Combinatorial Optimization in Bioinformatics

RNA Structure Prediction—Part II

Sebastian Will · Yann Ponty

sebastian.will@polytechnique.edu · yann.ponty@lix.polytechnique.fr
Beyond predicting single RNA structures

- so far: optimization over all (non-crossing) RNA structures
 - from simple to more complex objective functions
 - (further) bioinformatics example of optimization by DP: “optimal substructure”, recursive decomposition
 - first look beyond: relevance of ambiguity, counting
- today: beyond finding the optimal solution—more power of DP
 - statistical mechanics: energies correspond to probabilities
 - here: directly probabilities of structures in thermodynamic equilibrium, but technique is generally useful to assign probabilities to combinatoric objects.
 - calculate partition functions by DP—sum over all structures (in place of optimize)
 - inside + outside algorithm—probability of features
 - structure prediction from multiple sequences, comparative analysis
RNA structure ensembles, Probabilities

GGCUAUUAGCUCAGUUGGUAGAGCGCCACCCUGAUAAAGUGAAGGUCUCAUUCUUCAGUUUCAGCAUCAGCCCA
RNA structure ensembles, Probabilities

GGCUAUUGCUCAGUUUGUAGAGGCACCCCUGAUAAAGGUGAGGUCGUAUCAGAAUCAGAGCCA

Energies → Structure Probabilities
Structure Probabilities → Base Pair Probabilities
Dotplots and Reliabilities
Dotplots and Reliabilities
We assume that the probability of each possible structure P (in thermodynamic equilibrium) is proportional to its Boltzmann weight (\implies Boltzmann distribution).

$$Pr(P) \propto \exp\left(-\frac{E(P)}{RT}\right)$$

($R =$ gas constant; $T =$ temperature in Kelvin).
Thermodynamic Equilibrium / Statistical Mechanics

We assume that the probability of each possible structure P (in thermodynamic equilibrium) is proportional to its Boltzmann weight (\implies **Boltzmann distribution**).

$$Pr(P) \propto \exp\left(-\frac{E(P)}{RT}\right)$$

(R = gas constant; T = temperature in Kelvin).

Reason to assume **Boltzmann distribution**:

- Formally justified as distribution with maximal entropy in a closed physical system (with constant average energy).
- Boltzmann distributions models the distribution of free, dynamically folding structures after infinite time (and without additional forces).
Normalization: Partition function

\[Pr(P) \propto \exp\left(-\frac{E(P)}{RT}\right) \]

Normalize Boltzmann weights by \(Z \):

\[Pr(P) = \exp\left(-\frac{E(P)}{RT}\right)/Z, \text{ such that } \sum_P Pr(P) = 1 \]

\(Z \) is called partition function.

Efficient computation?

- weighted sum has similarities to counting (DP!)
- weights depend on free energy (Zuker-like DP?!)

\[Z = \sum_P \exp\left(-\frac{E(P)}{RT}\right) \]
Normalization: Partition function

\[Pr(P) \propto \exp\left(-\frac{E(P)}{RT} \right) \]

Normalize Boltzmann weights by \(Z \):

\[Pr(P) = \exp\left(-\frac{E(P)}{RT} \right) / Z, \text{ such that} \]

\[\sum_P Pr(P) = 1 \]

\[\implies Z = \sum_P \exp\left(-\frac{E(P)}{RT} \right) \]

\(Z \) is called partition function.
Normalization: Partition function

\[Pr(P) \propto \exp(-\frac{E(P)}{RT}) \]

Normalize Boltzmann weights by \(Z \):

\[Pr(P) = \exp(-\frac{E(P)}{RT}) / Z, \text{ such that} \]

\[\sum_P Pr(P) = 1 \]

\[\implies Z = \sum_P \exp(-\frac{E(P)}{RT}) \]

Z is called partition function.

Efficient computation?

- weighted sum has similarities to counting (DP!)
- weights depend on free energy (Zuker-like DP?!)
Recall: Counting of Structures

\[
N_{i,j} = \max \left\{ \frac{N_{i+1,j}}{\max_{i < k \leq j} 1 + N_{i+1,k-1} + N_{k+1,j}} \right\}
\]

\[
\Downarrow
\]

Exchange of operators: \[\max \rightarrow \sum / \sum / \rightarrow \prod / \]

Recall: Counting of Structures

\[N_{i,j} = \max \begin{cases} N_{i+1,j} \\ \max_{i < k \leq j} 1 + N_{i+1,k-1} + N_{k+1,j} \end{cases} \]

\[\downarrow \]

\[C_{i,j} = C_{i+1,j} + \sum_{i < k \leq j} 1 \cdot C_{i+1,k-1} \cdot C_{k+1,j} \]

Exchange of operators: \(\max \rightarrow \sum /+, \sum /+ \rightarrow \prod / \).
From counting to partition function

\[C_{i,j} = C_{i+1,j} + \sum_{i < k \leq j} 1 \cdot C_{i+1,k-1} \cdot C_{k+1,j} \]

\[\implies Z_{i,j} = Z_{i+1,j} + \sum_{i < k \leq j} \exp\left(\frac{-E_{bp}(i, k)}{RT}\right) \cdot Z_{i+1,k-1} \cdot Z_{k+1,j} \]
From counting to partition function

\[C_{i,j} = C_{i+1,j} + \sum_{i < k \leq j} 1 \cdot \exp(-\frac{E_{bp}(i,k)}{RT}) \cdot Z_{i+1,k-1} \cdot Z_{k+1,j} \]

\[\Rightarrow Z_{i,j} = Z_{i+1,j} + \sum_{i < k \leq j} \exp(-\frac{E_{bp}(i,k)}{RT}) \cdot Z_{i+1,k-1} \cdot Z_{k+1,j} \]

Validity?

\[\exp(-\frac{E_{bp}(i,k)}{RT}) \cdot Z_{i+1,k-1} \cdot Z_{k+1,j} = \exp(-\frac{E_{bp}(i,k)}{RT}) \cdot \sum_x \exp(-\frac{E(x)}{RT}) \cdot \sum_y \exp(-\frac{E(y)}{RT}) \]

\[= \sum_{x,y} \exp(-\frac{E_{bp}(i,k)}{RT}) \cdot \exp(-\frac{E(x)}{RT}) \cdot \exp(-\frac{E(y)}{RT}) \]

\[= \sum_{x,y} \exp(-\frac{(E_{bp}(i,k) + E(x) + E(y))}{RT}) \]
Free energy minimization ('Zuker' algorithm)

\[F_{ij} = F_{i+1,j} + C_{ik} + F_{k+1,j} \]

\[C_{ij} = H(i,j) + \min_{i<k<l<j} C_{kl} + \min_{i<u<j} M_{i+1,u} + M_{u+1,j-1} + a \]

\[M_{ij} = \min_{i<u<j} \min (u-i+1)c + C_{u+i,j} + b, \min_{i<u<j} M_{i,u} + C_{u+1,j} + b, M_{i,j-1} + c \]

\[M_{ij}^1 = \min \{ M_{i,j-1} + c, C_{ij} + b \} \]

Initialization: \(F_{ii} = 0; C_{ii} = M_{ii} = M_{ii}^1 = \infty \)
Efficient computation of partition functions

Efficient computation: partition function algorithm (McCaskill, 1990) can be inferred from the MFE algorithm by replacing minimum operations with sums and additions with multiplications.

\[
F_{ij} = \min \left\{ F_{i+1,j}, \min_{i<k\leq j} C_{ik} + F_{k+1,j} \right\}
\]

\[
C_{ij} = \min \left\{ H(i,j), \min_{i<k<l<j} C_{kl} + I(i,j; k, l), \min_{i<u<j} M_{i+1,u} + M_{u+1,j-1}^1 + a \right\}
\]

\[
M_{ij} = \min \left\{ \min_{i<u<j} (u-i+1)c + C_{u+i,j} + b, \min_{i<u<j} M_{i,u} + C_{u+1,j} + b, M_{i,j-1} + c \right\}
\]

\[
M_{ij}^1 = \min \left\{ M_{i,j-1} + c, C_{ij} + b \right\}
\]
Efficient computation of partition functions

Efficient computation: partition function algorithm (McCaskill, 1990) can be inferred from the MFE algorithm by replacing minimum operations with sums and additions with multiplications.

\[
Z_{i,j} = Z_{i+1,j} + \sum_{i<k\leq j} Z_{i,k} Z_{k+1,j}
\]

\[
Z_{i,j}^C = e^{-\beta H(i,j)} + \sum_{i<k<l<j} Z_{k,l}^C e^{-\beta I(i,j,k,l)} + \sum_{i<u<j} Z_{i+1,u}^M Z_{u+1,j-1}^M e^{-\beta a}
\]

\[
Z_{i,j}^M = \sum_{i<u<j} e^{-\beta(u-i+1)c} Z_{u+1,j}^M + \sum_{i<u<j} Z_{i,u}^M Z_{u+1,j}^C e^{-\beta b} + Z_{i,j-1}^M e^{-\beta c}
\]

\[
Z_{i,j}^{M1} = Z_{i,j-1}^M e^{-\beta c} + Z_{i,j}^C e^{-\beta b}
\]
(Un)-Ambiguity

Partition function by operator exchange “trick” would not work on ambiguous recursions. Why?
(Un)-Ambiguity

Partition function by operator exchange “trick” would not work on ambiguous recursions. Why?

prerequisite, violated by ambiguous decomposition

traceback : structure = 1 : 1
(Un)-Ambiguity

Partition function by operator exchange “trick” would not work on ambiguous recursions. Why?

prerequisite, violated by ambiguous decomposition

\[
\text{traceback : structure } = 1 : 1
\]

Challenge of ambiguity in (original) Zuker-recursions: split of multiloops
Decomposition of Structure Space by (original) Zuker
Ambiguity Example

\[i \quad j = \quad i \quad j \]
Ambiguity Example
Ambiguity Example

\[i \quad j = \quad i \quad j \quad i \quad j \quad i \quad j \quad k \quad j \]

\[i \quad j \quad i \quad j \]

\[i \quad j \quad i+1 \quad j \]

\[i \quad i+1 \quad j \]
Ambiguity Example

\[i \rightarrow j = i \rightarrow j \]

\[i \rightarrow j \rightarrow k \rightarrow j \rightarrow i \]

\[i \rightarrow j \rightarrow k \rightarrow j \rightarrow i \]
Ambiguity Example

\[
\begin{align*}
 i & \quad j \\
 j & \quad i
\end{align*}
\]
Ambiguity Example
Ambiguity Example
Discarding Ambiguity

Disambiguation due to “fourth” matrix.
Structure and base pair probabilities

The **probability of a specific structure** is given by:

\[
Pr(P) = \frac{\exp(-\frac{E(P)}{RT})}{Z}
\]

The **probability of a base pair** \((i,j)\) is the fraction of all structures having this base pair and the number of all possible structures.

\[
p_{ij} = \sum_{P \ni (i,j)} Pr(P)
\]

This can be computed efficiently from the product of the inside and *outside* partition functions of a base pair:

\[
p_{ij} = \frac{Z_{\text{inside}(i,j)} \cdot Z_{\text{outside}(i,j)}}{Z}
\]
Outside algorithms

\[N_{i,j} = \max \begin{cases}
 N_{i-1,j} \\
 \max_{i \leq k < j} 1 + N_{i+1,k-1} + 1 + N_{k+1,j} : S_i \text{ and } S_k \text{ compl.}
\end{cases} \]

\[N_{i,j}^o = \max \begin{cases}
 N_{i-1,j}^o \\
 \max_{1 \leq k < i} N_{k,j}^o + 1 + N_{k+1,i-2} : S_k, S_{i-1} \text{ compl.} \\
 \max_{j \leq k < n} N_{i-1,k}^o + 1 + N_{j,k-1} : S_{i-1}, S_k \text{ compl.}
\end{cases} \]

\[i - 1 \text{ unpaired} \]

\[i - 1 \text{ paired left} \]

\[i - 1 \text{ paired right} \]
Comparative RNA Analysis

adopted from: [Gardner & Giegerich BMC 2004]

consensus:

consensus structure:
Typical Scenario

Given: set of related RNA sequences

```
>AF008220
GGAGGAUUGCUCAGCGGGAGGAGCAUCUGCCUUACAAGCAGGGUCGGGUCAGCCGUCACAUUCCUG

>M68929
GCCGAAUAACUUAAGGGGUUAAAGUUGCAGAUUGGUGCCUGAAACACAGGGGUCGAAUCCGUAACGCA

>X02172
GCCUUUAUAGCUCUUGGGUGAAACUGGAAGUAAACUGAAGAUUUUACAUGUAGUUCGAUUCUCAUUAAGGGC

>Z11880
GCCUUCCUAGCUCAGGGGUGGCGACCGCUUUUAAAACGGUGGUCGUGGUGUGCUUCCUACGGAAGGCG

>D10744
GGAAAAUUGCAUGCAGCCGCAAGAUAAUGUAAUAAUAAAGGAUUUUAACUCCUGGAGUUCGAAUCCACAUUUCGCC
```

Wanted:

```
>AF008220  GGAGGAUUGCUCAGCGGGAGGAGCAUCUGCCUUACAAGC----------AGAGGGUCGGGUCAGCCGUCACAUUCCUG

>M68929  GCCGAAUAACUUAAGGGGUUAAAGUUGCAGAUUGGUGCCUGAAACACAGGGGUCGAAUCCGUAACGCA

>X02172  GCCUUUAUAGCUCUUGGGUGAAACUGGAAGUAAACUGAAGAUUUUACAUGUAGUUCGAUUCUCAUUAAGGGC

>Z11880  GCCUUCCUAGCUCAGGGGUGGCGACCGCUUUUAAAACGGUGGUCGUGGUGUGCUUCCUACGGAAGGCG

>D10744  GGAAAAUUGCAUGCAGCCGCAAGAUAAUGUAAUAAUAAAGGAUUUUAACUCCUGGAGUUCGAAUCCACAUUUCGCC
```

consens ((((((((((((((((((((((((((((........)))

- Typically, only sequences are known, not their structures
- Evolutionary conserved for many RNAs: sequence and structure
RNA Alignment Approaches

Plan A
- A: single sequences
- B: alignment

Plan B
- A: single sequences
- B: FOLD alignment

Plan C
- A: FOLD
- B: alignment

simultaneously ALIGN and FOLD
[Sanhoff 85]

consensus: consensus structure

adopted from:
[Gardener & Giiegerich BMC 2004]
Comparative RNA Analysis: Plan A

Remarks

- **ALIGN**: multiple sequence alignment
 (recall Needleman-Wunsch, progressive alignment)
- **FOLD**: generalize prediction for single sequences
Predict (optimal) consensus structure of an RNA alignment

CLUSTAL W --- LocARNA 2.0.0RC7

AC021639.5_181586-181505 GCAGUCUGUGCGGAGU---GGUUAAGGCGUCGACUGGAAUCCCUUCUGGGAGCGUAGGUUCGAUCCCAACCCGCGCCG
AP000063.1_59179-59095 GCGGGGUGGAGCCUGCACUGGCCACAGAGGGGUCGGCCUCAGGAACCCGACUGGCUAGGCGUGCUUGGGUGUUACAAUCCACCCCGCA
AP000397.1_114390-114319 UGGAGUAUAGCCAAG--UGG--UAAGGCAUGGGUUUUGGUACCG----------------GCAUGCCAAAGGCGUGCAUCCUUUAAUCCAG
X03715.1_388-461 GCGGGGUGGAGCCUGCACUGGCCACAGAGGGGUCGGCCUCAGGAACCCGACUGGCUAGGCGUGCUUGGGUGUUACAAUCCACCCCGCA
U67517.1_7511-7582 GCGGGGUGGAGCCUGCACUGGCCACAGAGGGGUCGGCCUCAGGAACCCGACUGGCUAGGCGUGCUUGGGUGUUACAAUCCACCCCGCA
X99256.1_11558-11626 GUAAACAUAGUUAA------AUCAAAACAUUAGAUUGUGAAUCUAA----------CAAUAGACGCUAACCUCUUGCUUACC
M10217.1_5910-5978 AGUAAAGUCAGCUA------AAAAAGCUUUUGGGCCCAUACCCCAA----------ACAU

(((((((..(((.............))).(((((.......)))))..............

AC021639.5_181586-181505 GUAGGUUCGAAUCCUACCGGCUGCG
AP000063.1_59179-59095 GUGGGUUCAAAUCCCACCCCCCGCA
AP000397.1_114390-114319 AAAGGUUCGAAUCCUUUACUCCAG
X03715.1_388-461 GCAGGUUCGAAUCCUGCUUACC
U67517.1_7511-7582 CCGGGUCAAUUCCCGGUCCCGGCC
X99256.1_11558-11626 AGAGGCUCGAAACCUCUUGCUUACC
M10217.1_5910-5978 GUUGGUUAAACCCCUUCCUUUACUA

0........70........80....
RNAalifold

IN: RNA alignment
OUT: **Consensus structure of aligned RNAs**

Optimizes **free energy** + **conservation score**

conservation score = compensatory and consistent mutations

- alignment as sequence of alignment columns. Folding of this sequence is analogous to folding of an RNA sequence, 'base pairs' are formed between alignment columns
- Thus, same decomposition as Zuker; but modified scoring: sum of loop energies over all sequences & add conservation score
RNA Alignment Approaches

Plan A

ALIGN single sequences

FOLD alignment

consensus structure

Plan B

ALIGN and FOLD simultaneously

consensus structure:

Plan C

FOLD single sequences

ALIGN sequence AND structure

 adopted from:

[Gardener & Giiegerich BMC 2004]

[Sankoff 85]
Simultaneous Alignment and Folding [Sankoff]

Given: \[A = \text{GCUGACGAGCAGCUCAUCGGUAAUACUACCGAUCGUCAGCACU} \]
\[& B = \text{AUUGCCGCUGACCACGCGACGCGAUCGGGAAUCCGAUCGGGUCAGCGGCA} \]

Find:

\[\text{---GCUGA-----CGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU} \]
\[\text{AUUGCCGCUGACCACGCGACGCGAUCGGGAAUCCGAUCGGGUCAGCGGCA---} \]

\[\text{edit distance + energy } A + \text{ energy } B \rightarrow \text{ opt} \]
Simultaneous Alignment and Folding [Sankoff]

Given: \[A = \text{GCUGACGAGCAGCUCAUCGGUAAAUUCUACCGAUCCGAUCGUCACU} \]
& \[B = \text{AUUGCCGCUAGCGCAGCAGCCAUCCGAUCCGAUCGGUCAGCGGCA} \]

Find:

\[\text{---GCUGA-----CGAGCACGCUCAUCGGUAAAUCUACCG-AUCG-----UCAGCACU} \]
\[\text{AUUGCCGCUAGCGCAGCAGCCAUCCGAUCCGAUCGGUCAGCGGCA--} \]

\[\text{edit distance} + \text{energy } A + \text{energy } B \rightarrow \text{opt} \]
Sankoff Problem Definition

- Idea: Sankoff = Zuker Folding \times Needleman/Wunsch Alignment

- IN: two sequences a and b
- find two equivalent structures P_a and P_b
- and compatible alignment A of a and b
- such that $\text{Energy}(a, P_a) + \text{Energy}(b, P_b) + \text{EditDistance}(A)$ minimal

- where: Energy yields (loop-based) Turner free energy,
 EditDistance is edit distance (base mismatch x, indel y)

- what means compatible
 A must align all base pairs $(i_f, i_g) \in P_a$ and $(j_f, j_g) \in P_b$ that enclose branches
 (red base pairs of previous slide)
Constraints

Summarizing, we need to find the optimal structures + alignment with the following constraints:

Constraints on the predicted structures:
- must be equivalent (same shape)

Constraints on the alignment:
- multiloops must be aligned to their equivalent partner
- hairpin loops must be aligned to their equivalent partner
- each 2-loop (includes stacking and bulge) must be aligned to exactly one other 2-loop or must be aligned to gaps entirely.
Edit distance of sub-sequences

- distance based score
 - $x = \text{base mismatch}$
 - $y = \text{base deletion/insertion}$
- $D(i_1, j_1; i_2, j_2)$ minimum sequence alignment cost between sequences $a_{i_1} \ldots a_{j_1}$ and $b_{i_2} \ldots b_{j_2}$.
- Recursion: $D(i_1, j_1; i_2, j_2) = \min \left\{ \begin{array}{ll} D(i_1, j_1 - 1; i_2, j_2 - 1) + \begin{cases} x & \text{if } a_{j_1} \neq b_{j_2} \\ 0 & \text{otherwise} \end{cases} \\ D(i_1, j_1 - 1; i_2, j_2) + y \\ D(i_1, j_1; i_2, j_2 - 1) + y \end{array} \right\}$
- Initialization: $D(i_1, i_1; i_2, i_2) = \begin{cases} x & \text{if } a_{i_1} \neq b_{i_2} \\ 0 & \text{else} \end{cases}$
Simplified Sankoff (without full energy model)

We define the following functions (which will be evaluated recursively):

- $F(i_1, j_1, i_2, j_2)$ best alignment between subsequences $a_{i_1} \ldots a_{j_1}$ and $b_{i_2} \ldots b_{j_2}$.

- $C(i_1, j_1, i_2, j_2)$ best “closed” alignment between the same subsequences, where we predict the base pairs (i_1, j_1) and (i_2, j_2).

- $I_A(i_1, j_1, i_2, j_2)$ alignment of the same subsequences, which deletes j_1

- $I_B(i_1, j_1, i_2, j_2)$ symmetrically (…which inserts j_2)
Simplified Sankoff (without full energy model)

\[
\begin{align*}
F_{i_2,j_2} &= F_{i_1,j_1} & F_{i_2,j_2} &= F_{i_1,j_1} & F_{i_2,j_2} &= F_{i_1,j_1} \\
C_{i_2,j_2} &= F_{i_1,j_1} & I_A &= I_{i_1,j_1} & I_B &= I_{i_1,j_1} \\
I_A &= I_A & C &= C \\
I_B &= I_B & C &= C
\end{align*}
\]
Sankoff’s extreme complexity

Space complexity $O(n^4)$
- constant number of matrices
- each of them has $O(n^4)$ entries

Time complexity $O(n^6)$
- each entry of matrix D requires constant time
- each entry of F, C, and G requires $O(n^2)$ time (minimize over all h_1, h_2)
- hence: $n^4 \cdot n^2 = n^6$
Ensemble-based sparsification (LocARNA)

- **Sparsify structure ensemble**
Ensemble-based sparsification (LocARNA)

- Sparsify structure ensemble

all base pairs
Ensemble-based sparsification (LocARNA)

- **Sparsify structure ensemble**

![Diagram showing sparsification of base pairs with only probable base pairs highlighted.](image)
Ensemble-based sparsification (LocARNA)

• **Sparsify structure ensemble**

- Immediate time improvement by $O(n^2)$
- **Space improvement** by $O(n^2)$ requires rearrangement of recursion evaluation
Rfam / Infernal

- Infernal: scan genomic data for RNA family members
 - Inference of RNA alignments
- Important tool for Rfam
 - Rfam 10.1 (June 2011, 1973 families)
 - http://rfam.sanger.ac.uk/
- In Rfam: 'hand-curated' seed alignments → full alignments
- Use Stochastic Context Free Grammars to model RNA families
- Model of a family: *Consensus Model (CM)*

Example Structure:

```
input multiple alignment:
human   AAGACUUCGGAUCUGGCG  Ā Č Ā  CČ Ć.
mouse   aUACACUUCGGAGAUG - CACC . AAA . GUGa
orc     AGGUUUUC - GCACGGGCA g CČ Ć a UUC .
```

```
example structure:
  U C
  C G A
  C G A
  G G C A
  C C C C
  1  5  10  15  20  25  28
```

human:
```
AAGACUUCGGAUCUGGCG  Ā Č Ć Ć Ć Ć Ć
```

mouse:
```
aUACACUUCGGAGAUG - CACC . AAA . GUGa
```

orc:
```
AGGUUUUC - GCACGGGCA g CČ Ć a UUC .
```

human:
```
: : < < <  > > > : < < <  . . .  > > >.
```

mouse:
```
:aUACACUUCGGAGAUG - CACC . AAA . GUGa
```

orc:
```
: : < < <  > > > : < < <  . . .  > > >.
```
Infernal

Construct grammatical description

consensus structure:

guide tree:
Infernal

- Construct CM from guide tree
- Expand nodes of guide tree:
 - Add match, insertion, and deletion states
- learn transition and output probabilities from alignment
- CM comparable to profile HMM for protein families (Pfam)