_2|)$.

$$\begin{array}{l} \textbf{7.} \text{If } e(g_1) = \text{Spec and } e(g_2) = \text{Spec:} \\ \textbf{7.} \text{If } e(g_1) = \text{Spec and } e(g_2) = \text{Spec:} \\ \textbf{7.} \text{If } e(g_1) = \text{Spec and } e(g_2) = \text{Spec:} \\ \textbf{7.} \text{If } e(g_1) = \text{Spec and } e(g_2) = \text{Spec:} \\ \textbf{7.} \text{If } e(g_1) = \text{Spec and } e(g_2) + c_1(b(g_1), a(g_2)), c_1(a(g_1), b(g_2)) + c_0(b(g_1), a(g_2)) + \text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), b(g_2)) + c_1(b(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_1(a(g_1), a(g_2)) + c_1(b(g_1), b(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), a(g_2)) + c_1(b(g_1), b(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), a(g_2)) + c_1(b(g_1), b(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), b(g_2)) + c_1(b(g_1), b(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), b(g_2)) + c_1(b(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), b(g_2)) + c_1(b(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), b(g_2)) + c_1(b(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), b(g_2)) + c_0(b(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), b(g_2)) + c_0(b(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), a(g_2)) + c_0(b(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), a(g_2)) + c_0(b(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), a(g_2)) + c_0(b(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), a(g_2)) + c_0(b(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), a(g_2)) + c_0(b(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), a(g_2)) + c_0(b(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), a(g_2)) + c_0(b(g_1), b(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1), a(g_2)) + 2\text{ABreak}, \\ \textbf{7.} \text{C}_0(a(g_1$$

Deco algorithm [Berard *et al*, 2012] **Dyn. prog. scheme** for most parsimonious adjacency forest in $O(|R_1| \times |R_2|)$

Intuition: Jointly explores both reconciliations in all possible ways, to account for adjacency breaks/gains.

Comparative genomics is a vibrant field with strong 2-ways links with

- Phylogenetics, (Epi)genomics, Paleogenomics, Proteomics, Structural biology, Systems Biology ...
- ...but also string processing, enumerative combinatorics, discrete algorithms, discrete maths...

It predicts the past, but also informs studies of the unobservable present

Some \pm current directions:

- Beyond parsimony, Bayesian approaches (likelihood maximization)
 Mainly based on sampling (ABC), but also more direct opt. (DP)
- Distinguishing between erroneous and informative incongruences
- Expressive models for reconciliations: Horizontal gene transfers, polytomies...
- Integrating multiple steps of analyses into joint optimizations e.g. comparative genome scaffolding
- Advanced algorithms: FPT algo/kernels, guaranteed approximations, exp. time (small exponents), ILP... ... for all of the above (+ML)

Onwards to our (final) lab assignment 1/4

Goal: Implement sorting by reversal for signed permutations [Bergeron 2006] w.l.o.g. assume that input permutation π flanked by 0 and n+1

Some definitions:

Oriented pair: Two pos. (i, j) with consecutive values of opposite signs

Reversal of oriented pairs (i, j):

$$\pi_{i} + \pi_{j} = +1 \rightarrow \cdots \qquad \pi_{i} \qquad \pi_{i+1} \qquad \cdots \qquad \pi_{j-1} \qquad \pi_{j} \qquad \cdots \\ \dots \qquad -\pi_{j-1} \qquad -\pi_{j-2} \qquad \cdots \qquad -\pi_{i} \qquad \pi_{j} \qquad \cdots \\ \pi_{i} + \pi_{j} = -1 \rightarrow \qquad \cdots \qquad \pi_{i} \qquad \pi_{i+1} \qquad \cdots \qquad \pi_{j-1} \qquad \pi_{j} \qquad \cdots \\ \dots \qquad \pi_{i} \qquad -\pi_{i} \qquad \cdots \qquad -\pi_{i+2} \qquad -\pi_{i+1} \qquad \cdots$$

Goal: Implement sorting by reversal for signed permutations [Bergeron 2006] w.l.o.g. assume that permutations flanked by 0 and n+1

Definitions for positive permutations:

Framed interval: Interval [i, j] in π of the form

 $\pi_i \pi_{i+1} \pi_{i+2} \cdots \pi_j$ with $\pi_j = \pi_i + (j-i)$ and $\pi_i < \pi_k < \pi_j, \forall i < k < j$

or **equivalently** region [i, j] contains a permutation of $[\pi_i, \pi_j]$

But... one needs to consider circular ordering of values

► Hurdles: Minimal framed intervals w.r.t. inclusion

 0
 2
 5
 4
 3
 6
 1
 7

 Hurdles: [2, 6], [6, 2]

Goal: Implement sorting by reversal for signed permutations [Bergeron 2006] w.l.o.g. assume that permutations flanked by 0 and n+1

Definitions for positive permutations:

Splitting a hurdle [i, j]: Look for position k such that $\pi_k = \pi_i + 1$, and reverse interval [i + 1, k - 1]

Input:
$$0 2 4 3 1 5$$

Single hurdle: [1, 6]
 $0 2 4 3 1 5$
Output: $0 -3 -4 -2 1 5$

• Merging two hurdles [i, j] and $[k, l], j \le k$: Reverse interval [j, k]

Goal: Implement sorting by reversal for signed permutations [Bergeron 2006]

Final algo. While π not sorted:

- If π negative:
 - ▶ Identify Oriented Pair (OP) (*i*, *j*) that creates max #OPs
 - Reverse OP (i, j)
 - Iterate until permutation π becomes positive
- If π positive, consider hurdles \mathcal{H} of π :

$$\mathcal{H} = \{(i, j)\} \\ \rightarrow \text{split} (i, j)$$

- $\mathcal{H} = \{(i, j), (k, l)\}$ $\rightarrow \text{merge } (i, j)$
- $|\mathcal{H}| > 2, |\mathcal{H}| \text{ even}$
 - \rightarrow Merge two non-consecutive hurdles

 $|\mathcal{H}| > 2, |\mathcal{H}| \text{ odd}$

Simple hurdle h^* : Cutting h^* + reversal of OPs **decreases** #hurdles

- If $\mathcal H$ contains simple hurdle h^*
 - \rightarrow Cut h^*
- Otherwise
 - \rightarrow Merge two non-consecutive hurdles (or consecutive ones if $|\mathcal{H}|=3)$